G Tian 
  
Qi Wang 
email: qiwang88@whu.edu.cn
  
C.-J Xu 
  
Rou-Huai Wang 
  
Birthday 
  
Chao-Jiang Xu 
email: chao-jiang.xu@univ-rouen.fr
  
  
  
  
C ∞ LOCAL SOLUTIONS OF ELLIPTICAL 2-HESSIAN EQUATION IN R 3

Keywords: 2000 Mathematics Subject Classification. 35J60; 35J70 Elliptical k-Hessian equation, existence of local solutions, convexities

In this work, we study the existence of C ∞ local solutions to 2-Hessian equation in R 3 . We consider the case that the right hand side function f possibly vanishes, changes the sign, is positively or negatively defined. We also give the convexities of solutions which are related with the annulation or the sign of right-hand side function f . The associated linearized operator are uniformly elliptic.

Introduction

We are interested by the following k-Hessian equation

(1.1) S k [u] = f (y, u, Du) on an open domain Ω ⊂ R n , 1 ≤ k ≤ n, f ∈ C ∞ (Ω × R × R n ). Denote Du = (∂ 1 u, . . . , ∂ n u)
and D 2 u is the Hessian matrix (∂ i ∂ j u) 1≤i, j≤n . the Hessian operators S k [u] is defined as follows:

(1.2) S k [u] = σ k (λ(D 2 u)), k = 1, . . . , n, where λ(D 2 u) = (λ 1 , λ 2 , . . . , λ n ), λ j is the eigenvalue of the Hessian matrix (D 2 u), and

σ k (λ) = 1≤i 1 <•••<i k ≤n λ i 1 • • • λ i k
is the k-th elementary symmetric polynomial. Denoting, for k, j ∈ {1, • • • , n},

σ k, j = ∂σ k+1 (λ) ∂λ j = σ k | λ j =0 .
We also introduce the Gårding cone Γ k which is the open symmetric convex cone in R n , with vertex at the origin, given by Γ k = {(λ 1 , . . . , λ n ) ∈ R n : σ j (λ) > 0, ∀ j = 1, . . . , k}.

When k = 1, (1.1) is a semi-linear Poisson equation, and it is Monge-Ampère equation for k = n. We say that a function u

∈ C 2 is k-convex, if λ(D 2 u) ∈ Γk ,
the n-convex function is simply called convex function.

We say that a function u is a local solution of (1.1) near y 0 ∈ Ω, if there exists a neighborhood of y 0 , V y 0 ⊂ Ω such that u ∈ C 2 (V y 0 ) satisfies the equation (1.1) on V y 0 .

In this work, we study the existence of C ∞ -local solution of the following 2-Hessian equation in R 3 ,

(1.3) S 2 [u] = f (y, u, Du), on Ω ⊂ R 3 ,
where we also have S 2 [u] = u 11 u 22u 2 12 + u 22 u 33u 2 23 + u 11 u 33u 2 13 . We have proved the following results.

Theorem 1.1. Assume that f ∈ C ∞ (Ω ×R×R 3 ), then for any Z 0 = (y 0 , z 0 , p 0 ) ∈ Ω ×R×R 3 , we have that (1) if f (Z 0 ) = 0, then (1.3) admits a 1-convex C ∞ local solution which is not convex;

(2) if f ≥ 0 near Z 0 , then (1.3) admits a 2-convex C ∞ local solution which is not convex. If f (Z 0 ) > 0, (1.3) admits a convex C ∞ local solution.

(3) if f (Z 0 ) < 0, (1.3) admits a 1-convex C ∞ local solution which is not 2-convex.

Moreover, the equation (1.3) is uniformly elliptic with respect to the above local solutions.

For the local solution, Hong and Zuily [START_REF] Hong | Exitence of C ∞ local solutions for the Monge-Ampére equation[END_REF] obtained the existence of C ∞ local solutions to arbitrary dimensional Monge-Ampére equation, in which f is not only nonnegative but also satisfies a variant of Hörmander rank condition. Lin [START_REF] Lin | The local isometric embedding in R 3 of 2-dimensional Riemannian manifolds with non negative curvature[END_REF] proved the existence of a local H s solution in R 2 with f ≥ 0. We will follow the ideas of [START_REF] Hong | Exitence of C ∞ local solutions for the Monge-Ampére equation[END_REF] and [START_REF] Lin | The local isometric embedding in R 3 of 2-dimensional Riemannian manifolds with non negative curvature[END_REF][START_REF] Lin | The local isometric embedding in R 3 of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly[END_REF], the existence of the local solution can be obtained by a perturbation of polynomial-typed solution for S 2 [u] = a where a is a constant, so that our solution is in the form

u(y) = 1 2 3 j=1 τ j y 2 j + ε 5 w(ε -2 y), τ = (τ 1 , τ 2 , τ 3 ) ∈ R 3 .
The significance of theorem 1.1 is our results break away from the framework of Gårding cone. The sign of f is permitted to change in case [START_REF] Caffarelli | Dirichlet problem for nonlinear second order elliptic equations I,Monge-Apere equations[END_REF]. For the case (2), we say that it is a degenerate 2-Hessian equation if f (Z 0 ) = 0(see [START_REF] Wang | C 1,1 solution of the Dirichlet problem for degenerate k-Hessian equations[END_REF]). The non-convex solution in (1) and (2) never occurs for Monge-Ampére equation. There is also many works about the convexity of solution to Hessian equation, see [START_REF] Ma | The convexity of solution of a class Hessian equation in bounded convex domain in R 3[END_REF] and reference therein. Besides, these results seems to be strange. However, that is because the relationship between the sign of f and the ellipticity of the nonlinear k-Hessian equation may not be close.

The rest of this paper is arranged as follow: in Section 2, we will give definitions and some known results. Section 3 is devoted to the proof of Theorem 1.1.

Preliminaries

In this section, we collect some definitions and known results of k-Hessian equations. Firstly some algebraic properties of Gårding cone. Proposition 2.1 (See [START_REF] Wang | The k-Hessian equation[END_REF]). Using the notations introduced in Section 1,

(1) σ k (λ) = 0 for λ ∈ ∂Γ k and Γ n ⊂ . . . ⊂ Γ k ⊂ . . . ⊂ Γ 1 . (2) Maclaurin's inequalities, for any λ ∈ Γ k , 1 ≤ l ≤ k, σ k (λ) ( n k ) 1/k ≤ σ l (λ) ( n l ) 1/l
.

(3) we also have

σ k (λ) = λ i σ k-1;i (λ) + σ k;i (λ), ∀λ ∈ R n , n i=1 σ k,i (λ) = (n -k)σ k (λ), ∀λ ∈ R n . (4) Assume that λ ∈ Γ k is in descending order, λ 1 ≥ • • • λ p-1 ≥ λ p > 0 ≥ λ p+1 ≥ • • • λ n , then p ≥ k and (2.1) σ k-1;n (λ) ≥ • • • ≥ σ k-1;1 (λ) > 0.
When n = 3, we see that σ 3 (λ) > 0 cannot occur for λ ∈ ∂Γ 2 (λ), therefore we can express ∂Γ 2 as two parts

∂Γ 2 (λ) = P 1 ∪ P 2 , P 1 = {λ ∈ R 3 ; σ 1 (λ) ≥ 0, σ 2 (λ) = σ 3 (λ) = 0}, P 2 = {λ ∈ R 3 ; σ 1 (λ) > 0, σ 2 (λ) = 0, σ 3 (λ) < 0}.
Next, we will recall that what condition can lead to the ellipticity. As for the framework of ellipticity, we follow the ideas of [START_REF] Ivochkina | A description of the stability cones generated by differential operators of Monge-Ampere type[END_REF] and [START_REF] Ivochkina | The Gårding cones in the modern theory of fully nonlinear second order differential equations[END_REF]. Denote Sym(n) as the set of symmetric real n × n matrix. Through the matrix language, we recall the direct condition which leads to the elliptic k-Hessian operator. The ellipticity set of the k-Hessian operator, k = 1, 2, . . . , n, is

E k = S ∈ Sym(n) : S k (S + tξ × ξ) > S k (S ) > 0, |ξ| = 1, t ∈ R +
and the Gårding cones

Γ k = S ∈ Sym(n) : S k (S + tId) > S k (S ) > 0, t ∈ R + ,
where the definition of S k (S ) is given in (1.2). It is easy to show that E k = Γ k only for k = 1, n and the example in [START_REF] Ivochkina | The Gårding cones in the modern theory of fully nonlinear second order differential equations[END_REF] assures that Γ k ⊂ E k and mess(E k \ Γ k ) > 0 when 1 < k < n. Ivochkina, Prokofeva and Yakunina [START_REF] Ivochkina | The Gårding cones in the modern theory of fully nonlinear second order differential equations[END_REF] point out that the ellipticity of (1.1) is independent of the sign of f . We now present an algebraic property of

∂ ∂τ i σ 2 (τ) = σ 1,i (τ), i = 1, 2, 3, for τ = (τ 1 , τ 2 , τ 3 ) ∈ P 2 .
Lemma 2.2. Assume that τ ∈ P 2 , τ 1 ≥ τ 2 ≥ τ 3 . Then we have

0 < σ 1,1 (τ) ≤ σ 1,2 (τ) ≤ σ 1,3 (τ),

and

(2.2)

τ 3 < 0 < τ 2 ≤ τ 1 .
The above result means that for any

ψ = 1 2 3 i=1 τ i y 2 i , τ ∈ P 2
it is a solution of 2-Hessian equation S 2 (ψ) = 0, and the linearized operators of S 2 [u] at ψ

L = 3 i=1 σ 1,i (τ)∂ 2 i is uniformly elliptic, Proof. Recall that, for any τ ∈ R 3 , σ 2 (τ) = τ 1 τ 2 + τ 2 τ 3 + τ 1 τ 3 , and 
σ 1;1 (τ) = τ 2 + τ 3 , σ 1;2 (τ) = τ 1 + τ 3 , σ 1;3 (τ) = τ 1 + τ 2 .
Denote λ + ε = (λ 1 + ε, λ 2 + ε, λ 3 + ε) with λ ∈ R 3 and ε ∈ R, then we have the formula

σ 2 (λ + ε) = 2 j=0 C( j)ε j σ 2-j (λ), C( j) = ( 3 2 )( 2 j ) ( 3 2-j ) . For τ ∈ P 2 , we have σ 1 (τ) > 0, σ 2 (τ) = 0, then τ + ε ∈ Γ 2 , ∀ε > 0.
Applying (2.1) to τ + ε and letting ε → 0 + , we get

0 ≤ σ 1,1 (τ) ≤ σ 1,2 (τ) ≤ σ 1,3 (τ).
Since τ ∈ P 2 , we have

σ 2 (τ) = τ 1 σ 1,1 (τ) + σ 2,1 (τ) = 0. if σ 1,1 (τ) = τ 2 + τ 3 = 0, then, σ 2,1 (τ) = τ 2 τ 3 = 0,
thus σ 3 (τ) = τ 1 τ 1 τ 3 = 0, which contradicts with the assumption σ 3 (τ) < 0. Then, We have proven that, for any τ ∈ P 2 ,

0 < σ 1,1 (τ) ≤ σ 1,2 (τ) ≤ σ 1,2 (τ).
We prove now (2.2). Since σ 1 (τ) > 0, by (4) we have τ 1 > 0. We now claim that τ 1 = τ 2 = τ 3 is impossible. Indeed, if that holds, then σ 1 (τ) = 3τ 1 > 0 and σ 2 (τ) = 3τ 2 1 > 0, which contradicts with the assumption σ 2 (τ) = 0.

Besides, σ 3 (τ) < 0 imply that τ i 0 and τ i can not be positive at the same time. Then property (4) of Proposition 2.1 implies

τ 3 < 0 < τ 2 ≤ τ 1 .
We also have the following elliptic results for τ ∈ Γ 1 \ Γ2 . Lemma 2.3. For the Gårding cone, we have (1) For any given a < 0, there exists τ ∈ Γ 1 \ Γ2 , such that

σ 1 (τ) > 0, σ 2 (τ) = a.
(2) For any given b > 0, there exists τ ∈ Γ 2 \ Γ3 , such that

σ 1 (τ) > 0, σ 2 (τ) = b, σ 3 (τ) < 0.
(3) For any given c > 0, there exists τ ∈ Γ 3 , such that

σ 1 (τ) > 0, σ 2 (τ) = c, σ 3 (τ) > 0.
Moreover, for all above case, we have

σ 1,3 (τ) > σ 1,2 (τ) > σ 1,1 (τ) > 0.
Proof. We only need to prove the case (1), and to find a τ ∈ R 3 . We can choose α > 0 and

β > 0 such that (1 + β)α -1 < 0.
Then take Θ > 0 satisfying

Θ 2 (1 + α)[(1 + α)β -1] = a.
We claim that τ can be in the following form

τ = (τ 1 , τ 2 , τ 3 ) = ((1 + α)(1 + β)Θ, (1 + α)Θ, -Θ).
Indeed, from 1 + β > 1 and (1 + α)Θ > 0, we have

τ 1 > τ 2 > τ 3 , σ 1 (τ) > 0 and σ 2 (τ) = a. Moreover, σ 1,3 (τ) = (1 + α)(2 + β)Θ > σ 1,2 = (αβ + α + β)Θ > σ 1,1 (τ) = αΘ > 0.
Proof is done.

For the linearized operators of k-Hessian equation, we have the following results, the general version of which can be found in section 2, [START_REF] Guan | Locally convex hypersurfaces of constant curvature with boundary[END_REF].

Lemma 2.4. The matrix S i j 2 (r(w)) and (r i j (w)) can be diagonalized simultaneously, that is, for any smooth function w, we can find an orthogonal matrix T (x, ε) satisfying

       T (x, ε)(S i j 2 ) t T (x, ε) = diag ∂σ 2 (λ) ∂λ 1 , ∂σ 2 (λ) ∂λ 2 , ∂σ 2 (λ) ∂λ 3 T (x, ε)(r i j ) t T (x, ε) = diag [λ 1 (x, ε), λ 2 (x, ε), λ 3 (x, ε)] ,
where t T (x, ε) is the transpose of T (x, ε) and S i j

2 (r(w)) = ∂S 2 /∂r i j (r(w)). Furthermore, T (x, ε) | ε=0 = Id,
where Id is the identity matrix.

Proof. For T = (T i j ), we have

(2.3) 3 i=1 T si T ti = δ t s .
Now we set (r i j ) can be diagonalized by T ,

(T i j )(r i j ) t (T i j ) =            λ 1 λ 2 λ 3            =         3 i, j=1 T si T t j r i j         st .
Thus, we have, when s t

3 i, j=1
T si T t j r i j

=T s1 T t1 r 11 + T s2 T t2 r 22 + T s3 T t3 r 33 + 2T s3 T t1 r 31 + 2T s1 T t2 r 12 + 2T s3 T t2 r 32 = 0 (2.4)
Now for

S i j 2 (r i j ) =            r 22 + r 33 -r 21 -r 31 -r 12 r 11 + r 33 -r 31 -r 13 -r 23 r 11 + r 22            ,
we have

(T i j )(r i j ) t (T i j ) =         3 i, j=1 T si T t j S i j 2         st .
If we could prove that 3 i, j=1 T si T t j S i j 2 st is a diagonal matrix, our proof was done. Indeed, when s t, we have

3 i, j=1 T si T t j S i j 2 =T s1 T t1 (r 22 + r 33 ) + T s2 T t2 (r 11 + r 33 ) + T s3 T t3 (r 11 + r 22 ) -2T s1 T t2 r 12 -2T s3 T t1 r 31 -2T s3 T t2 r 32 .
(2.5) By (2.4) and (2.3), (2.5) can be

3 i, j=1 T si T t j S i j 2 = 3 i, j=1
T si T t j (r 11 + r 22 + r 33 ) = 0.

When ε = 0, S i j 2 [r(w)] and (r i j (w)) are diagonal, thus, T can be the identity matrix Id. From the view above, when k = 2 and f < 0, the corresponding Hessian operator is possible to be uniformly elliptic. In this paper, we will study some uniformly elliptic 2-Hessian equations which have non-positive right-hand functions f .

Existence of C ∞ local Solutions for uniformly elliptic case

From now on, we fixed n = 3, k = 2, by a translation y -→ yy 0 and replacing u by uu(0)y • Du(0), we can assume Z 0 = (0, 0, 0) in Theorem 1.1. We prove now the following results,

Theorem 3.1. Let f ∈ C ∞ and f (Z 0 ) = 0 for Z 0 = (0, 0, 0) ∈ Ω × R × R 3 . Then (1.3) admits a 1-convex local solution u ∈ C ∞ which is not 3-convex and is of the following form (3.1) u(y) = 1 2 3 i=1 τ i y 2 i + ε 5 w(ε -2 y), ∀(τ 1 , τ 2 , τ 3 ) ∈ P 2 in the neighborhood of y 0 = 0, w C 4,α ≤ 1 and ε > 0 very small. If f is nonnegative near Z 0 , then (1.3) admits a 2-convex local solution u ∈ C ∞ which is not 3-convex. If f (Z 0 ) > 0, then (1.3) admits a 3-convex local solution u ∈ C ∞ .
Moreover, the equation (1.3) is uniformly elliptic with respect to the solution (3.1).

Remark that, in Theorem 3.1 the function f is permitted to change sign. It is well known that, for Monge-Ampere operator, the type of equation is determined by the sign of f (y, u, Du), it is elliptic if f > 0, hyperbolic if f < 0 and degenerate elliptic or hyperbolic if f vanishes; it is of mixed type if f changes sign [START_REF] Han | Local solutions to a class of Monge-Ampre equations of mixed type[END_REF]. So that Theorem 3.1 never occurs in Monge-Ampére case.

Theorem 3.1 is exactly the part ( 1) and ( 2) of Theorem 1.1.

Let τ = (τ 1 , τ 2 , τ 3 ) ∈ P 2 , then ψ(y) = 1 2 3 i=1 τ i y 2 i is a polynomial-type solution of S 2 [ψ] = 0,
we follow Lin [START_REF] Lin | The local isometric embedding in R 3 of 2-dimensional Riemannian manifolds with non negative curvature[END_REF] to introduce the following function

u(y) = 1 2 3 i=1 τ i y 2 i + ε 5 w(ε -2 y) = ψ(y) + ε 5 w(ε -2 y), τ ∈ P 2 , ε > 0,
as a candidate of solution for equation (1.1). Noting y = ε 2 x, we have

(D y j u)(x) = τ j ε 2 x j + ε 3 w j (x), j = 1, • • • , 3, and (D y j y k u)(x) = δ j k τ j + εw jk (x), j, k = 1, • • • , 3,
where

δ j k is the Kronecker symbol, w j (x) = (D y j w)(x) and w jk (x) = (D 2 y jk w)(x). Then (1.3) transfers to S 2 (w) = fε (x, w(x), Dw(x)), x ∈ B 1 (0) = {x ∈ R 3 ; |x| < 1}
where S 2 (w) = S 2 (δ j i τ i + εw i j (x)) = S 2 (r(w)), with symmetric matrix r(w) = (δ j i τ i + εw i j (x)), and fε (x, w(x), Dw(

x)) = f (ε 2 x, ε 4 ψ(x) + ε 5 w(x), τ 1 ε 2 x 1 + ε 3 w 1 (x), • • • , τ 3 ε 2 x 3 + ε 3 w 3 (x)).
Similar to [START_REF] Lin | The local isometric embedding in R 3 of 2-dimensional Riemannian manifolds with non negative curvature[END_REF] we consider the nonlinear operators

(3.2) G(w) = 1 ε [S 2 (r(w)) -fε (x, w, Dw)], on B 1 (0).
The linearized operator of G at w is

(3.3) L G (w) = 3 i, j=1
∂S 2 (r(w))

∂r i j ∂ 2 i j + 3 i=1 a i ∂ i + a,
where

a i = - 1 ε ∂ f ε (x, z, p i ) ∂p i (x, w, Dw) = -ε 2 ∂ f ∂p i a = - 1 ε ∂ f ε (x, z, p i ) ∂z (x, w, Dw) = -ε 4 ∂ f ∂z .
Hereafter, we denote S i j 2 (r(w)) = ∂S 2 (r(w)) ∂r i j . Since S 2 (r(w)) = σ 2 (λ(r(w))) is invariant under orthogonal transformation, by using Lemma 2.4, the matrix S i j 2 (r(w)) and (r(w)) can be diagonalized simultaneously, that is, for any smooth function w, we can find an orthogonal matrix T (x, ε) satisfying

       T (x, ε) S i j 2 (r(w)) t T (x, ε) = diag ∂σ 2 (λ(r(w))) ∂λ 1
, ∂σ 2 (λ(r(w))

∂λ 2
, ∂σ 2 (λ(r(w)))

∂λ 3 T (x, ε) r i j (r(w)) t T (x, ε) = diag [λ 1 (r(w)), λ 2 (r(w)), λ 3 (r(w))] ,
where t T (x, ε) is the transpose of T (x, ε). Since T is not unique, we set T (x, ε) | ε=0 = Id. After this transformation, in order to prove the uniform ellipticity of L G (w)

n i, j=1 S i j 2 (r(w)ξ i ξ j ≥ c|ξ| 2 , ∀(x, ξ) ∈ B 1 (0) × R 3
instead we can prove that , by setting

ξ = t T (x, ε) ξ, 3 j=1 ∂σ 2 (λ(r(w))) ∂λ j | ξ j | 2 ≥ c| ξ| 2 ,
for some c > 0, where ∂σ 2 (λ(r(w)))

∂λ 1 = σ 1,1 (λ(r(w))) = λ 2 (r(w)) + λ 3 (r(w)), ∂σ 2 (λ(r(w))) ∂λ 2 = σ 1,2 (λ(r(w))) = λ 1 (r(w)) + λ 3 (r(w)), ∂σ 2 (λ(r(w))) ∂λ 3 = σ 1,3 (λ(r(w))) = λ 1 (r(w)) + λ 2 (r(w)).
Lemma 3.2. Assume that τ ∈ P 2 and w C 2 (B 1 (0)) ≤ 1, then the operator L G (w) is a uniformly elliptic operator if ε is small enough.

Proof. To prove the operator L G (w) is a uniformly elliptic operator, it suffices to prove (3.4) λ i (r(w)) + λ j (r(w)) = τ i + τ j + O(ε), i, j = 1, 2, 3, i j.

Indeed, for τ ∈ P 2 and Lemma 2.2 give τ i + τ j > 0. Thus, for ε small enough, (3.4) imply,

λ i + λ j ≥ τ i + τ j 2 > 0, i j L G (w)
is then a uniformly elliptic operator. Next, we prove (3.4). By our choice of r i j (w), 

r(w) = (r i j (w)) =            τ 1 +
           ,
we write its characteristic polynomial as

g(λ) = det(r(w) -λ I) = 3 i=1 (τ i -λ i ) + R(w, ε)
where

R(w, ε) = 3 j=1 εR j (w, ε) + j,k ε 2 R jk (w, ε).
For any w C 2 (B 1 (0)) ≤ 1 and 0 < ε ≤ 1

|R j (w, ε)| ≤ C, |R jk (w, ε)| ≤ C
with C being independent of x and ε. We have also

(3.5) S 1 (r(w)) = σ 1 (τ) + εS 1 (w), S 2 (r(w)) = σ 2 (τ) + ε R1 (w, ε), and 
det(r(w)) = σ 3 (τ) + ε R2 (w, ε),
where for any w C 2 (B 1 (0)) ≤ 1 and 0

< ε ≤ 1 | R j (w, ε)| ≤ C, |S 1 (w)| ≤ C.
By using Lemma 2.2, we have

τ 3 < 0 < τ 2 ≤ τ 1 , then for 0 < ε ≪ |τ 3 |, we have g( 3 4 τ 3 ) = (τ 1 - 3 4 τ 3 )(τ 2 - 3 4 τ 3 )( τ 3 4 ) + R(w, ε) < 0, g( 5 4 τ 3 ) = (τ 1 - 5τ 3 4 )(τ 2 - 5τ 3 4 )(- τ 3 4 ) + R(w, ε) > 0,
and we see that, by the virtue of Intermediate Value Theorem, there exists an eigenvalue, denoted by λ 3 , such that 3 4

τ 3 > λ 3 > 5 4 τ 3 , g(λ 3 ) = 0. From 0 = g(λ 3 ) = (τ 1 -λ 3 )(τ 2 -λ 3 )(τ 3 -λ 3 ) + R(w, ε) and (τ 1 - 5τ 3 4 )(τ 2 - 5τ 3 4 ) > (τ 1 -λ 3 )(τ 2 -λ 3 ) > (τ 1 - 3τ 3 4 )(τ 2 - 3τ 3 4 ),
it follows that

λ 3 = τ 3 + O 1 (w, ε).
Since the trace of a matrix is invariant under the orthogonal transformation, then λ 1 (w) + λ 2 (w) + λ 3 (w) = σ 1 (τ) + ε(w 11 + w 22 + w 33 ), from which we see that

λ 1 (w) + λ 2 (w) = τ 1 + τ 2 + O 2 (w, ε). Using σ 2 (τ) + ε R1 (w, ε) = S 2 (r(w)) = σ 2 (λ(r(w))) = λ 3 (w)(λ 1 (w) + λ 2 (w)) + λ 1 (w)λ 2 (w),
we obtain

λ 1 λ 2 = τ 1 τ 2 + O 3 (w, ε),
which yields either

λ 1 = τ 1 + O 4 (w, ε), λ 2 = τ 2 + O 5 (w, ε)
or

λ 1 = τ 2 + O 5 (w, ε), λ 2 = τ 1 + O 4 (w, ε)
and then (3.4) is proven. Proof is done.

We follows now the idea of Hong and Zuily [START_REF] Hong | Exitence of C ∞ local solutions for the Monge-Ampére equation[END_REF] to prove the existence and a priori estimates of solution for linearized operator. In our case, although L G (w) is uniformly elliptic, the existence and a priori Schauder estimates of classical solutions are not directly obtainable, because we do not know whether the coefficient a of au in (3.3) is non-positive. If we can prove the existence (Lemma 3.3), we can employ Nash-Moser procedure to prove the existence of local solution for (1.3) in Hölder space rather than Sobolev space. One goal is to see how the procedure depends on the condition w k C 4,α ≤ A. We shall use the following schema:

(3.6)                  w 0 = 0, w m = w m-1 + ρ m-1 , m ≥ 1, L G (w m )ρ m = g m , in B 1 (0), ρ m = 0 on ∂B 1 (0), g m = -G(w m ) , where g 0 (x) = 1 ε σ 2 (τ) -f ε 2 x, ε 4 ψ(x), ε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) .
It is pointed out on page 107, [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] that, if the operator L G does not satisfy the condition a ≤ 0, as is well known from simple examples, the Dirichlet problem for L G (w)ρ = g no longer has a solution in general. Notice a in (3.9) has the factor ε 4 , we will take advantage of smallness of a to obtain the uniqueness and existence of solution for Dirichlet problem (3.9) and then uniformly Schauder estimates of its solution follows.

Lemma 3.3. Assume that w C 4,α (B 1 (0)) ≤ A. Then there exists a unique solution ρ ∈ C 2,α (B 1 (0)) to the following Dirichlet problem

(3.7) L G (w)ρ = g, in B 1 (0), ρ = 0 on ∂B 1 (0)
for all g ∈ C α (B 1 (0)). Moreover,

(3.8) ρ C 4,α (B 1 (0)) ≤ C g C 2,α (B 1 (0)) , ∀g ∈ C 2,α (B 1 (0)),
where the constant C depends on A, τ and f C 4,α . Moreover, C is unform for 0 < ε ≤ ε 0 for some ε 0 > 0.

By virtue of (3.3), we write (3.7) as (3.9)

       L G (w)ρ = 3 i, j=1
∂S 2 (r(w))

∂r i j ∂ i ∂ j ρ + 3 i=1 a i ∂ i ρ + aρ = g, in B 1 (0), ρ = 0 on ∂B 1 (0)
where

a i = -ε 2 ∂ f ∂p i , a = -ε 4 ∂ f ∂z .
Notice that for ∂S 2 (r(w)) ∂r i j , a i = a i (x, w(x), Dw(x)), a = a(x, w(x), Dw(x)) and g m = -G(w m ) = g m (x, w(x), Dw(x), D 2 w(x)) by (3.6), we regard them as the functions with variable x. In a word, we regard that all of the coefficients and non-homogeneous term in (3.9) are functions of variable x. For example, fε (x, w(x), Dw(

x)) = f (ε 2 x, ε 4 ψ(x) + ε 5 w(x), τ 1 ε 2 x 1 + ε 3 w 1 (x), • • • , τ 3 ε 2 x 3 + ε 3 w 3 (x)), and fε C 3 = sup |D β x [ fε ]|, |0 ≤ β ≤ 3, x ∈ B 1 (0) fε C 3,α = fε C 3 + sup        |D β x [ fε ](x) -D β x [ fε ](z)| |x -z| α , |β| = 3, x z ∈ B 1 (0)       
When we regard fε as a function of variable x, usually f C 3,α is denoted as f C 3,α (B 1 (0)) , but it maybe cause confusion because it must be involved in D α w, 0 ≤ |α| ≤ 3 as above. Therefore, here and after, we denote the norm as fε C 3 , fε C 3,α as above, by dropping B 1 (0).

Proof. Let the constant µ(τ) = inf ∂σ 2 (λ(r(w)))

∂λ i : w C 4,α (B 1 (0)) ≤ A, i = 1, 2, 3, . By Lemma 3.2, µ(τ) > 0. Applying Theorem 3.7 [3] to the solution u ∈ C 0 (B 1 (0)) ∩ C 2 (B 1 (0)) of        L G (w)u = 3 i, j=1
∂S 2 (r(w))

∂r i j ∂ i ∂ j u + 3 i=1 a i ∂ i u = g, in B 1 (0), u = 0 on ∂B 1 (0) we have (3.10) sup |u| ≤ C µ(τ) g C 0 (B 1 (0)) ,
where C = exp 2(β+1) -1 and β = sup

|a i | µ(τ) : i = 1, 2, 3. Let C 1 = 1 -C sup |a| µ(τ)
with C being the constant in (3.10). If we choose ε 0 > 0 small (the smallness of a), then C 1 > 1 2 uniformly for 0 < ε < ε 0 . Applying Corollary 3.8 [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] to the solution ρ to Dirichlet problem (3.9), we have

(3.11) sup |ρ| ≤ 1 C 1       sup ∂B 1 (0) |ρ| + C µ(τ) g C 0 (B 1 (0))       = C C 1 µ(τ) g C 0 (B 1 (0)) ,
from which we see that the homogeneous problem

       L G (w)ρ = 3 i, j=1
∂S 2 (r(w))

∂r i j ∂ i ∂ j ρ + 3 i=1 a i ∂ i ρ + aρ = 0, in B 1 (0), ρ = 0 on ∂B 1 (0)
has only the trivial solution. Then we can apply a Fredholm alternative, Theorem 6.15 [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], to the inhomogeneous problem (3.9) for which we can assert that it has a unique C 2,α (B 1 (0)) solution for all g ∈ C α (B 1 (0)).

With the existence and uniqueness at hand, we can apply Theorem 6.19 [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] to obtain higher regularity up to boundary for solution to (3.9). Besides this, we have the Schauder estimates (see Problem 6.2 , [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF])

(3.12) ρ C 4,α ≤ C(A, τ, f C 3+α ) ρ k C 0 (B 1 (0)) + g k C 2,α (B 1 (0)) ,
where C depends on C 2,α -norm of all of the coefficients; the uniform ellipticity; boundary value and boundary itself . we explain the dependence of C(A, τ, f C 3+α ). Firstly, Since the first two derivatives of w have come into the principal coefficients ∂S 2 (r(w)) ∂r i j , then their C 2+α -norms must be involved in w C 4,α , and at last w C 4,α ≤ A arise into C. Similarly, by virtue of the coefficients a i and a, f C 3,α and w C 3,α ≤ A must arise into C. Secondly, it depends on uniform ellipticity, that is, on inf ∂σ 2 (λ(r(w)))

∂λ i : w C 4,α (B 1 (0)) ≤ A, i = 1, 2, 3,
and sup ∂σ 2 (λ(r(w)))

∂λ i : w C 4,α (B 1 (0)) ≤ A, i = 1, 2, 3, , so (τ = 
(τ 1 , τ 2 , τ 3 )) and A arise into C. Thirdly, Since boundary value is =0 and boundary ∂B 1 (0) is C ∞ , so the two ingredients do not occur into C. Substituting (3.11) into (3.12), we obtain (3.8).

It follows from standard elliptic theory (see Theorem 6.17, [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and Remark 2, [START_REF] Caffarelli | Dirichlet problem for nonlinear second order elliptic equations I,Monge-Apere equations[END_REF]) and an iteration argument that we obtain. Corollary 3.4. Assume that u ∈ C 2,α (Ω) is a solution of (1.3), and the linearized operators with respect to u,

L u = 3 i, j=1 ∂S 2 (u i j ) ∂r i j ∂ 2 i j - 3 i=1 ∂ f ∂p i (y, u(y), Du(y))∂ i - ∂ f ∂z (y, u(y), Du(y)) is uniformly elliptic, then u ∈ C ∞ (Ω).
Proof. Let v be a function on Ω and denote by e l , l = 1, 2, 3 the unit coordinate vector in the y l direction. We define the difference quotient of v at y in the direction e l by

△ h v(y) = △ h l v(y) = v(y + he l ) -v(y) h . Since S 2 (u i j (y + he l )) -S 2 (u i j (y)) = 1 0 d dt [S 2 (tu i j (y + he l ) + (1 -t)u i j (y))]dt = 3 i, j=1 1 0 ∂ ∂r i j [S 2 (tu i j (y + he l ) + (1 -t)u i j (y))]dt[u i j (y + he l ) -u i j (y)] ≡ 3 i, j=1 a i j (y)[u i j (y + he l ) -u i j (y)]
and Taylor expansion give f (y + he l , u(y + he l ), Du(y + he l ))f (y, u(y), Du(y))

= 3 i=1 b i (y)[u i (y + he l ) -u i (y)] + c(y)[u(y + he l ) -u(y)] + g(y)h with b i (y) = 1 0 ∂ f ∂p i (t(y + he l ) + (1 -t)y, tu(y + he l ) + (1 -t)u(y), tDu(y + he l ) + (1 -t)D(y))dt c(y) = 1 0 ∂ f ∂z (t(y + he l ) + (1 -t)y, tu(y + he l ) + (1 -t)u(y), tDu(y + he l ) + (1 -t)D(y))dt g(y) = 1 0 ∂ f ∂y l (t(y + he l ) + (1 -t)y, tu(y + he l ) + (1 -t)u(y), tDu(y + he l ) + (1 -t)D(y))dt.
Taking the difference quotients of both sides of the equation

S 2 (u i j (y)) = f (y, u, Du), we have 3 i, j=1 a i j (y)∂ i ∂ j △ h u(y) - 3 i=1 b i (y)∂ i △ h u(y) -c(y)△ h u(y) = g(y).
Since u ∈ C 2,α (Ω), then all the coefficients a i j , b i , c and inhomogeneous term g are in C α (Ω), from the interior estimates of Corollary 6.3 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we can infer

△ h u ∈ C 2,α (Ω).
Letting h → 0, we see ∂ l u ∈ C 2,α (Ω), l = 1, 2, 3 and

3 i, j=1 ∂S 2 (D 2 u) ∂r i j ∂ i ∂ j (∂ l u) - 3 i=1 ∂ f ∂p i ∂ i (∂ l u) - ∂ f ∂z (∂ l u) = ∂ f ∂y l .
Repeating the above proof, we obtain u ∈ C ∞ (Ω).

Using above Lemma 3.3, we can use the procedure (3.6) to construct the sequence {w m } m∈N . Now we study the convergence of {w m } m∈N and that of {g m } m∈N . Proposition 3.5. Let {w m } m∈N and {g m } m∈N the sequence in (3.6). Suppose that w j C 4,α ≤ A for j = 1, 2, . . . , k. Then we have

(3.13) g k+1 C 2,α ≤ C[ g k 2 C 2,α + g k 3 C 2,α ],
where C is some positive constant depends only on τ ,A and f C 4,α . In particular, C is independent of k.

Proof. Applying Taylor's expansion with integral-typed remainder to (3.2), we have

-g k+1 = G(w k + ρ k ) = G(w k ) + L G (w k )ρ k + Q(w k , ρ k ) = -g k + L G (w k )ρ k + Q(w k , ρ k ) = Q(w k , ρ k ),
where Q k is the quadratic error of G which consists of S 2 and f .

Q(w k , ρ k ) = i j,st 1 ε (1 -µ) ∂ 2 S 2 (w k + µρ k ) ∂w i j ∂w st dµ(ρ k ) i j (ρ k ) st + i, j 1 ε (1 -µ) ∂ 2 fε (w k + µρ k ) ∂w i ∂w j dµ(ρ k ) i (ρ k ) j + 1 ε i (1 -µ) ∂ 2 fε (w k + µρ k ) ∂w∂w i dµ(ρ k ) i (ρ k ) + 1 ε (1 -µ) ∂ 2 fε (w k + µρ k ) ∂w 2 dµ • ρ 2 k = I 1 + I 2 + I 3 + I 4
Since S 2 ((r(w))) is a second-order homogeneous polynomial with variable r i j (r(w)) and fε (x, w, Dw) is independent of r i j , we see that

∂ 2 S 2 (w k + µρ k ) ∂w i j w st = ∂ 2 S 2 ∂w i j ∂w st (δ j i τ i + ε(w k + µρ k ) i j ) = ε 2 or 0, ∂ 2 fε (w k + µρ k ) ∂w i ∂w j = ∂ 2 [ f (εx, ε 4 ψ + ε 5 (w k + µρ k ), ε 3 Dψ + ε 3 D(w k + µρ k ))] ∂w i ∂w j ≤ ε 6 • f C 2 , ∂ 2 fε (w k + µρ k ) ∂w∂w i = ∂ 2 [ f (εx, ε 4 ψ + ε 5 (w k + µρ k ), ε 3 Dψ + ε 3 D(w k + µρ k ))] ∂w∂w i ≤ ε 8 f C 2 , ∂ 2 fε (w k + µρ k ) ∂w 2 = ∂ 2 [ f (εx, ε 4 ψ + ε 5 (w k + µρ k ), ε 3 Dψ + ε 3 D(w k + µρ k ))] ∂w 2 = ε 10 f C 2 .
Thus,

I i (1 ≤ i ≤ 4) in Q k are under control by O(ε), O(ε 5 ), O(ε 7 ) and O(ε 9 ), repectively. Therefore I 1 C 2,α ≤ C ρ k C 2 ρ k C 4,α and 
I 2 C 2,α ≤C f C 4,α ( w k C 3,α + ρ k C 3,α ) ρ k 2 C 1 + C f C 2 ρ k C 3,α ρ k C 1 ≤C ρ k C 3,α ρ k 2 C 1 + C ρ k 2 C 1 + C ρ k C 3,α ρ k C 1
where C depends on A and f C 4,α . And I 3 C 2,α and I 4 C 2,α can be estimated similarly. Accordingly,

g k+1 C 2,α = Q(w k , ρ k ) C 2,α ≤ 4 i=1 I i C 2,α ≤C ρ k C 2 ρ k C 4,α + C ρ k C 3,α ρ k 2 C 1 + ρ k 2 C 1 + C ρ k C 3,α ρ k C 1
where C is independent of k but dependent of A and f C 4,α . Thus, by the interpolation inequalities, we have

g k+1 C 2,α ≤ C ρ k 2 C 4,α + C ρ k 3 C 4,α
, where C is independent of k. By Schauder estimates of Lemma 3.3, we have

ρ k C 4,α ≤ C g k C 2,α .
Combining the estimates above, we obtain (3.13). Proof is done. Since C is independent of k, more exactly, A, τ and f C 4,α are independent of k. So here and after, we can assume A = 1. 

d k+1 ≤ d 2 k + d 3 k . Take τ ∈ R 3
as in Lemmas 2.2 and 2.3 such that σ 2 (τ) = f (0, 0, 0), we have

g 0 (x) = 1 ε σ 2 (τ) -f ε 2 x, ε 4 ψ(x), ε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) = 1 ε [σ 2 (τ) -f (0, 0, 0)] + ε 1 0 x • (∂ y f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt + ε 3 1 0 ψ(x)(∂ z f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt + ε 1 0 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) • (∂ p f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt, then g 0 C 2,α (B 1 (0)) ≤ εC 1 f C 3,α .
We can choose 0 < ε ≤ ε 0 so small such that

C g 0 C 2,α (B 1 (0)) ≤ 1/4, 0 < ε ≤ ε 0 .
Notice ε 0 is independent of k. Since d 0 = C g 0 C 2,α , we have d 1 ≤ 2d 2 0 and, by induction,

d k+1 ≤ 2 2 k+1 d 2 k+1 0 ≤ (2C) 2 k+1 g 0 2 k+1
C 2,α , Thus, by (3.14)

g k+1 C 2,α ≤ (2C) 2 k+1 -1 g 0 2 k+1
C 2,α . Firstly, we claim that there exists ε > 0, depending on τ and f C 3,α such that

w k C 4,α (B 1 (0)) ≤ 1, ∀k ≥ 1.
Indeed, set w 0 = 0, we have by (3.13)

w k+1 C 4,α (B 1 (0)) = k i=0 ρ i C 4,α (B 1 (0)) ≤ k i=0 ρ i C 4,α (B 1 (0)) ≤ k i=0 C g i C 2,α (B 1 (0)) ≤ k i=0 2C g 0 C 2,α (B 1 (0)) 2 i
where C is defined in Lemma 3.5. Thus, for any k, Now if f (0, 0, 0) = 0, we take τ ∈ P 2 , then σ 1 (τ) > 0, σ 2 (τ) = 0, σ 3 (τ) < 0, and (3.5) imply, S j [u] = σ j (λ) = σ j (τ) + O(ε), j = 1, 2, 3 it follows that S 1 [u] > 0, S 3 [u] < 0 on B ε 2 (0) for small ε > 0, that is, u is 1-convex but not convex. Moreover if S 2 [u] = f ≥ 0 near Z 0 and f (Z 0 ) = 0, we see that u is 2-convex by definition, but not 3-convex. If S 2 [u] = f > 0 near Z 0 , we take τ ∈ R 3 given in ( 2) and (3) of Lemmas 2.3, then we can get the 3-convex or non convex local solutions.

The C ∞ regularity of solution is given by Corollary 3.4. We have then proved Theorem 3.1.

We also have the following elliptic results for negative f Theorem 3.6. Let f ∈ C ∞ , f (0, 0, 0) < 0. Then (1.3) admits a 1-convex local solution u ∈ C ∞ in a neighborhood of y 0 = 0 which is not 2-convex, it is of the following form u(y) = 1 2 3 i=1 τ i y 2 i + ε 5 w(ε -2 y) , and the equation (1.3) is uniformly elliptic with respect to this solution.

Proof. For a = f (0, 0, 0) < 0, take τ ∈ R 3 as in (1) of Lemma 2.3 such that σ 1 (τ) > 0, σ 2 (τ) = f (0, 0, 0) < 0, and

σ 1,3 (τ) > σ 1,2 (τ) > σ 1,1 (τ) > 0.
Now the proof is exactly same as that of Theorem 3.1 except the estimate of term g 0 , we use Taylor expansion, 

  Proof of Theorem 3.1. Set (3.14) d k+1 = C g k+1 C 2,α . By (3.13) with letting C ≥ 1 we have

2 - 2 i 1 τ i y 2 i

 2212 ≤ 1.Then, by Azelà-Ascoli Theorem, we havew k → w in C 4 ((B 1 (0))).From (3.13), we see thatg k+1 C 2,α (B 1 (0)) then g m = -G(w m ) yields G(w) = 1 ε [S 2 (r(w)) -f (x, w, Dw)] = 0, on B + ε 5 w(ε -2 y) ∈ C 4 (B ε 2 (0)), is a solution of S 2 [u] = f (y, u, Du), on B ε 2 (0) .

1 0xε 3 1 0ε 1 0(τ 1 x 1 , τ 2 x 2 , τ 3 x 3 )

 111123 τ)f ε 2 x, ε 4 ψ(x), ε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) = 1 ε [σ 2 (τ)f (0, 0, 0)] + ε • (∂ y f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt + ψ(x)(∂ z f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt + • (∂ p f ) tε 2 x, tε 4 ψ(x), tε 2 (τ 1 x 1 , τ 2 x 2 , τ 3 x 3 ) dt,then we can end the proof of Theorem 3.6 exactly as that of Theorem 3.1.
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