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Abstract—this paper aims at investigating different methods 

for the detection of the start and end of bradycardias in heart 

rate signal of premature babies. We present two methods based 

on a disturbance detector and on a decision tree that are 

compared to classical thresholding approaches. Decision tree 

obtained the best detection results (Se=78.2%, PP=68.7%) 

against the disturbance detector (Se=90.2%, PP=61.3%) and 

the best thresholding method (Se=92.5%, PP=46.5%). 

Moreover, the decision tree exhibits better performance for the 

boundaries estimation (median delay = 7-5 seconds) than the 

disturbance detector (median delay = 8-5 seconds) with a better 

stability (STD=8.5 to 8.7s vs. STD=35.3 to 19.9s). These 

methods will be integrated to the BabyTalk project which aims 

at summarizing neonatal clinical data as text in order to 

improve data management in Neonatal ICU. 

I. INTRODUCTION 

NTERPRETATION of clinical data is an important task in the 

intensive care unit (ICU). Medical staff deals with high 

volumes of data which are so large (about 1 MB per patient 

per day), that attention overload and stress from looking 

after several patients can lead to mistakes. Although 

graphical presentation of the data is the norm, it has been 

shown that, in certain cases, textual descriptions of data can 

lead to better clinical decision [3]. Automatic textual 

summarization of Neonatal ICU (NICU) data is the aim of 

the BabyTalk project [2]. This project, try to automatically 

generate human-like clinical data descriptions such as the 

following:  

- “There is a momentary bradycardia”;  

- “there are several significant bradycardias”; …  

The inference of adjectives such as “momentary”, 

“significant”, and “several” requires correct detection of the 

start and end of the bradycardia events. To do so, we 

investigated the performances of different methods for the 

detection of the start and the end of bradycardias in the Heart 

Rate (HR) signal. However, we expect that the developed 

methods can be adapted to the detection and characterization 

of other clinical events such as desaturation, hypoxia, 

hypotension, and apnea. 

The results of this study will be useful not only for 

characterization and summarization of data but also for 

improvement of clinical monitoring systems. Indeed, in 

clinical monitoring, a pair of thresholds is usually set in 
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order to trigger an alarm when physiological parameters 

(such as the heart rate and the oxygen saturation) go outside 

the range defined by the thresholds [4]. This crude method 

leads to a high number of false alarms and a very poor 

specification of the event. A more accurate detection of 

bradycardias could leads to the computation of their degree 

of significance (the deeper and the larger the bradycardia, 

the more dangerous) that can be used to trigger an alarm 

only when it is clinically necessary [5]. 

Section II details the methods implemented. The dataset 

used for the evaluation is presented in section III and the 

evaluation methodology is introduced in section IV. Then, 

the training and the test results are given in sections V and 

VI. Finally, this paper ends with a short discussion. 

II. METHODS FOR BRADYCARDIA DETECTION 

Several bradycardia detection schemes have been proposed 

[4] but the definition of bradycardia differs between 

different investigators with variations in amplitude as well as 

in duration. In our study, a bradycardia is defined as “a 

sudden fall from the Heart Rate (HR) baseline followed by a 

rapid recovery”. In our case (BabyTalk project), long term 

HR variations are managed a trend detection stage. Four 

different methods have been investigated. They are based on 

(i) amplitude threshold; (ii) amplitude and duration 

thresholds; (iii) disturbance detection and (iv) decision tree. 

These methods have been selected for their simplicity and 

their ability to process large amounts of data in a short time 

(which is not the case for more sophisticated methods [1]). 

As ICU data are characterized by artifacts and missing 

values, the HR channel is filtered by a 10-order low-pass 

FIR filter to remove high frequency noise.  

A. Amplitude (A) Threshold 

This is the crude threshold method used by the monitoring 

systems. It simply detects sample below a predefined 

threshold (set by the medical staff). In the following, this 

method is used as reference. 

B. Amplitude and Duration (A-D) Thresholds 

This method is an improvement of the crude thresholding 

method. A bradycardia is detected when “HR < 100 bpm 

(beats per minute) during 15s or HR < 60 bpm during 5s” 

[4]. The duration thresholds improve the precision, however, 

it is not able to deal with bradycardias above 100 bpm or 

short bradycardias.  
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C. Disturbance Detection (Disturb.) 

One way to detect a bradycardia is to detect a sudden 

change (disturbance) in the heart rate. Extending the method 

presented in [6], the algorithm searches for a sudden change 

in a moving window. If Max (reps. Min) represents the 

maximum (resp. minimum) amplitude in a 30 seconds 

window, a sudden change is detected each time that Max-

Min>TC, where TC is the sudden change threshold. Sudden-

change neighbors are then merged to give a larger window. 

If this window is classified as a downward spike for which 

the Min exceeds the normal range then, it is a bradycardia.  

To estimate start and end, a baseline is computed by a 60 

seconds-width median filter applied to HR. Each 

bradycardia previously found is then expanded forwards and 

backwards until it meets the baseline. Using this baseline 

computation, the method should detect accurately the 

boundary of bradycardia episodes 

D. Decision Tree (DT) 

Another way of detecting bradycardias is to apply a 

machine learning technique to learn a decision tree. Decision 

trees have already been used by Tsien et al. [7] to detect 

artifacts in ICU data. Our method is thus an extension of this 

work to the detection of medical events.  

The induction of a decision tree is based on the “divide 

and conquer” principle to partition a training set TS, 

composed of individuals described by several attributes, into 

homogeneous subgroups. Let the classes of the individuals 

be {C1, C2,…, Ck}, there are four possibilities: 

1. TS contains individuals belonging to only one class Cj. 

In this case, this is a leaf named Cj. 

2. TS is empty. In this case this is a leaf for which the class 

is defined by information other than TS (e.g. the most 

frequent class of the parent). 

3. TS contains individuals belonging to several classes. 

Thus, a test T is chosen, based on a single attribute that 

has the exclusive outcomes {O1, O2,…, On} which are 

used to partition TS into the subsets {TS1, TS2,…, TSn} 

where TSi contains all the individuals in TS that have 

outcomes Oi.The decision tree for TS consists of one 

branch for each outcome. This mechanism is then 

reapplied recursively on each subset TSi. 

4. TS contains individuals belonging to several classes but 

for which no test can be found. In this case this is a leaf 

for which the class is defined by information from TS 

(e.g. the most frequent class in TS) or other than TS. 

The performance of the decision tree induction rests 

mainly on the choice of the test. In this paper, we use the 

well known C4.5 method derived by Quinlan [9] which uses 

the gain ratio to choose the test T. The gain ratio can be 

described as the gain of information (based on the entropy) 

for T normalized by the potential information of dividing TS 

into n outcomes. Therefore, the decision tree chooses the 

most discriminant tests (best separation of the information). 

So, the learnt decision tree will not only be used to detect 

bradycardias but will also give information on what the most 

discriminating attributes are. The attributes used to describe 

each sample of the signal are: raw value, area, linear slope, 

standard deviation, minimum amplitude, maximum 

amplitude, max derivative, mean, and median. Area is the 

sum of gaps between the amplitude of the samples and the 

mean. These attributes are computed for each data point in 

three moving centered windows, 5, 10 and 30 seconds, in 

order to take different change rates into account.  

Once learnt, the decision tree is translated into rules to 

detect bradycardias. As the decision tree classifies each 

sample as belonging to a bradycardia or not, it does not 

output intervals. That is why a translation stage, consisting 

in smoothing the outputs of the decision tree by a 31-

samples Blackman window is added. The output is 

consistent with probabilities and a threshold stage 

determines the intervals. 

This method has several advantages: 1) regarding the 

mass of data present in ICU, the learning requires little 

preprocessing of the large volumes of ICU data; 2) the rules 

derived from decision trees are explicit and checkable by 

human experts; 3) the rules enable us to investigate the most 

significant attributes and relations; 4) the decision tree 

processes large amounts of data in a short time, which is 

required in ICU monitoring. 

III. DATA 

The data set consists of 13 24-hour records from 

premature babies receiving intensive care in the neonatal 

unit at the Royal Infirmary of Edinburgh [1]. Each record 

consists of heart rate, blood pressures, core and peripheral 

temperatures, oxygen saturation, TcPCO, TcPCO2 and 

humidity of the incubator all acquired with a sampling 

frequency of 1Hz. The periods of bradycardia were 

annotated by two clinical experts (as were other clinically 

significant events). 

Figure 2 represents an excerpt of NICU data and shows 

the difficulty of the task.  

 
Three intervals (Markup channel shown just below the 

HR) have been annotated as being bradycardias; however 

the discrimination of the first interval (21:11) from the 

downward spike (arrow A) is not straightforward. The last 

interval shows that the bradycardia covers the sudden fall 

from the baseline until the recovery. Even the period of high 

value (arrow B) is part of the bradycardia window. This kind 

of classification is impossible to do with a threshold based 

 

Fig. 2. Example of NICU data. HR signal (top chart) is followed by a 

markup channel that shows the periods of bradycardia annotated by 
two clinicians. HR: Heart Rate; SO: oxygen saturation. 
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method. The rest of the data shows that there is sometimes 

correlation with other channel (two momentary decreases in 

SO before the two last bradycardias) and sometime not (no 

obvious correlation with the first bradycardia). The dataset 

has been separated into a training set (5 records and 72 

annotations) for optimization and learning and a test set (8 

records with 174 bradycardias) for evaluation. 

IV. EVALUATION METHOD  

Performances are assessed by computing the number of 

True Positives, TP (correct detections), False Negatives, FN 

(missed detections) and False Positives, FP (false alarms).  

For each actual annotation of a bradycardia, the complete 

width is considered (the bradycardia window). Every 

detection of a bradycardia interval that overlaps a 

bradycardia window is a TP. If several detections overlap 

the same bradycardia window, only one is counted as TP, 

the others are ignored. Every detection that does not overlap 

a bradycardia window is a FP. Finally, every bradycardia 

window that does not overlap a detection is a FN. These 

values are used to compute three common criteria: 

Sensitivity (Se) = TP/(TP+FN), Positive Predictivity (PP) = 

TP/(TP+FP), and F-Measure (FM) = 2*Se*PP/(Se+PP).  

Boundaries identification (start and end) are assessed by 

computing, for each TP, the start delay (resp. end delay) 

between the beginning (resp. end) of the detected interval 

and the beginning (resp. end) of the bradycardia window. 

When a bradycardia window contains several detections, the 

TP with the greatest delay is chosen.  

V. TRAINING  

The training set was used to optimize each method and to 

learn the decision tree.  

A. Optimization 

The cut-off frequency fc of the input filter was chosen to 

remove only 15% of the bradycardia segments energy of the 

training set. fc was found to be 0.124Hz and led to the 

removal of 21% of the entire training set energy.  

The threshold-based detector has been optimized on the 

training set by applying a set of thresholds and retrieving the 

one which leaded to the best FM value. The threshold found 

was 126bpm. A-D threshold technique has been used as 

described in Section II.B, except for the first threshold which 

has been optimized to 126bpm.  

The disturbance detector was first evaluated without a 

thresholding stage. On the training set it demonstrated the 

following performance: Se=97.3% PP=44.44%. This shows 

that it is able to detect almost all bradycardias and that the 

next operation is to select the best one among all the 

candidates. To do so, the threshold of the disturbance 

detector was then set according to another study for which 

different HR values of babies in NICU were used to 

compute a linear regression. This model has been used to set 

the normal HR range according to the baby’s gestation. The 

threshold was set to the lowest value of the normal range 

(here 129bpm). 

B. Decision Tree Induction 

The decision tree learner used was J48 - a C4.5 

implementation from the Weka software toolbox [8]. The 

tree learning parameters were chosen to optimize the global 

size and the leaf size. Two classes where considered: the 

negative (not a bradycardia) and the positive (bradycardia). 

Fig. 3 gives the decision tree learnt from one record of the 

training set. With a size of 47 and with 24 leaves, it is 

possible for an expert to interpret it.  

 
The first results to take from the decision tree are the 

attributes used. The main windows used have widths of 10 

and 30 seconds. The 5 second window is used only once. 

This suggests that a sample need to be considered within a 

large neighborhood. The first test used is the minimum 

which separated a large part of the negative from the rest of 

the individuals. This first test actually reproduces the 

threshold method and its threshold (124 bpm) is very close 

to the optimal threshold (126 bpm). The standard deviation 

is then used to separate the very unstable (artifacts and 

bradycardias) from the more stable individuals (normal and 

 
Fig. 3. Learnt decision tree. Every leaf is terminated by “: X (A/B)” or 

“: X (A)” where X is the class of the leaf (bradycardia or not), A gives 

the total number of instances that are classified by the leaf and B the 

number of instances incorrectly classified. 



 

 

small bradycardias). The tree seems consistent with our 

expectations: small areas, high averages correspond to 

negatives and high slopes and derivative amplitudes 

correspond to positives and artifacts (negatives). The 

optimal threshold of the smoothing was found to be 0.24. 

VI. RESULTS 

The results of the evaluation performed on the test set are 

given table 1. The performance of each method is shown 

across a single row. The results include the median and the 

standard deviation of the start and end delays. 

According to the F-Measure (FM), the results show the 

poor performance of the crude threshold detector (A Th.) 

which has high sensitivity (Se=92.5%) but a very low 

precision (PP=46.5%) thus a high number of false alarms. A-

D Threshold shows that the duration thresholds lead to better 

PP (74.3%) but with a very low Se (43.1%). This method is 

thus unable to detect all the bradycardias. It has also the 

worst performance for the boundary detection. 

 
The disturbance detector with an FM=73.0%, is the 

second best method slightly below the decision tree (DT) 

that exhibits the best FM value (FM=73.1%). However, 

although its median detection of the start and end are better 

than the threshold based one, the standard deviation of the 

estimation boundaries is high (35.3s and 19.8s). This 

suggests that its boundary estimation is not reliable. Finally, 

the decision tree demonstrates the best performance for 

boundary detection with median delays of 7 and 5 seconds 

only and is very reliable with standard deviations of 8.5 and 

8.7 seconds only. Considering the inter-expert annotation 

variation of wave boundaries in other ICU areas [11], this is 

a very good result. 

VII. DISCUSION 

The results confirmed the already known poor 

performance of the threshold based detector. Our 

investigation of other techniques has led to better results and 

enabled us to emphasize further improvements.  

The disturbance detector is promising as it is able to 

detect almost every bradycardia. However, a better method 

of classification, based on the area and the standard 

deviation could lead to important improvements. The 

detection of the start and end of the bradycardia by baseline 

estimation seems to suffer a lack of stability and needs to be 

refined.  

The decision tree has shown a very good detection of start 

and end. This is understandable because the start and end of 

bradycardia have been explicitly learnt. This data mining 

technique has also given information on what kind of 

attributes can be most discriminating. It appears that large 

windows (10 and 30 seconds) are more useful than short 

windows (5 seconds) and a study including larger windows 

will be investigated to find what the best window size is.  

The investigated methods even if they demonstrated better 

results than the thresholding methods, suffer from the 

corruption of data by high noise level episodes. The current 

filtering method also needs further investigation but anyway 

it will be unable to separate the part of noise that overlaps 

the frequency spectrum of the bradycardia. To face this 

problem, we plan to investigate the design of a Kalman filter 

and to study the modeling of the data by ARIMA as 

investigated by Quinn and Williams [1]. However, even this 

approach may not be the solution for all the cases of 

bradycardia. Indeed, the performance of every algorithm is 

related to the context in which it is used. One can perform 

better in the presence of high frequency noise; and another 

can be better in the presence of high HR variability. To 

benefit from the advantages of each detector a combined 

approach will be studied. Such an approach has already 

showed improvement in ECG analysis [10]. 
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TABLE I 

BRADYCARDIA DETECTION AND BOUNDARIES ESTIMATION ON THE TEST SET 

Methods TP FN FP start(s) end(s) Se PP FM 

A Th. 161 13 185 10
±6.4

 10
±6.5

 92.5 46.5 61.9 

A-D Th. 75 99 26 11
±6.8

 11
±7.6

 43.1 74.3 54.5 

Disturb. 157 17 99 8
±35.3

 5
±19.8

 90.2 61.3 73.0 

DT 136 38 62 7
±8.5

 5
±8.7

 78.2 68.7 73.1 


