
Modular Coordination of Multiple Autonomic Managers ∗

Gwenaël Delaval
Univ. Grenoble Alpes, LIG

Grenoble, France
gwenael.delaval@inria.fr

Soguy Mak-Karé Gueye
Univ. Grenoble Alpes, LIG

Grenoble, France
soguy-mak-kare.gueye@inria.fr

Eric Rutten
INRIA

Grenoble, France
eric.rutten@inria.fr

Noël De Palma
Univ. Grenoble Alpes, LIG

Grenoble, France
noel.depalma@imag.fr

ABSTRACT

Complex computing systems are increasingly self-adaptive,
with an autonomic computing approach for their admin-
istration. Real systems require the co-existence of multi-
ple autonomic management loops, each complex to design.
However their uncoordinated co-existence leads to perfor-
mance degradation and possibly to inconsistency. There is
a need for methodological supports facilitating the coordi-
nation of multiple autonomic managers. In this paper we
propose a method focusing on the discrete control of the
interactions of managers. We follow a component-based ap-
proach and explore modular discrete control, allowing to
break down the combinatorial complexity inherent to the
state-space exploration technique. This improves scalability
of the approach and allows constructing a hierarchical con-
trol. It also allows re-using complex managers in different
contexts without modifying their control specifications. We
build a component-based coordination of managers, with in-
trospection, adaptivity and reconfiguration. We validate our
method on a multiple-loop multi-tier system.

Categories and Subject Descriptors

K.6 [Management of Computing and Information Sys-
tems]: System Management; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Computer-aided soft-

ware engineering, State diagrams; D.2.11 [Software Engi-
neering]: Software Architectures—Domain-specific archi-

tectures, languages, patterns

Keywords

Autonomic computing; Component dynamic adaptation; Au-
tomated management; Control loops; Formal methods; Self-
adaptive systems; Software reuse

∗This research is partly supported by the FSN Datalyse
project and ANR INFRA (ANR-11-INFR 012 11) under a
grant for the project Gtrl-Green.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.

Copyright 2014 ACM 978-1-4503-2577-6/14/06 $15.00.

http://dx.doi.org/10.1145/2602458.2602465 .

1. INTRODUCTION

1.1 Context
Complex computing systems are increasingly designed to

be self-adaptive, and therefore adopt the autonomic com-
puting approach for the management of their administra-
tion [18]. Computing infrastructures are equipped with Au-
tonomic Managers (AM), where monitors or sensors gather
relevant information on the state and events of the Man-
aged Elements (ME). Execution of administration actions,
offered by the system API, implements regulation of the
ME’s activities. In between, the loop is closed by a deci-
sion component. An AM is a component that continuously
reacts to flows of input information by flows of output ac-
tions, it can therefore be considered as a reactive system
[11]. Self-management issues include self-configuration, self-
optimization, self-healing (fault tolerance and repair), and
self-protection. Typical examples are found in data-centers,
with managers for resources, dependability, and energetic ef-
ficiency, as we consider in the Ctrl-Green project1. Usually,
the automation of such administration issues is approached
by building efficient and robust AMs, such as self-sizing, self-
repair [21], robust reconfiguration [4] or consolidation [16].

1.2 Coordination of managers
Real systems have multiple dimensions to be managed.

They do require the co-existence of multiple autonomic man-
agers. However their uncoordinated execution can lead to
interferences that could cause performance degradation or
even inconsistency [1]. This is still an open problem in auto-
nomic computing [17]. One solution consists in re-designing
a new global loop taking into account combined effects, but
this is even more complex than for individual loops, and
is contrary to the benefits of modularity and re-usability of
the AMs. Therefore, there is a deep need for methodological
supports facilitating the coordination of multiple autonomic
managers. Many approaches have been proposed for coor-
dinating managers. For instance in the presence of quanti-
tative metrics, like energy and performance, it is possible to
define composition functions [6], for example involving no-
tions of utility. Here, we consider the case of event-based
coordination focusing on qualitative aspects. The coordina-
tion strategy can be ensured by an upper-level AM. This
latter AM, above the individual AMs considered as MEs
themselves, constitutes a coordination controller.

1http://www.en.ctrlgreen.org/

http://www.en.ctrlgreen.org/

(a)

= false = false a a

= true a

e /
r and c / s

 c / s

r and not c / s

Active

WaitIdle

delayable (r, c, e) = a, s

(b)

node delayable(r,c,e:bool) returns (a,s:bool)

let automaton

state Idle do a = false ; s = r and c

until r and c then Active

| r and not c then Wait

state Wait do a = false ; s = c

until c then Active

state Active do a = true ; s = false

until e then Idle

end

tel (c)

twotasks(r1, e1, r2, e2)
= a1, s1, a2, s2

enforce not (a1 and a2)
with c1, c2

(a1, s1) = delayable(r1, c1, e1) ;

(a2, s2) = delayable(r2, c2, e2)

Figure 1: Heptagon/BZR example: delayable task control(a) graphical / (b) textual ; (c) exclusion contract.

Some component-based frameworks, e.g., Fractal [5], provide
a structural hierarchical framework, associating a control
behavior locally to a component, where the problem of co-
ordination can be addressed. AM components are equipped
with notions of observability and controllability. However,
hand-made methodologies remain complex and error-prone,
and hard to re-use. The difficulty in designing coordinators
is in the combinatorial complexity of cases of interferences,
for which there is a need for support models and tools. An-
other way to look at it is to consider actions invocations
and their firing conditions as events, and to enforce a con-
trol logic that prevents malfunction, based on states of the
AMs. Coordinating AMs can then be seen as the problem of
synchronization and logical control of administration opera-
tions which can be applied by AMs on the MEs in response
to observed events. The combinatorial complexity of formal
techniques at compilation time calls for methods explicitly
considering scalability issues, e.g., through modularity.

1.3 Our approach and contribution
In previous work [7, 9], we have defined the notion of con-

trollable autonomic manager components, and proposed the
reactive control of their coordinated assemblies in a hierar-
chical, systematic structure. Our approach involves formal
models and techniques originally designed for reactive em-
bedded systems. We adopt the so-called “synchronous” lan-
guages which are specially well-fit for the specification, val-
idation and implementation of reactive kernels [11], which
makes them relevant for the problem domain of autonomic
loops. Additionally, we benefit from the Discrete Control
Synthesis (DCS) technique, stemming from Control Theory
[20] and integrated in the synchronous languages and tools
[19] : it enforces coordination logic between concurrent ac-
tivities, in terms of events and states, with automated algo-
rithms used off-line, at compilation time. However, in [9],
our hierarchical proposal remained monolithic.

In this paper, our contribution is to leverage the approach
with a method stressing modularity, with benefits for the de-
sign of multiple-loop managers: (i) re-use of complex man-
agers and their control specifications without modification,
in different contexts, (ii) scalability for the state-space-based
control technique, by breaking down its combinatorial com-
plexity. Another contribution is the validation of our method
in the coordination of a multi-loop autonomic multi-tier sys-
tem, supporting multiple applications.

The principle of our approach is to identify design con-
straints on AMs : observability and controllability, and to
construct a component-based structure where they are ex-
plicit, in a way not involving modifying the AMs. Section 2

introduces background ; Section 3 defines the modular spec-
ification and formalization of behaviors and coordination
control objectives ; Section 4 validates our approach on a
class of multi-tier autonomic systems ; Section 5 discusses
related work ; Section 6 concludes and draws perspectives.

2. BACKGROUND: REACTIVE CONTROL

2.1 Reactive languages and Mode Automata
Reactive systems are characterized by their continuous in-

teraction with their environment, reacting to flows of inputs
by producing flows of outputs. They are classically modeled
as transition systems or automata, with languages like State-
Charts [13]. We adopt the approach of synchronous lan-
guages [11], because we then have access to the control tools
used further. The synchronous paradigm refer to the au-
tomata parallel composition that we use in these languages,
allowing for clear formal semantics, while supporting mod-
elling asynchronous computations [12]: actions can be asyn-
chronously started, and their completion is waited for, with-
out blocking other activity continuing in parallel. The Hep-
tagon/BZR language [8] supports programming of mixed
synchronous data-flow equations and automata, called Mode
Automata, with parallel and hierarchical composition. The
basic behavior is that at each reaction step, values in the
input flows are used, as well as local and memory values, in
order to compute the next state and the values of the out-
put flows for that step. Inside the nodes, this is expressed
as a set of equations defining, for each output and local, the
value of the flow, in terms of an expression on other flows,
possibly using local flows and state values from past steps.

Figure 1(a,b) shows a small Heptagon/BZR program. The
node delayable programs the control of a task, which can
either be idle, waiting or active. When it is in the initial Idle
state, the occurrence of the true value on input r requests

the starting of the task. Another input c can either allow
the activation, or temporarily block the request and make
the automaton go to a waiting state. Input e notifies termi-
nation. The outputs represent, resp., a: activity of the task,
and s: triggering the concrete task start in the system’s API.
Such automata and data-flow reactive nodes can be reused
by instantiation, and composed in parallel (noted ”;”) and
in a hierarchical way, as illustrated in the body of the node
in Figure 1(c), with two instances of the delayable node.
They run in parallel, in a synchronous way: one global step
corresponds to one local step for every node.

The compiler produces executable code in target languages
such as C or Java, in the form of an initialisation function
reset, and a step function implementing the transition func-

AMm a

(a) manager

S1 S2

nl /

ml / la

ms/ sa

(la, sa) = mgr (ml, ms, nl)

(b) manager model

AMm a

cs

(c) controllable manager

S1 S2

nl /

ml / la

 ms/ sa

cl, cs,

andcs

andcl

=False =Truess

(la, sa, s) = ctrl−mgr(ml, ms, nl)

(d) controllability model

Figure 2: Modelling managers control

tion of the resulting automaton. It takes incoming values of
input flows gathered in the environment, computes the next
state on internal variables, and returns values for the output
flows. This function is called at relevant instants from the
infrastructure where the controller is used.

2.2 Discrete control and Heptagon/BZR
Using a reactive language gives all the support of the the

classical formal framework of Labelled Transition Systems
(LTS), not formally described here due to space limitations.
In this work, we focus on software engineering and method-
ology; formal techniques are not in the scope of this pa-
per [8]. Particularly, we benefit from state-space exploration
techniques, like Model-Checking or, more originally, Discrete
Controller Synthesis (DCS). Initially defined in the frame-
work of language theory [20], DCS has been adapted to sym-
bolic LTS and implemented in tools within the synchronous
technology [19]. It is applied on an FSM representing possi-
ble behaviors of a system, its variables being partitioned into
controllable ones and uncontrollable ones. For a given con-
trol objective (e.g., staying invariantly inside a given subset
of states, considered “good”), the DCS algorithm automat-
ically computes, by exploration of the state space, the con-
straint on controllable variables, depending on the current
state, for any value of the uncontrollables, so that remaining
behaviors satisfy the objective. This constraint is inhibiting
the minimum possible behaviors, therefore it is called max-

imally permissive. Algorithms are related to model check-
ing techniques for state space exploration. If no solution is
found, because the problem is over constrained, then DCS
plays the role of a verification.

The Heptagon/BZR language2 includes a behavioral con-
tract syntax [8]. It allows for the declaration, using the with
statement, of controllable variables, the value of which being
not defined by the programmer. These free variables can be
used in the program to describe choices between several tran-
sitions. They are defined, in the final executable program,
by the controller computed off-line by DCS, according to
the expression given in the enforce statement. Knowledge
about the environment such as, for instance event occurrence
order can be declared in an assume statement. This is taken
into account during the computation of the controller with
DCS. Heptagon/BZR compilation invokes a DCS tool, and
inserts the synthesized controller in the generated executable
code, which has the same structure as above: reset and step

functions. Figure 1(c) shows an example of contract coordi-
nating two instances of the delayable node of Figure 1(a).
The twotasks node has a with part declaring controllable
variables c1 and c2, and the enforce part asserts the prop-
erty to be enforced by DCS. Here, we want to ensure that

2 http://bzr.inria.fr

the two tasks running in parallel will not be both active at
the same time: not (a1 and a2). Thus, c1 and c2 will be
used by the synthesized controller to delay some requests,
leading automata of tasks to the waiting state whenever the
other task is active. The constraint produced by DCS can
have several solutions: the Heptagon/BZR compiler gener-
ates deterministic executable code by favoring, for each con-
trollable, value true over false, in the order of declaration.

3. MODULAR COORDINATION
In this section, we first introduce the basic elements of

modeling for coordination by discrete control in Section 3.1:
the notions explored in previous work [9] are redefined in a
new way, so that given the need for modularity detailed in
Section 3.2, it allows for their re-use to build up the method
for modular coordination in Section 3.3.

3.1 Basic AMs coordination

3.1.1 Behavior of managers

We model an autonomic manager as a reactive data-flow
component. As shown in Figure 2(a), it receives a flow m of
monitor inputs that it analyses in a decision process based
on a representation of the managed system status. It appro-
priately emits a flow a of actions according to a management
policy or strategy AM . Figure 2(b) shows a simple example
of a manager behavior’s model. It has two execution states
represented by S1 which is the initial state, and S2. In S1
when it receives the input ms, it emits sa and stays in S1.
We distinguish between such simple, short actions (instanta-
neous in the particular sense that they are completed within
the execution of a step of the automaton) and long actions
(asynchronous), as can be done classically with synchronous
models [3]. Thus, when the automaton receives ml, it emits
la and goes to S2 representing the processing of the action
la. It returns back to S1 at the reception of nl notifying
the completion of the asynchronous execution of la. In gen-
eral, FSMs distinguish states useful for the coordination, as
illustrated by concrete cases further in Section 4.

3.1.2 Controllability of managers

The controllability of the managers is considered here only
at large-grain and consists in allowing or inhibiting the trig-
ger of the management processes inherent to their manage-
ment decisions. In the models, the control is represented
by control variables, however its real implementation can
be done in several different ways: for example the man-
ager can be suspended and re-activated, or it can have an
event interception mechanism. As shown in Figure 2(c), we
exhibit the controllability of the manager by adding addi-
tional control variables c that allow to inhibit the actions

http://bzr.inria.fr

a the manager can trigger. Without loss of generality, we
consider one Boolean input for each action which we want
to be controllable. If some actions are not controllable due
to their nature (e.g., urgent recovery), or if the coordina-
tion problem does not require all of them to be controllable,
then only the relevant ones can be associated with such a
control condition. In general, additional outputs are also
needed to exhibit an internal state s of AM , necessary for
the outside controller to compute c e.g., in the case of a long
action, informing that a notification nl has not arrived yet.
Figure 2(d) shows how we integrate control in the previous
model. We add in ctrl-mgr Boolean inputs cl, cs for each
corresponding action, to condition transitions firing, in con-
junction with the monitoring, hence giving the possibility of
inhibiting actions. Output s exhibits the current state of the
manager, typically the fact that a long action is executed.
Note that the long action, once started, cannot be prevented
or interrupted here.

3.1.3 Coordination of managers by control

The coordination of several managers is defined by the
composition of the models exhibiting the controllability of
their behaviors to which we associate a behavioral contract
specifying the coordination policy. Figure 3(a) shows a com-
posite node coord-mgrs, its body corresponds to the par-
allel composition of the control models ctrl-mi of the man-
agers to coordinate. The associated contract for their coor-
dination consists of three statements. The with statement
is where their control variables ci are declared to be local
to coord-mgrs, and to be controllable in terms of DCS, as
introduced in Section 2.2. The enforce statement gives the
contract in the form of a Boolean expression Obj on vari-
ables from the nodes inputs or internal state si. The assume
statement is where knowledge about the environment is de-
fined. For simplicity we do not use it.

For example a coordination objective between two man-
ager components, AM1 and AM2, can be to prevent AM2

from triggering an action a2 when AM1 is in some state
given by s1. This is encoded by the following expression, to
be made invariant by control: not (s1 and a2). The gener-
ated controller enforcing the coordination policy, as in Fig-
ure 3(b), is in charge of producing appropriate values for the
ci control inputs to the managers. The coordination logic
acts as an additional component. It enforces a policy de-
fined in the contract for managing the interactions between
the AMi based on their inputs mi, ni and state si. At
this level, the DCS problem formally encoding the coordi-
nation problem can be solved using monolithic DCS. In case
of a hierarchical structure, the main Heptagon/BZR node is
constructed with the contract enforcing the conjunction of
all the local objectives, declaring the union of all local con-
trollable variables, and with a body composing all manager

(si, ai) = coord− mgrs(mi, ni)
enforce Obj

with ci

(si, ai) = ctrl− mgri(ci, mi, ni)

(a) coordination model

AM1m1 a1 AM2m2 a2

ctrlr
s1

c1 s2

c2

(b) coordinated managers

Figure 3: Single-level coordination of managers

control automata in parallel. Hence the control is central-
ized since only one controller is in charge of enforcing the
overall objectives, if the synthesis succeeds.

3.2 The need and means for modularity

3.2.1 Limitations and need for modularity

Advantages of our DCS-based approach are manifold: (i)
high-level language support for controller design (tedious
and error-prone to code manually at lower level) ; (ii) au-
tomated formal synthesis of controllers, correct by design
(hard to guarantee manually) ; (iii) maximal permissive-
ness of controllers : they are minimally constraining, and in
that sense optimal (even more difficult to obtain manually).
However, until now the approach had not been leveraged to
hierarchical modularity, and remained monolithic.

This produces a unique controller enforcing the overall
control objectives. However, when considering a large num-
ber of managers, this monolithic approach might not suc-
ceed, because exploring the large state space would be very
time consuming. This can take several days and can fail
due to computing resource limits. This limits the scalability
of the approach. Furthermore, a modification, even partial,
leads to a recompilation of the overall coordinated composi-
tion invalidating previous generated codes which limits the
re-usability of management components.

To address this issue, we want to exploit modular DCS,
where the control objectives can be decomposed in several
parts, each part managed by a controller. Each controller
manages a limited number of components. This decreases
the state space to explore for the synthesis of each controller.
The recompilation of a controller that has no impact on
other controllers does not require the recompilation of the
latter. This makes possible the re-use of controllers gener-
ated codes. Not only autonomic managers are available for
re-use but coordinated assemblies of managers can also be
made available for further re-use. In the following Sections
we detail how modular DCS is used to obtain this scalability
and re-usability of management components.

3.2.2 Modular contracts in Heptagon/BZR

Modular DCS consists in taking advantage of the modular
structure of the system to control locally some subparts of
this system [19]. The benefits of this technique is firstly, to
allow computing the controller only once for specific compo-
nents, independently of the context where this component
is used, hence being able to reuse the computed controller
in other contexts. Secondly, as DCS itself is performed on a
subpart of the system, the model from which the controller
is synthesized can be much smaller than the global model
of the system. Therefore, as DCS is of practical exponential
complexity, the gain in synthesis time can be high and it can
be applied on larger and more complex systems.

node(...) = ...
assume A enforce G

with c1, ...cq

subnode1(...) = ...
assume A1 enforce G1

; . . . ;
subnoden(...) = ...
assume An enforce Gn

Figure 4: Modular contracts in Heptagon/BZR.

AMi

ctrlr

mi ai

si ci

c′is′i

(a) controllable composite

(s′i, ai) = ctrl− coord− mgrs(c′i, mi, ni)
enforce Obj and Obj− m

with ci

(si, ai) = ctrl− mgri(ci, mi, ni)

(b) controllable composite model

AMi1

ctrlr1

mi1 ai1

si1 ci1

AMi2

ctrlr2

mi2 ai2

si2 ci2

ctrlr
s′i1

c′i1 s′i2

c′i2

(c) Hierarchical modular control

Figure 5: Modular coordination of managers

Heptagon/BZR benefits from the modular compilation of
the nodes: each node is compiled towards one sequential
function, regardless of its calling context, the inside called
nodes being abstracted. Thus, modular DCS is performed
by using the contracts as abstraction of the sub-nodes. One
controller is synthesized for each node supplied with local
controllable variables. The contracts of the sub-nodes are
used as environment model, as abstraction of the contents of
these nodes, to synthesize the local controller. As shown in
Figure 4, the objective is to control the body and coordinate
sub-nodes, using controllable variables c1, ..., cq, given as in-
puts to the sub-nodes, so that G is true, assuming that A

is true. Here, we have information on sub-nodes, so that we
can assume not only A, but also that the n sub-nodes each do
enforce their contract :

∧n

i=1(Ai =⇒ Gi). Accordingly, the
problem becomes that: assuming the above, we want to en-
force G as well as

∧n

i=1 Ai. Control at composite level takes
care of enforcing assumptions of the sub-nodes. This syn-
thesis considers the outputs of local abstracted nodes as un-
controllable variables, constrained by the nodes’ contracts.
A formal description, out of our scope here, is available [8].

3.3 Modular coordination principle
With modularity, we can decompose the coordination pol-

icy in several parts structured in a hierarchical way. This
involves to make coordinated assemblies themselves control-
lable. In contrast to the monolithic DCS, the modular DCS
allows to construct local controllers so that they can be re-
used in an assembly composite to form a global control.
These local controllers can also be the composition of sub-
controllers themselves. The control is decentralized in the
sense that each part of the assembly handles part of the con-
trol. The first step to achieve a modular control is to make
a coordinated assembly composite controllable. This can be
seen as making the latter expose their controllability (like
AMs before) in order to allow to enforce further additional
coordination policy for a global management.

3.3.1 Controllable coordinated managers

In order for a controller to be controllable, it must enforce
local objectives defining the local control strategy, as well
as outside objectives. The enforcement of the outside objec-
tives is required to allow the re-use of the controller in dif-
ferent contexts in which additional control strategies have to
be enforced beside the predefined local one. Hence the out-
side objectives describe the guarantee of a control strategy
received from elsewhere. This must be explicitly part of the
contract of the controller. Starting from a coordinated com-
posite as before, making the latter controllable is achieved
by first equipping it with controllable Boolean inputs c′i for

each of the actions to be controlled. The second step is to
install a way for the node to exhibit information about its
state to outside. It can be done by outputting state infor-
mation s′i directly as suggested informally in Figure 5(a).
Alternately, in order to formalize things in a way enabling
modular DCS, we transform the enforce part of the con-
tract, so that it can be used in an upper-level contract as
environment model, as explained above and in Section 3.2.2.
We modify the objective into the conjunction of the previ-
ously seen local objective Obj, and a term Objm, formalizing
the fact that when the new control variable c′i is false, it
does inhibit its associated action ai, i.e., it implies that it is
false. For each action, its associated outside control objec-
tive for its inhibition is formulated as follows: (¬c′i ⇒ ¬ai).
However depending on the type (short or long) of the action
the objective is translated differently. For short action it is
translated directly to: Objm = (c′i or not ai).
Long actions must be handled differently, because once ai

is triggered, c′i can no longer prevent or interrupt it. There-
fore, in order to make this explicit in the local contract,
to be used by upper-level contracts, we must link the val-
ues of ai (triggering of the action) and si (current state of
the action). This is done by saying that, if the action was
not active at the previous instant, i.e., that si was false
(not (false fby si)

3, and ai is not true at the current in-
stant, then si will remain false. As before, c′i can prevent the
triggering of the action, i.e., that ai becomes true. Hence,
Objm = LongActions(c′i, ai, si) defined by:

LongActions(c′i, ai, si)
def
= (c′i or not ai) and

(

(

not (false fby si) and not ai

)

⇒ not si

)

As illustrated in Figure 5(b), in the node ctrl-coord-
mgrs a DCS problem will be solved, by taking as control
objective to be made invariant: Obj ∧ Objm, where Objm
of this level of contract is defined as previously explained.
The sub-nodes Mi each exhibit their contract Obji, which
includes the local modularity term as above. Hence, the
DCS problem at this level will make the assumption that
∧

i
Obji is enforced by lower-level contracts and coordination

controllers, as explained in Section 3.2.2.

3.3.2 Modular coordination of managers

As composites have been made controllable in the same
way as managers, they can be used to construct coordinated
assemblies modularly. Re-use of instances of composites is
made seamless in new assemblies. For example, the previous

3fby is an Heptagon operator introducing an initialized de-
lay: v fby x denotes the previous value of x, initialized with
v at the first instant.

c′i variables will be used as controllable variables w.r.t. a pol-
icy at the upper-level composite (in Figure 5(c)), possibly
combined with a controllable manager with its correspond-
ing ci variables.
Note that transformations above, adding modularity terms,
concern only the interface and contract, i.e., the signature
of the node, and not at all the internals of the managers.
This is ensuring modularity in that nodes can be re-used,
and combined in different contexts without modification.
The other, even more important impact of modularity is to
break down the algorithmic complexity of DCS, from expo-
nential on the global system, i.e., the parallel composition
of all automata, down to a sum of DCS problems, local to
much smaller models. This is enabling the scalability of the
approach: comparative evaluations on the case-study are
given below in section 4.3.2.

4. MULTI-LOOP MULTI-TIER SYSTEMS
We apply and validate our approach to multi-loop multi-

tier systems, typical of the domain of data centers admin-
istration. This work is done in the framework of the Ctrl-
Green project, in cooperation with Eolas, who make a busi-
ness in providing Cloud services.

4.1 Datacenter management

4.1.1 Multi-tier replication based system

The JEE multi-tier applications we consider, as shown in
Figure 6, consists of: an apache web server4 receiving in-
coming requests, and distributing them with load balancing
to a tier of replicated tomcat servers5. The latter access to
the database through amysql-proxy server6 which distributes
the sql queries, with load balancing, to a tier of replicated
mysql servers7. The global system running in the data-center
consists of a set of such applications in parallel.

tomcat M−proxy mysqlapache

Repair, Repair, Sizing SizingRepairRepair

tier tier
Replicated Replicated

Figure 6: Multi-loop JEE Multi-tiers application.

4.1.2 Autonomic managers

For each AM, we describe its target, aim, input sensors,
output actions (short or long), and controllability.

Self-sizing targets replicated servers. It aims at lower-
ing the resources usage while preserving the performance. It
automates the process of adapting the degree of replication
depending of the system load measured through the CPU
usage of the servers hosts. The desired state is delimited by
thresholds, minimum and maximum. Periodically, an exponen-
tially weighted moving average (EWMA), cpu_Avg, is com-
puted. When cpu_Avg is higher than the maximum threshold
(i.e., overload), it triggers size-up (a long action) for the
provision of a new replica. When cpu_Avg is lower than the

4
http://httpd.apache.org/

5
http://tomcat.apache.org/

6
http://dev.mysql.com/doc/refman/5.1/en/mysql-proxy.html

7
http://www.mysql.com/

minimum threshold (i.e., underload), it triggers size-down
(short action) for the removal of a replica. Each of these
two actions can be inhibited.

Self-repair targets a server as well as replicated servers.
It aims at preserving the availability of the server service.
It manages fail-stop failure detected through heartbeat,
and automates the process of restoring a server when it fails.
It triggers the repair (long action, can be inhibited) of a
failed server which consists in deploying the server on a new
host, configuring it, and launching it. For replicated servers,
the degree of redundancy is restored to tolerate up to m-1

failures of m servers during the mean time to repair.

Consolidation targets the global virtualized data-center.
It aims at optimizing global resource usage while preserving
system performance. It automates the process of adapting
the computing capacity made available in a virtualized data-
center. It periodically evaluates the resources allocated to
the virtual machines (VM) and the available computing ca-
pacity, and plans long actions to either reduce (Decr) or in-
crease (Incr) the capacity. In this work, we use VMWare DPM
for power management in a virtualized data-center. It plans
migration actions to deliver more resources to the overloaded
VMs, which can require to turn physical servers on. When the
physical servers are under-utilized, it plans migration actions
to turn some servers off. It can be controlled by delaying or
cancelling the actions. Controllability of the consolidation
manager is considered here only at large-grain: an interest-
ing perspective is finer-grain control, between the sequential
phases of this complex operation, but it requires difficult
determination of appropriate synchronization points.

4.1.3 Coordination problems

As seen in Figure 6, within a multi-tier application, the
failure of a server in a replicated tier can cause a saturation
(hence temporary overload) of the remaining servers due to
the fail-over mechanism. Furthermore, each tier depends on
its predecessor (e.g., load balancer) since its service is re-
quested by the latter. An increase of the requests received
from its predecessor increases its activity and reciprocally.
However the decrease of the requests can be caused by a
failure, which can cause a temporary underload, and useless
sizing operations. At the global level of the data-center, the
uncoordinated execution of instances of self-sizing and self-
repair at the same time as consolidation can lead to failures
of actions triggered by the managers. The execution of a
consolidation plan can take a long time to complete and its
success as well as its efficiency depends on the consistency of
the state of the data-center along the process. The adding,
repair and removal actions, occurring at any time, can in-
validate a consolidation plan being executed, which did not
anticipate them. This can cause failure of migration opera-
tions or inefficiency of the consolidation. Consolidation can
also cause failure of adding and repair actions e.g., it can
reduce the computing capacity of the VMs.

4.1.4 Coordination policy

To avoid the above interferences, policies are defined, to
be enforced by inhibiting some managers accordingly.

1. Within a replicated tier, avoid size-up when repairing.

http://httpd.apache.org/
http://tomcat.apache.org/
http://dev.mysql.com/doc/refman/5.1/en/mysql-proxy.html
http://www.mysql.com/

2. Within a load-balanced replicated tier, avoid size-down
when repairing the load-balancer.

3. In multi-tiers, more generally, avoid size-down in a suc-
cessor replicated tier when repairing in a predecessor.

4. At global data-center level, when consolidating, avoid
self-sizing or repairing.

5. Wait until repairs or add finish before consolidation
decreasing, and until removals finish before increasing.

4.2 Modular control model
In this Section we formalize the previous description, by

modelling the behaviors of individual managers, and their
coordination policy, in the form of a DCS problem, following
the method of Section 3.3.

4.2.1 Modelling the managers control behaviors

Self-sizing control is actually an instance of the general
pattern of Figure 2(d), node ctrl-mgr, with outputs : long
action add, short action rem and busy state adding ; with
inputs : controls ca and crm for the actions, monitoring
overload o and underload u, and adding notification na:
(add, rem, adding) = self-sizing(ca, crm, o, u, na)

Self-repair control is a simpler case, with only a long ac-
tion of repairing. This can also be defined as an instance of
the node ctrl-mgr of Figure 2(d) with outputs : long action
rep, and busy state repairing ; and inputs : control ca ,
monitoring failure fail , and notification of repair done nr.
Unused parameters for short actions of the ctrl-mgr node
can be, for inputs, given the constant value false, and for
outputs be left unused. This defines the new node:
(rep, repairing) = self-repair(cr, fail, nr)

i and not ci

IdleWaitI WaitD
d and not cd

cd / sd

i and ci /
si

d and cd /
sd

e / e /

ci / si

DI

Decr = false Decr Decr
IncrIncr

= false
= false

= false
= false

Decr= false = true Decr
Incr = true = false Incr

= false Incr

(si, sd, Incr, Decr) = consolidation (ci, cd, i, d, e)

Figure 7: Consolidation control behavior model.

Consolidation control is an example showing that dif-
ferent control patterns can be modelled in our approach,
according to specific managers behaviors, and also depend-
ing on the relevant states to be exhibited for different control
purposes. In Figure 7, its automaton presents essentially the
waiting mechanism of the delayable action, as in Figure 1(a),
for each of its two long actions, the activity of which is given
by Incr and Decr. In the initial Idle state, when i is true (in-
crease of the computing capacity is required), if ci is true it
goes to I and emits si to start the increasing plan, otherwise
it goes to WaitI. There, it awaits ci to be true to go to Incr
and emits si. When in Incr, it awaits until the completion of
the execution (e is true) then returns back to the Idle state.
The case for decrease is similar.

4.2.2 Coordination objectives

The parallel composition of instantiations of the above au-
tomata describes the coexistence of the instances of the cor-
responding managers. The control is specified on this com-
posed behavior. We formalize the strategy of Section 4.1.4.

1. Within each replicated tier, avoid size-up when repair-
ing: not (repairing and add)

2. Avoid size-down when repairing the load-balancer:
not (repairingL and rem)

3. In multi-tiers, more generally, between predecessors
and successors: not (repairingpred and remsucc)

4. When consolidating, avoid repair and sizing: not
((Incr or Decr) and (repairing* or adding* or rem*))

5. Wait for consolidation decreasing until repairs or add
finish: not ((repairing* or or adding*) and sd) and
for increasing when removals: not (rem* and si)

4.3 Exploiting the models with DCS

4.3.1 Monolithic synthesis

In order to evaluate the benefit of modularity, we make
the exercise of performing DCS the classical way.

(. . .) = Main_node (. . .)
enforce all contracts

with all controllable variables

(rep
1
, repairing

1
) = self-repair (c′

1
, fail1, nr1);

. . .

(repN , repairingN) = self-repair (c′

N , failN , nrN);
(add1, rem1, adding

1
) = self-sizing (ca1, . . .);

. . .

(addM , remM , addingM) = self-sizing (caM , . . .);
(si, sd, Incr, Decr) = consolidation (ci, cd, i, d, e);

Figure 8: Monolithic node.

The specification of the monolithic control is encoded in
a single composite node, shown in Figure 8, grouping all
instances of involved managers composed in parallel in its
body, and a conjunction of all control objectives in its con-
tracts. This can be tedious and complex when a huge num-
ber of managers are considered. It does not allow a de-
centralized control because the overall control objectives are
grouped in the single upper-level node. The structure of this
coordination is shown in Figure 14.

4.3.2 Modular synthesis

We present reusable nodes bottom-up, as shown in Fig-
ure 9 from left to right: we first build the coordination con-
troller for self-sizing and self-repair in a replicated tier.
The latter controller is re-used for the coordination of man-
agers in two consecutive tiers, the front tier being a load
balancer for the second tier constituted of replicated servers.
The resulting controller is re-used for the coordination of a
mult-tier system.

Repair Sizing

CtrlrM1

Coord-rep. tier

Repair Coord-rep. tier

CtrlrM2

Coord-lb-Rep. tier

Coord-lb-Rep. tier Coord-lb-Rep. tier

CtrlrM3

Multi-tier system

Figure 9: Bottom-up re-use of nodes.

Replicated servers tier. The composite node shown in
Figure 10, specifies the control of instances of self-sizing
and self-repair managing the same replicated tier. Its
contract is composed of four objectives, one for the local
coordination: (not (repairing and add)), while the rest
concerns the guarantee of the enforcement of a coordination
strategy from outside the node. The control from outside is
received through the input variables cr

′, ca′ and crm
′. As

can be seen here, the modularity objective is very systematic
and could easily be covered in syntactic sugar.

(. . .) = coord_repl-tier (cr′, fail, nr, ca
′, crm

′, o, u, na)
enforce (not (repairing and add))

and LongActions(cr′, rep, repairing)
and LongActions(ca′, add, adding)
and (crm′ or not rem)

with cr , ca, crm

(rep, repairing) = self-repair (cr , fail, nr);
(add, rem, adding) = self-sizing (ca, crm, o, u, na);

Figure 10: Replicated tier node.

Load balancer and replicated servers tier. In this
node, shown in Figure 11, we re-use an instance of the
above composite node from Figure 10, and an instance of
self-repair, dedicated to the management of a load balancer
in front of the replicated servers which distributes the incom-
ing load to them. Here also, the local coordination strategy
to be enforced : not (repairingL and remove), is comple-
mented with modularity objectives.

(. . .) = coord_lb-repl-tier (cL′, failL, nrL,

c
′, fail, nr,

ca
′, crm

′, o, u, na)
enforce (not (repairingL and rem))

and LongActions(cL′, repL, repairingL)
and LongActions(c′, rep, repairing)
and LongActions(ca′, add, adding)
and (crm′ or not rem)

with cL, c, ca, crm

(repL, repairingL) = self-repair (cL, failL, nrL);
(rep, repairing, add, rem, adding)

= coord_repl-tier (c, fail, nr, ca, crm, o, u, na);

Figure 11: Load-balanced replicated tiers node.

Application. The node of Figure 12 coordinates two in-
stances of the previous node from Figure 11, for the control
of instances of self-sizing and self-repair managing two con-
secutive load-balanced replicated tiers. The coordination
strategy consists in preventing size-down in the back-end
load-balanced replicated tier (“successor”) when a failure is
being repaired in the front. This is expressed as follows:
(not ((repairingL1 or repairing1) and rem2))

(. . .) = coord_appli (cL′1, failL1, nrL1,

c
′

1, fail1, nr1, ca
′

1, crm
′

1, o1, u1, na1)
cL

′

2, failL2, nrL2,

c
′

2, fail2, nr2, ca
′

2, crm
′

2, o2, u2, na2)
enforce (not ((repairingL1 or repairing1) and rem2))

and LongActions(cL′i, repLi, repairingLi)
and LongActions(c′i, repi, repairingi)
and LongActions(ca′i, addi, addingi)
and (crm′i or not remi) i = 1, 2

with cL1, c1, ca1, crm1, cL2, c2, ca2, crm2

(repL1, repairingL1, rep1, repairing1, add1, rem1, adding1)
= coord_lb-repl-tier (cL1, failL1, nrL1, c1, fail1, nr1,

ca1, crm1 , o1, u1, na1);
(repL2, repairingL2, rep2, repairing2, add2, rem2, adding2)

= coord_lb-repl-tier (cL2, failL2, nrL2, c2, fail2, nr2,

ca2 , crm2 , o2, u2, na2);

Figure 12: Multi-tier application node.

Global system: data center. The whole multi-applica-
tion system will be constructed progressively, by first consid-
ering the two-application case. Figure 13 shows the node and
contract instantiating the previous node for each of them,

(. . .) = two-data-center (. . .)
enforce (not ((Incr or Decr) and

(repairingij or addingij or remij))
and (not ((repairingij or addingij) and sd)

and not (remij and si))
and LongActions(cL′ij , repLij , repairingLij)

and LongActions(c′ij , repij , repairingij)

and LongActions(ca′ij , addij , addingij)

and (crm′ij or not remij) i = 1, 2; j = 1..2)

with cL11, c11, . . . , crm22, ci, cd

(. . .) = coord_appli (cL11, c11, ca11, crm11, . . . ,

cL21, c21, ca21, crm21, . . .)
(. . .) = coord_appli (cL12, c12, ca12, crm12, . . . ,

cL22, c22, ca22, crm22, . . .)
(si, sd, Incr, Decr) = consolidation (ci, cd, i, d, e);

Figure 13: Two-application data-center.

as well as a consolidation manager. At this level of con-
trol, only the coordination strategy between the multi-tiers
applications and the consolidation manager is specified, the
control within multi-tier applications being delegated to the
instance of the previous node modelling it. Having more ap-
plications in a data-center is done by composing an instan-
tiation re-using the previous node, with a new instantiation
re-using the application node. The contract of this new com-
position is similar to the one in Figure 13. This enables a
hierarchical construction of the control of an N -application.

Repair

Apache

Repair Sizing

Tomcat repl. tier

Repair

Proxy

Repair Sizing

MySQL repl. tier
Application 2 Conso

DC. conso

Ctrlr

Figure 14: Monolithic coordination design

Repair

Apache

Repair Sizing

CtrlrM1

Tomcat repl. tier

CtrlrM2

Repair

Proxy

Repair Sizing

CtrlrM1

MySQL repl. tier

CtrlrM2

CtrlrM3

Application 2 Conso

DC. conso

CtrlrDC(1,2,3)

Figure 15: Modular coordination design

Comparisons and discussion.
Advantages of modularity can be seen here, in terms of

the objectives of Section 1.3. Regarding the specification
aspect (objective (i) of Section 1.3): tiers and groups of tiers
are described locally, including their control, and assembled
hierarchically, as shown in Figure 15; instead of having all
automata on one side, and all contracts on the other side,
in the monolithic case as shown in Figure 14. This favors
the re-use of Heptagon/BZR nodes in different contexts. In
particular, the repair manager is re-used in the replicated
tier and for the load balancer. More significantly, because it
has a contract and controller, the coordinated load-balanced
and replicated tier is used twice in an application, with a
difference in the controls, in that the downstream one is
submitted to more constraints than the upstream one.

On the other aspect, the combinatorial complexity of DCS
and the cost of compilation of the controllers (objective (ii)

of Section 1.3): for various sizes of the system (i.e, various
number of applications), we have performed Heptagon/BZR
compilations and synthesis, the results of which are shown in
Table 1. Comparative costs of DCS, monolithic and modu-
lar, for the different cases varying in number of applications
in the data-center, are given in terms of compilation CPU
time, and memory usage. For small numbers of applications,
values are not significant for memory; at 4 applications, the
monolithic approach reaches the limits of the natural combi-
natorial explosion of the state-space exploration techniques :
the computation was not finished after more than two days,
and no values were sought for larger systems. The other
approach, benefiting from modularity, goes significantly fur-
ther, even if still presenting growing costs. In brief, we can
see that monolithic DCS is exponentially costly in the size on
the system, whereas modular DCS keeps producing results,
showing scalability.

nb. Synthesis time Memory usage
app. monolithic modular monolithic modular
1 0s 5s - -
2 49s 11s - -
3 42m24s 24s 34.81MB -
4 > 2 days 1m22s >149,56MB -
5 - 4m30s - 20,37MB
6 - 13m24s - 53,31MB
7 - 25m57s - 77,50MB
8 - 50m36s - 115,59MB
9 - 2h11m - 236,59MB
10 - 9h4m - 479,15MB

Table 1: DCS : duration and memory usage.

Although we show the total compilation time in Table 1,
the synthesis of the control logic of each node equipped with
a contract is performed independently. A composite node
which is the assembly of sub-nodes equipped with a con-
tract, requires just the contract defined in the sub-nodes at
compilation for the synthesis of its control logic. Therefore
the compilations can be run in parallel. Furthermore, the
recompilation of the composite node is necessary only when
their interface (inputs, outputs) and their contract are mod-
ified, otherwise it can be re-used as such.

4.4 Implementation
The system we described has been implemented on our

experimental data-center. Figure 16 shows uncoordinated
executions in which failures occur in 16(b) at 17 min (Apache
server fails), and in 16(b) at 19 min (Tomcat server fails). In
16(b), the failure leads to an underload in Tomcat and Mysql
tier causing the removal of a replicated server in each tier.
In 16(b) the failure causes an underload in Mysql tier which
leads to the removal of a replica., as seen in the square-edged
curve (numbers of replica) going down. However, the degree
of replication is restored after the repair of the failed server,
by re-adding the uselessly removed server as shown in 16(a)
at 21 min and 28 min, and in 16(b) at 25 min.

By contrast, in Figure 17 for executions coordinated by
the controllers as expected, reaction to the underloads dur-
ing the failure repair (in 17(a): 20min, and in 17(b): 17min)
is inhibited, square-edged curves remaining flat, hence the
system administration saves unnecessary operations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

 0

 1

 2

 3

 4

 5

C
P

U
 l

o
ad

 (
%

)

n
b

re
 T

o
m

ca
t

-
n

b
re

 M
y

sq
l

time (minute)
Tomcats CPU Avg

Mysqls CPU Avg

Active Tomcats

Active Mysqls

Apache failure

(a) app 1: Apache failure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

 0

 1

 2

 3

 4

 5

C
P

U
 l

o
ad

 (
%

)

n
b

re
 T

o
m

ca
t

-
n

b
re

 M
y

sq
l

time (minute)
Tomcats CPU Avg

Mysqls CPU Avg

Active Tomcats

Active Mysqls

Tomcat failure

(b) app 2: Tomcat failure

Figure 16: Uncoordinated execution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

 0

 1

 2

 3

 4

 5

C
P

U
 l

o
ad

 (
%

)

n
b

re
 T

o
m

ca
t

-
n

b
re

 M
y

sq
l

time (minute)
Tomcats CPU Avg

Mysqls CPU Avg

active Tomcats

Active Mysqls

Apache failure

(a) app 1: Apache failure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

 0

 1

 2

 3

 4

 5

C
P

U
 l

o
ad

 (
%

)

n
b

re
 T

o
m

ca
t

-
n

b
re

 M
y

sq
l

time (minute)
Tomcats CPU Avg

Mysqls CPU Avg

Active Tomcats

Active Mysqls

Tomcat failure

(b) app 2: Tomcat failure

Figure 17: Coordinated execution

5. RELATED WORK
The general question of coordinating autonomic managers

remains an important challenge in Autonomic Computing
[17] although it is made necessary in complete systems with
multiple loops, combining dimensions and criteria. Some
works propose extensions of the MAPE-K framework in or-
der to allow for synchronization [23], which can be e.g.,
through the access to a common knowledge [2]. A distinc-
tive aspect of our approach is to rely on explicit automata-
based behavioral models, amenable to formal techniques like
verification or the more constructive DCS. Coordination of
multiple energy management loops is done in various ways,
e.g., by defining power vs. performance trade-offs based on
a multi-criteria utility function in a non-virtualized environ-
ment [6], or also tuning mechanisms as in OptiTuner [15].
These approaches seem to require modifying AMs for their
interaction, and to define the resulting behavior by quanti-
tative integration of the measure and utilities, which relies
on intuitive tuning values, not handling logical synchroniza-
tion aspects. We coordinate AMs by controlling their logical
activity state, rather than modifying them.

Concerning decision and control of autonomic systems,
some approaches rely upon Artificial Intelligence and plan-
ning [22] which has the advantage of managing situation
where configurations are not all known in advance, but the
corresponding drawback of costly run-time exploration of
possible behaviors, and lack of insured safety of resulting
behaviors. Our work adheres to the methodology of con-
trol theory, and in particular Discrete Event Systems, ap-
plied to computing systems [14]. Compared to traditional
error-prone programming followed by verification and de-
bugging, such methods bring correctness by design of the
control. Particularly, DCS offers automated generation of
the coordination controller, facilitating design effort com-

pared to hand-writing, and modification and re-use. Also,
maximal permissivity of synthesized controllers is an advan-
tage compared to over-constrained manual control, impair-
ing performance even if correct. Applications of DCS to
computing systems have not been many until now; it has
been applied to address the problem of deadlock avoidance
[24]. Compared to this, we consider more user-defined ob-
jectives.

Works on compositional verification have brought some
issues which can be related to modular controller synthesis.
As instance, a method for automatic assumption generation
have been proposed [10]. It relies on algorithms for the gen-
eration of automata based on language equivalence, in or-
der to generate intermediary assumptions for compositional
verification. Compared with modular controller synthesis,
the generated automata do not act upon the system, and
only helps its verification. Nevertheless, an interesting per-
spective would be to consider mixing the two techniques, in
order to facilitate the controller synthesis, and relieve the
programmer from the burden of writing intermediary as-
sumptions. Though, this technique cannot be applied as
is, as assumptions cannot be inferred from properties to be
enforced, without knowledge about the generated controller.

6. CONCLUSIONS
We put the principle of modularity in practice for the

problem of coordination in multiple-loop autonomic man-
agement, in a component-based approach. Instead of re-
designing a global combined loop, we benefit from the ad-
vantages of modularity, by defining a new method. We pro-
pose a general design methodology based on formal mod-
elling with automata, and the application of DCS to obtain
automatically correct controllers. We leverage modularity
in this approach, and confront it to commensurate experi-
ment on a real-world multi-tier, multi-service-level system.
We achieve our objectives of Section 1.3 by:

1. enabling re-use and coordination of complex adminis-
tration managers, through their control specifications,

2. modularizing the DCS, thereby breaking down the ex-
ponential complexity of the basic algorithms

On the latter point, the gain in compilation-time synthesis
opens new perspectives on the scalability of our method, and
its applicability to larger systems.

Perspectives are at different levels. The general method
is systematic enough to form the basis of an administration
management-level Domain Specific Language (DSL), allow-
ing for a designer to construct systems for which the formal
automata models and control objectives can be generated
automatically. Improvement of the DCS technique is ongo-
ing to integrate not only logical but also quantitative as-
pects in the synthesis algorithms, like consumption or load.
Also the compilation using modular DCS produces a modu-
lar code which opens perspectives for a distributed execution
which is an ongoing work.

7. REFERENCES
[1] T. Abdelzaher. Research challenges in feedback computing:

An interdisciplinary agenda. In Proc. Workshop Feedback
Computing, 2013.

[2] F. Alvares de Oliveira Jr., R. Sharrock, and T. Ledoux.
Synchronization of multiple autonomic control loops:
Application to cloud computing. In Proc. Conf.
Coordination, 2012.

[3] T. Bouhadiba, Q. Sabah, G. Delaval, and E. Rutten.
Synchronous control of reconfiguration in Fractal
component-based systems – a case study. In Proc. Conf.
EMSOFT, 2011.

[4] F. Boyer, O. Gruber, and D. Pous. Robust reconfigurations
of component assemblies. In Proc. Conf. ICSE, 2013.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and
J.-B. Stefani. The Fractal component model and its
support in java. Software – Practice and Experience
(SP&E), 36(11-12), sep 2006.

[6] R. Das, J. Kephart, C. Lefurgy, G. Tesauro, D. Levine, and
H. Chan. Autonomic multi-agent management of power and
performance in data centers. In Proc. Conf. AAMAS, 2008.

[7] G. Delaval and E. Rutten. Reactive model-based control of
reconfiguration in the Fractal component-based model. In
Proc. Symp. CBSE, 2010.

[8] G. Delaval, E. Rutten, and H. Marchand. Integrating
discrete controller synthesis into a reactive programming
language compiler. Discrete Event Dynamic Systems,
23(4):385–418, Dec. 2013.

[9] S. M.-K. Gueye, N. de Palma, and E. Rutten. Coordination
control of component-based autonomic administration
loops. In Proc. Conf. Coordination, 2013.

[10] A. Gupta, K. McMillan, and Z. Fu. Automated assumption
generation for compositional verification. In W. Damm and
H. Hermanns, editors, Computer Aided Verification,
volume 4590 of Lecture Notes in Computer Science, pages
420–432. Springer Berlin Heidelberg, 2007.

[11] N. Halbwachs. Synchronous programming of reactive
systems, a tutorial and commented bibliography. In Proc.
Conf. CAV, 1998.

[12] N. Halbwachs and S. Baghdadi. Synchronous modeling of
asynchronous systems. In Proc. Conf. EMSOFT, Grenoble,
Oct. 2002.

[13] D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Trans. Softw. Eng. Methodol.,
5(4):293–333, Oct. 1996.

[14] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback
Control of Computing Systems. Wiley-IEEE, 2004.

[15] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher,
and X. Liu. Optituner: On performance composition and
server farm energy minimization application. IEEE Trans.
Parallel Distrib. Syst., 22(11), 2011.

[16] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall. Entropy: A consolidation manager for clusters.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, VEE ’09, pages 41–50, New York, NY,
USA, 2009. ACM.

[17] J. Kephart. Autonomic computing: The first decade. In
Proc. Conf. ICAC, 2011.

[18] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1), 2003.

[19] H. Marchand and M. Samaan. Incremental design of a
power transformer station controller using a controller
synthesis methodology. IEEE Trans. on Soft. Eng.,
26(8):729 –741, 2000.

[20] P. Ramadge and W. Wonham. On the supervisory control
of discrete event systems. Proc. IEEE, 77(1), Jan. 1989.

[21] S. Sicard, F. Boyer, and N. De Palma. Using components
for architecture-based management: the self-repair case. In
Proc. Conf. ICSE, 2008.

[22] D. Sykes, W. Heaven, J. Magee, and J. Kramer.
Plan-directed architectural change for autonomous
systems. In Proc. Workshop SAVCBS, 2007.

[23] P. Vromant, D. Weyns, S. Malek, and J. Andersson. On
interacting control loops in self-adaptive systems. In Proc.
Conf. SEAMS, 2011.

[24] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and
S. Mahlke. The theory of deadlock avoidance via discrete
control. In Proc. ACM Conf. POPL, 2009.

	Introduction
	Context
	Coordination of managers
	Our approach and contribution

	Background: reactive control
	Reactive languages and Mode Automata
	Discrete control and Heptagon/BZR

	Modular coordination
	Basic AMs coordination
	Behavior of managers
	Controllability of managers
	Coordination of managers by control

	The need and means for modularity
	Limitations and need for modularity
	Modular contracts in Heptagon/BZR

	Modular coordination principle
	Controllable coordinated managers
	Modular coordination of managers

	Multi-loop multi-tier systems
	Datacenter management
	Multi-tier replication based system
	Autonomic managers
	Coordination problems
	Coordination policy

	Modular control model
	Modelling the managers control behaviors
	Coordination objectives

	Exploiting the models with DCS
	Monolithic synthesis
	Modular synthesis

	Implementation

	Related work
	Conclusions
	References

