V C Kieu 
  
Alicia Fornés 
  
Muriel Visani 
email: muriel.visani@univ-lr.fr
  
Nicholas Journet 
email: journet@labri.fr
  
Anjan Dutta 
email: adutta@cvc.uab.es
  
  
The ICDAR/GREC 2013 Music Scores Competition on Staff Removal

Keywords: Competition, Music scores, Staff Removal

The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated both at staff removal and writer identification tasks. In this second edition, we propose a staff removal competition where we simulate old music scores. Thus, we have created a new set of images, which contain noise and 3D distortions. This paper describes the distortion methods, metrics, the participant's methods and the obtained results.

I. INTRODUCTION

Optical Music Recognition (OMR) has been an active research field for years. Many staff removal algorithms have been proposed [START_REF] Dalitz | A Comparative Study of Staff Removal Algorithms[END_REF], [START_REF] Santos Cardoso | Staff Detection with Stable Paths[END_REF] as a first step in the OMR systems. However, there is still room for research, especially in the case of degraded music scores. At ICDAR [START_REF] Fornés | The ICDAR 2011 Music Scores Competition: Staff Removal and Writer Identification[END_REF] and GREC 2011, we organized the first edition of the music scores competition. For the staff removal task, we created several sets of distorted images (each set corresponding to a different kind of distortion) and compared the robustness of the participants' methods. After GREC 2011, we extended the staff removal competition [START_REF]The 2012 Music Scores Competitions: Staff Removal and Writer Identification[END_REF] by generating a new set of images combining different distortions at different levels. The results demonstrated that most methods significantly decrease the performance when coping with a combination of distortions.

In this second edition of the competition, we have generated new images that emulate typical degradations appearing in old handwritten documents. Two types of degradations (local noise and 3D distortions) have been applied on the 1000 images from the original CVC-MUSCIMA database [START_REF]CVC-MUSCIMA: A Ground Truth of Handwritten Music Score Images for Writer Identification and Staff Removal[END_REF].

The rest of the paper is organized as follows. Firstly, we describe the degradation models and the dataset used for the competition. Secondly, we present the participants' methods, the evaluation metrics, and we analyze the results.

II. ICDAR/GREC 2013 DATABASE

For comparing the robustness of the different participants' staff removal algorithms, we have applied the 3D distortion and the local noise degradation models described hereafter to the original CVC-MUSCIMA database [START_REF]CVC-MUSCIMA: A Ground Truth of Handwritten Music Score Images for Writer Identification and Staff Removal[END_REF], which consists of 1000 music sheets written by 50 different musicians.

A. Degradation Models 1) 3D Degradation Model:

This degradation model aims at mimicking some challenging distortions for staff removal algorithms, such as skews, curvatures and rotations. Differing from the 2D model used for GREC 2011, our new 3D model [START_REF] Kieu | Semisynthetic Document Image Generation Using Texture Mapping on Scanned 3D Document Shapes[END_REF] generates much more realistic images containing dents, small folds, torns. . . This 3D degradation model can distort the staff lines, making their detection and removal more difficult. It is based on 3D meshes and texture coordinate generation. The main idea is that we get multiple 3D meshes of old document pages using real ancient documents and a 3D scanner. Then, we wrap any 2D image on these meshes using some wrapping functions which are specifically adapted to document images.

2) Local Noise Model: Some old documents' defects such as ink splotches and white specks or streaks might lead for instance to disconnections of the staff lines or to the addition of dark specks connected to a staff line which can be confused with musical symbols. In order to simulate such degradations, which are very challenging for staff removal algorithms, we apply our local noise model described in [START_REF] Kieu | A Character Degradation Model for Grayscale Ancient Document Images[END_REF]. It consists in three main steps. Firstly, the "seed-points" (i.e. the centres of local noise regions) are selected so that they are more likely to appear near the foreground pixels (obtained by binarizing the input grayscale image). Then, we add arbitrary shaped greylevel specks (in our case, the shape is an ellipse). The greylevel values of the pixels inside the noise regions are modified so as to obtain realistic looking bright and dark specks.

B. ICDAR/GREC 2013 Degraded Database

For the ICDAR/GREC 2013 staff removal competition, we generate a semi-synthetic database by applying the two degradation models presented above to the 1000 images from the original CVC-MUSCIMA database. The obtained degraded database consists in 6000 images: 4000 images for training and 2000 images for testing the staff removal algorithms.

1) Training Set:

The training set consists in 4000 semisynthetic images generated from 667 out of the 1000 original images in the CVC-MUSCIMA database. This training set is split into three subsets corresponding to different degradation types and levels of degradation, as described hereafter:

TrainingSubset1 contains 1000 images generated using the 3D distortion model (c.f. sub-section II-A1) and two different meshes. The first mesh contains essentially a perspective distortion due to the scanning of a thick and bound page, while the second mesh has many small curves, folds and concaves. Both meshes are applied to the 667 original images. Then, 1000 images (500 images per mesh) are randomly selected from those 2 × 667 = 1334 degraded images.

TrainingSubset2 contains 1000 images generated with three different levels (i.e low, medium, and high levels) of local noise. The different levels of noise are obtained by varying the number of seed-points and the average size of the noise regions (see sub-section II-A2).

TrainingSubset3 (see Fig. 1) contains 2000 images generated using both the 3D distortion and the local noise model. We obtain six different levels of degradation (the two meshes used for TrainingSubset1 × the three levels of distortion used for TrainingSubset2).

For each image in the training set, we provide to the participants of the competition its grey and binary version and the associated ground-truth, under the form of its binary staff-less version (such images containing only binarized music symbols but no staff lines), as illustrated in Fig. 2.

2) Test Set: The test set consists in 2000 semi-synthetic images generated from the 333 original images from the CVC-MUSCIMA database that are not used for the training set.

TestSubset1 contains 500 images generated using the 3D distortion model. Two meshes -distinct from the ones used in the training set -are used. 500 images (250 for each mesh) are randomly selected among the 2x333=666 degraded images.

TestSubset2 contains 500 images generated using three different levels of local noise, using the same values of the parameters as in TrainingSubset2.

TestSubset3 contains 1000 images equally distributed between six different levels of degradation using both 3D distortion models (and the same 2 meshes as in TestSubset1), and the same 3 different levels of local noise as in TrainingSubset2.

For each image in the test set, we provide to the participants of the competition its gray and binary version. The groundtruth associated to the test set, consisting of binary staff-less images, was made public after the contest.

III. EXPERIMENTAL PROTOCOL AND RESULTS

The competition was organized as follows. First, we provided to the participants (see section III-A) the training set and its grount-truth for training their algorithms. 46 days later, we sent them the test set. They returned us their outputs as binary staff-less images within 23 days. We compared their outputs to the test set ground-truth using the metrics presented in section III-B, obtaining the results presented in section III-C.

A. Participants Information 1) TAU-bin:

The method was submitted by Oleg Dobkin from the Tel-Aviv University, Israel. It is based on the Fujinaga's method [START_REF] Fujinaga | Adaptive Optical Music Recognition[END_REF]. The method is based on an estimation of the staff-line height and the staff-space height and vertical runlengths. It consists in removing black pixels which are part of a short vertical run of black pixels (these pixels being more likely to be part of a staff line).

2) NUS-bin: This method [START_REF] Su | An Effective Staff Detection and Removal Technique for Musical Documents[END_REF] was submitted by Bolan Su (National University of Singapore), Umapada Pal (Indian Statistical Institute, Kolkata, India) and Chew-Lim Tan (National University of Singapore). It predicts the lines' direction and fits an approximate staff line curve.

3) NUASi: Christoph Dalitz and Andreas Kitzig, from the Niederrhein University of Applied Sciences -Institute for Pattern Recognition (iPattern), Krefeld, Germany, submitted two different methods [START_REF] Dalitz | A Comparative Study of Staff Removal Algorithms[END_REF] for which the source code is available at http://music-staves.sourceforge.net/. In the NUASi-bin-lin method, all short vertical runs are removed from the skeleton image, and a function filters the staffline pixels that belong to a crossing symbol. The NUASi-bin-skel method is a refinement of the previous method where the skeleton of the staff line is considered locally, at branching and corner points so as to remove more efficiently the crossing music symbols and to join staff line segments corresponding to the same staff line.

4) LRDE:

Thierry Géraud, from the EPITA Research and Development Laboratory (LRDE), Paris, France, submitted two methods described in http//www.lrde.epita.fr/cgibin/twiki/view/Olena/Icdar2013Score. These methods rely on morphological operators and can handle respectively binary images (in its version LRDE-bin) and grayscale images (in its version LRDE-gray using Sauvola's binarization).

5) INESC:

Ana Rebelo and Jaime S. Cardoso (Universidade do Porto, Portugal) propose two graph-based methods [START_REF] Santos Cardoso | Staff Detection with Stable Paths[END_REF]. In the INESC-bin method, a graph is created from predetected strong staff-pixels (SSPs). Some SSPs are labeled as staff-line pixels, according to heuristic rules. Then, a global optimization process gives the final staff lines. The INESCgray method applies a sigmoïd-based weight function that favors the luminance levels of staff. Then, the image is binarized and the INESC-bin method is applied.

B. Measures Used for Performance Comparison

At the pixel level, the staff removal problem is considered as a two-class classification problem. For each test subset and each level of noise, we compare the participant's images to their corresponding ground-truth. We compute the number of True Positive pixels (TP, pixels correctly classified as staff lines), True Negative pixels (TN, pixels correctly classified as non-staff lines), False Positive pixels (FP, pixels wrongly classified as staff lines) and False Negative pixels (FN, pixels wrongly classified as non-staff lines). Then, from these measures, we compute the Accuracy (also called Classification Rate), Precision (also called Positive Predictive Value), Recall (also called True Positive Rate or sensitivity), F-measure and Specificity (or True Negative Rate).

Since the first step of a staff removal system is usually the detection of the staff lines, the overall performance highly depends on the accuracy of this preliminary staff detection. It may occur that one system obtains very good results but "misses" (rejects) many images containing staff lines. Therefore, for each participants' method, for each test subset and each level of noise, we provide the number of rejected pages and the average values of the 5 measures described above. If there are some missing pages, the average measures are computed 1) only on the detected images and 2) taking into account the rejected pages (every staff line pixel being considered as a False Negative and every non-staff line pixel being considered as a False Positive).

C. Performance Comparison

Table I presents the results obtained by the participants. We compare these results to those obtained by a baseline algorithm proposed by Dutta et al. [START_REF] Dutta | An Efficient Staff Removal Approach from Printed Musical Documents[END_REF] and based on the analysis of neighboring components. For each line, the best method is in bold. Since the Precision is higher in some methods but with a lower Recall, we select the winners according to the Accuracy and F-measure metrics. INESC-bin is the winner on the TestSubset2 containing local noise, while LRDE-bin is the winner on the TestSubsets 1 and 3, containing respectively 3D distortions and a combination of 3D distortions and local noise. It must also be noticed that most methods (including the baseline method) obtain quite similar performances.

We can also analyze the scores according to the kind and level of degradations. Concerning the 3D distortion (TestSub-set1), most methods seem less robust to perspective deformation defects (Mesh 1) than to the presence of small curves and folds (Mesh 2). In addition, the precision scores of every participants decrease (on average of 13%) when the local noise in TestSubset2 is getting higher. Therefore, all the participants' methods are sensitive to the local noise degradation. The tests carried out with images from TestSubset3, generated by combining local noise and 3D distortions confirm that the results decrease when the level of degradation is important.

IV. CONCLUSION

The second music scores competition on staff removal held in ICDAR and GREC 2013 has raised a great interest from the research community, with 8 participant methods. The submitted methods have obtained very satisfying performance, although most methods significantly decrease their performance when dealing with a higher level of degradation. The presence of both sources of degradation (3D distortion + local noise) is especially challenging. We hope that our semisynthetic database will become a benchmark for the research on handwritten music scores in the near future. 

Fig. 1 .

 1 Fig. 1. From left to right: original image from the CVC-MUSCIMA database, and two images from TrainingSubset3 of the ICDAR/GREC 2013 database generated using a high level of local noise and (respectively) mesh#1 and mesh#2.

Fig. 2 .

 2 Fig. 2. From left to right: an image from TrainingSubset3, its binary version and its binary staff-less version (ground-truth)

TABLE I .

 I COMPETITION RESULTS FOR THE 5 MEASURES (IN %) FOR EACH TEST SUBSET AND EACH DEGRADATION LEVEL. WHEN NEEDED, WE GIVE THE NUMBER # OF REJECTED IMAGES, AND THE VALUES OF THE MEASURES COMPUTED WITH AND WITHOUT REJECTION.

	Deformation	Level	Measure	TAU-bin	NUS-bin	NUASi-bin-lin	NUASi-bin-skel	LRDE bin	LRDE gray	INESC bin	INESC gray	Baseline
			Precision	75.51	98.75	99.05	98.58	98.89	87.26	99.76	32.50	98.62
	TestSubset1: 3D distortion	Mesh 1 (M1)	Recall F-Measure Specificity Accuracy Precision	96.32 84.65 98.81 98.721 82.22	52.80 68.81 99.97 98.25 99.50	#2 89.90 (89.77) 94.25 (94.18) 99.96 (99.96) 99.60 (99.60) 99.70	#3 90.26 (90.03) 94.24 (94.11) 99.95 (99.95) 99.60 (99.60) 99.39	96.19 97.52 97.52 99.82 99.52	98.41 92.50 99.45 99.42 86.59	85.41 92.03 99.99 99.46 99.90	50.91 39.67 95.97 94.32 34.36	79.86 88.26 99.95 99.22 99.29
		Mesh 2 (M2)	Recall F-Measure	91.90 86.79	55.05 70.88	#4 92.07 (91.38) 95.73 (95.36)	#2 89.63 (89.36) 94.26 (94.11)	96.39 97.93	97.76 91.83	76.33 86.54	40.85 37.33	75.47 85.76
			Specificity	99.26	99.99	99.98 (99.99)	99.97 (99.97)	99.98	99.44	99.99	97.12	99.98
			Accuracy	99.01	98.39	99.71 (99.68)	99.61 (99.60)	99.86	99.38	99.16	95.12	99.10
			Precision	65.71	95.37	98.41	97.28	95.54	53.22	97.63	38.81	95.65
		High (H)	Recall F-Measure Specificity	97.01 78.35 98.59	92.27 93.79 99.87	90.81 94.46 99.95	89.35 93.15 99.93	96.65 96.09 99.87	98.58 69.12 97.58	96.62 97.13 99.93	79.35 52.13 96.51	96.53 96.09 99.87
			Accuracy	98.55	99.67	99.71	99.64	99.79	97.61	99.85	96.05	99.78
			Precision	69.30	97.82	99.24	98.38	97.50	68.10	98.95	39.61	97.26
	TestSubset2: Local Noise	Medium (M)	Recall F-Measure	97.34 80.96	96.97 97.39	#3 91.94 (91.41) 95.45 (95.16)	#4 90.56 (89.80) 94.31 (93.90)	97.13 97.32	98.77 80.62	97.19 98.07	74.83 51.81	97.10 97.18
			Specificity	98.71	99.93	99.97 (99.97)	99.95 (99.95)	99.92	98.61	99.96	96.58	99.91
			Accuracy	98.67	99.85	99.75 (99.73)	99.68 (99.66)	99.84	98.62	99.89	95.96	99.83
			Precision	77.07	98.56	99.25	98.07	97.89	80.65	99.42	40.13	98.52
		Low (L)	Recall F-Measure Specificity	96.88 85.85 99.12	96.58 97.56 99.95	90.48 94.66 99.97	90.17 93.95 99.94	96.47 97.17 99.93	98.47 88.67 99.28	96.52 97.95 99.98	75.48 52.40 96.59	96.45 97.47 99.95
			Accuracy	99.06	99.86	99.70	99.66	99.84	99.26	99.88	95.98	99.85
			Precision	66.01	94.31	96.88	96.37	96.14	56.19	97.63	31.70	96.41
		H + M1	Recall	96.35	50.00	88.03	87.93	96.13	98.59	85.79	#17 55.21 (50.48)	85.98
			F-Measure	78.34	65.35	92.25	91.96	96.14	71.58	91.33	40.27 (38.94)	90.90
			Specificity	98.30	99.89	99.90	99.88	99.86	97.37	99.92	95.93 (96.27)	99.89
			Accuracy	98.24	98.25	99.51	99.49	99.74	97.41	99.46	94.58 (94.76)	99.43
			Precision	73.40	97.50	98.55	98.07	97.61	57.18	98.35	33.11	97.62
		H + M2	Recall	92.42	53.56	#4 90.99 (90.32)	#3 89.15 (88.68)	96.66	98.00	75.17	#12 42.15 (39.19)	81.26
			F-Measure	81.82	69.14	94.62 (94.25)	93.40 (93.14)	97.13	72.22	85.22	37.09 (35.90)	88.69
			Specificity	98.86	99.95	99.95 (99.95)	99.94 (99.94)	99.92	97.51	99.95	97.11 (97.31)	99.93
			Accuracy	98.65	98.43	99.66 (99.64)	99.59 (99.57)	99.81	97.53	99.14	95.31 (95.41)	99.32
	TestSubset3: 3D distortion + Local Noise	M + M1	Precision Recall F-Measure Specificity Accuracy	69.26 96.44 80.62 98.47 98.406	95.45 49.07 64.81 99.91 98.168	97.52 89.15 93.15 99.91 99.549	96.93 87.98 92.24 99.90 99.491	97.11 95.98 96.54 99.89 99.763	67.44 98.46 80.05 98.30 98.312	98.51 85.63 91.62 99.95 99.461	32.34 #16 53.52 (48.76) 40.31 (38.88) 96.01 (96.36) 94.556 (94.730)	97.29 85.96 91.27 99.91 99.43
			Precision	77.50	98.39	99.02	98.53	98.42	68.09	99.06	33.76	98.35
		M + M2	Recall	91.83	53.47	#4 91.57 (90.85)	#3 88.43 (87.94)	96.52	97.92	75.21	#10 41.64 (39.13)	81.08
			F-Measure	84.05	69.29	95.15 (94.76)	93.20 (92.93)	97.46	80.27	85.50	37.29 (36.25)	88.88
			Specificity	99.06	99.96	99.96 (99.96)	99.95 (99.95)	99.94	98.38	99.97	97.12 (97.30)	99.95
			Accuracy	98.87	98.39	99.68 (99.66)	99.56 (99.54)	99.83	98.37	99.13	95.24 (95.32)	99.31
			Precision	73.28	96.75	98.06	97.50	97.92	79.32	99.14	32.77	97.96
		L + M1	Recall	96.38	50.22	88.96	88.74	95.92	98.38	85.48	#17 53.83 (48.83)	85.23
			F-Measure	83.26	66.12	93.29	92.92	96.91	87.83	91.80	40.74 (39.22)	91.15
			Specificity	98.70	99.93	99.93	99.91	99.92	99.05	99.97	95.93 (96.30)	99.93
			Accuracy	98.62	98.17	99.55	99.52	99.78	99.03	99.46	94.44 (94.62)	99.41
			Precision	80.17	99.00	99.39	98.94	99.02	78.81	99.53	34.31	98.84
		L + M2	Recall	91.98	54.01	#4 91.97 (91.22)	#3 89.14 (88.63)	96.46	97.85	75.18	#8 41.34 (39.08)	80.14
			F-Measure	85.67	69.89	95.54 (95.13)	93.78 (93.50)	97.72	87.30	85.66	37.50 (36.54)	88.52
			Specificity	99.17	99.98	99.97 (99.98)	99.96 (99.96)	99.96	99.04	99.98	97.13 (97.28)	99.96
			Accuracy	98.92	98.37	99.70 (99.67)	99.59 (99.57)	99.84	99.01	99.12	95.18 (95.25)	99.27
	Total rejected images	#0	#0	#21	#18	#0	#0	#0	#80	#0
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