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Abstract

The paper addresses the separation of multidimensional sources, with possibly different dimensions, by
means of higher-order cumulant matrices. First, it is rigorously proved, in a general setting, that contracted
cumulant matrices of any order are all block-diagonalizable in the same basis. Second, a family of joint block-
diagonalization algorithms is proposed that separate multidimensional sources by combining contracted
cumulant matrices of arbitrary orders. Third, a specific solution is given to determine the source dimensions
when they are unknown but all different. The performances of the proposed algorithms are compared
between them and with algorithms of the literature based on orders 3 and 6.

Keywords:
Multidimensional Independent Component Analysis; Independent Component Analysis; Higher-order
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1. Introduction

In its original formulation independent component analysis (ICA) assumes the mutual independence
of the sources to be separated (e.g. see Comon [11]). Unfortunately, there are many instances in the
real-world where this assumption is not fulfilled, which precludes the recovery of sources that are (partly)
dependent. This has brought in the concept of multidimensional independent component analysis (MICA),
where multidimensional rather than scalar sources are considered Cardoso [6]. Formally, the MICA model
reads

x = As =
(
A1 A2 · · · Ap

)




s1
s2
...
sp


 = x1 + x2 + · · ·+ xp (1)
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where





x ∈ R
m is the vetor of observations,

A ∈ R
m×n is the unknwon mixing matrix,

s ∈ R
n is the unknown vector of sources,

si ∈ R
ni denotes the i-th source,

Ai ∈ R
m×ni denotes the i-th block of matrix A,

xi = Aisi ∈ R
m denotes the i-th independent component,

n =
∑p

i=1 ni is the dimension of the source vector,
p ∈ N denotes the number of multidimensional sources.

(2)

That is to say MICA consists in decomposing an arbitrary random vector, x, into its independent com-
ponents (ICs), xi, i = 1, ..., p where a vector v is an IC of a random vector u if there exists an invertible

matrix F and an decomposition u = F

(
v

w

)
where v and w are independent random vectors. Up to

trivial indeterminacies (see subsection 2.1), this amounts to estimating the unknown mixing matrix A (or
its inverse, the separation matrix B) and sources s in model (1) from the sole observations x. In other
words, when x accepts a decomposition into one-dimensional (scalar) sources, the problem boils down to
classical ICA [11]. More generally, when the decomposition involves k-dimensional sources, this is referred
to as k-MICA, which is the topic of this paper. So far MICA has attracted much less attention than ICA,
although it is also known under (or related to) the following names in the literature: independent subspace
analysis (ISA) [20], independent feature subspace analysis (IFSA) [23], subspace ICA [41], group ICA [42].
The application fields where MICA finds interest are indeed numerous. Examples comprise electrocardiogra-
phy (ECG) [6, 42, 41, 10], f-MRI electroencephalography (EEG) [30], topography [21], texture classification
[40], action recognition [28], face recognition [29], motion segmentation [12], audio source separation [9],
gene decoding [23, 24], metabolomic data analysis [17].

Moreover, although most previous works have concentrated on separating ICs with identical dimensions
(k-MICA with k = dim(si), ∀i) [21, 45, 44, 42, 22, 41] (in which case the problem is known as k-MICA
with k = dim(si) = ni), this situation is by no means general. This paper considers the general case where
p multidimensional ICs with arbitrary and unknown dimensions, ni = dim(si) = dim(xi) (not necessarily
identical), are to be separated. Several approaches have been considered in the literature to solve the
general MICA problem. An early solution consists of regrouping a posteriori the components separated by
traditional ICA according to their residual dependence. Although the idea was globally covered in Ref. [7],
no proof of separability and unicity was provided. The first proof of separability of the k-MICA problem
was given by Theis [51] and is based on a theorem of prob ability introduced in Ref. [19], in the sixteens,
that generalizes the Darmois-Skitovitch theorem [13, 48] to the multidimensional case (square matrices).
The complete proof of unicity was later given by Theis [50] and Gutch and Theis [20] in the general case
of independent subspaces with possibly different dimensions. It is there remarked that the initial model
introduced in Ref. [7] is not complete and requires an additional assumption for being separable. Indeed, for
any observation x, a decomposition of x into independent subspaces with some internal dependence in each
subspace is given by x itself. The additional condition required to avoid this trivial decomposition has been
coined “irreducibility of multidimensional sources”. The condition is revisited in subsection 8 of this paper
(see Definition 8) Note that the proof of unicity of the MICA separation has recently been completed in
Ref. [22]. Besides, some joint block- diagonalization (JBD) algorithms have been proposed that potentially
provide solutions to MICA by reducing a set of matrices to diagonal blocks with different sizes [50, 37, 41].
They make use of second-order statistics [49, 23, 31], of the functional form of the probability density function
or its generating function [52, 49], or of dispersion matrices [43]. Two such algorithms have been applied
to the MICA problem in Ref. [49]. The first one, which is a direct extension of SOBI [1], jointly block-
diagonalizes a set of correlation matrices taken at different time lags and has been coined Multidimensional
SOBI (MSOBI). The second one jointly block-diagonalizes a set of Hessian matrices of the first (or second)
generating function and has been coined Multidimensional Hessian ICA (MHICA). However, solutions to
MICA based on higher-order cumulants are still relative ly seldom although they offer several advantages.
Indeed, Theis in [43] has proposed to simply solve the MICA problem by jointly block-diagonalizing a set
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of fourth-order cumulant matrices in the spirit of the JADE algorithm [8], which he coined SJADE (for
Subspace-JADE). Yet, the following questions have so far remained unanswered:

- are fourth-order cumulant matrices (as initially defined in [8] and used in Theis [43]) block-diagonalizable
in the basis spanned by A?

- more generally, are cumulant matrices of arbitrary order r (to be defined later on in the paper) block-
diagonalizable in the basis spanned by A?

In other words, can the MICA problem be formally formulated as a joint block-diagonalization problem
on arbitrary order r? On the second-order, the answer is positive and has been given in [42, 19, 27]. On
higher-orders, the answer is yet not trivial and is the subject of the present paper.

The remainder of the paper is organized as follows. First, the usual assumptions that sustain the MICA
problem are reviewed in section 2. Next, the definitions of cumulant matrices and contracted cumulant
matrices are introduced in section 3 and 4, respectively. Section 5 contains the main result of the paper,
which proves that contracted cumulant matrices of any order are all block-diagonalizable in the same basis.
This result is then exploited in section 6 to generalize the JADE algorithm to the multidimensional case
with arbitrary orders, thus leading to a family of algorithms coined SJADEr. The advantage of combining
various orders is illustrated in section 7. Section 8 addresses the important question as how to determine the
dimensions of the vector sources when they are unknown. The proposed algorithms are finally compared in
section 9 by means of numerical experiments. Simple examples are given to demonstrate the advantage of
combining different orders in order to improve the separation. All proofs are collected in the Appendices.

2. Generalities about MICA

From the onset, some generalities about ICA are to be reminded in the context of multidimensional
sources.

2.1. Uniqueness and indeterminacies

The indeterminacies underlying MICA are obvious generalizations of those of ICA. They are reminded here
for the sake of completeness. It suffices to note that, for any invertible matrices Di of size ni×ni, i ∈ [[1, p]],
and for any permutations σ ∈ Sp, model (1) still holds since

(
Aσ(1)Dσ(1) · · · Aσ(p)Dσ(p)

)



D−1
σ(1)sσ(1)

...
D−1

σ(p)sσ(p)


 = xσ(1) + · · ·+ xσ(p) = x. (3)

Therefore, the multidimensional ICs xi are determined up to an arbitrary permutation (that applies on
components with identical dimension), whereas sources are determined up to an arbitrary permutation and
invertible matrices. Taking such indeterminacies into account, a matrix B will be recognized as a separa-
tion matrix (i.e. a solution to the MICA problem) if BA = PD, where P is a permutation matrix and
D = bdiag(D1,D2, . . . ,Dp) a block-diagonal matrix.

Besides, the following definition will play an important role later on.

Definition 1 ([43, 18]). A random vector, x, of dimension n is said reducible if it can be expressed as

x = A

(
y1

y2

)
, (4)

where A is an invertible matrix and y1 and y2 are two independent random vectors of dimensions k 6= 0
and n− k, respectively. A random vector that is not reducible is said irreducible.
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2.2. Assumptions

One is now in position to announce the assumptions that will guarantee the uniqueness of the separation
model:

1. matrix A is of full-rank n,

2. no more than one independent (scalar) source can have a nil cumulant of order r, cr(si) = 0, when
working on order r,

3. independent sources are all irreducible.

2.3. Whitening

Whitening is a classical preprocessing used in blind source separation. It is used here to simplify the
theoretical developments. Without loss of generality, let us assume that the source vectors are centered,
E(s) = 0, and standardized, Rs = E(ss′) = In. Thus Rx = E(xx′) = AA′. Since the covariance matrix
Rx is symmetric and semi-positive definite, it is well-known that it admits an eigenvalue decomposition
Rx = UDU′ where D is an n× n diagonal matrix, with n the number of non-zero eigenvalues, and Um×n

an m × n matrix satisfying U′U = In. Following the usual practice, let us define the whitening matrix
Wn×m = D− 1

2U′ and the whitened components x̃ = (Wx)n×1; thus

Rx̃ = E(x̃x̃′) = WRxW
′ = D− 1

2U′(UDU′)UD− 1
2 = In. (5)

Since Rx = AA′, it follows that WAA′W′ = In; in other words, Ã = WA is an n× n orthogonal matrix.
Upon pre-multiplication with the whitening matrix, model (1) then becomes x̃ = Ãs. Therefore, it will be
assumed from now on and without loss of generality that matrix A is orthogonal (with m = n). Solving the
MICA problem then amounts to finding, using higher-order statistics, the orthogonal matrix A.

2.4. Notations

This last subsection introduces some notations that will be used in the remaining of the paper. Let us first
note that matrix A can be partitioned into n× ni sub-matrices Ai or as a collection of raw vectors ℓj :

A =
(
A1 A2 . . . Ap

)
=




ℓ1
ℓ2
...
ℓn


 . (6)

Alternatively, matrix A can also be partitioned into raws as

Ai =




ℓi1
ℓi2
...
ℓin


 (7)

where, ∀k ∈ [[1, n]], ℓik with dimension 1×ni is the k-th raw of sub-matrix Ai. Similarly, each raw of matrix
A can be expressed as a function of the raws of matrices Ai, as follows

ℓk =
(
ℓ1k ℓ2k . . . ℓ

p
k

)
. (8)

One is now ready to introduce specific statistical tools – cumulant matrices, their contracted forms, and the
related algebra – dedicated to the purpose of this paper.
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3. Cumulant matrices

The main tools used in this paper are cumulants. In the scalar case it is a well-known fact that cumulants
can be deduced from moments by means of the Leonov and Shiryaev formula (see e.g. Mac Cullagh [31]
et Albera and Comon [1]). However, it is often convenient to rearrange cumulants into matrices (see e.g.
Albera et al. [4]), for instance in order to exploit their algebraic properties (such as matrix redundancies
Albera et al. [3, 2, 4]) or to diagonalize them Kollo [26]. In the multidimensional case, the notion of a
cumulant matrix needs to be carefully defined for it will play a key role in the remaining of the paper.

Definition 2 (cumulant matrix). Let x be a random vector with dimension n× 1. Then, the cumulant
matrix of order r is defined as

cr(x) =

n∑

i1,i2,...,ir=1

cum(xi1 , xi2 , · · · , xir )Ei1,i2,...,ir (9)

with

Ei1,i2,...,ir =





(
ei1 ⊗ ei3 ⊗ · · · ⊗ ei2k−1

)(
ei2 ⊗ ei4 ⊗ · · · ⊗ ei2k

)′
if r = 2k

(
ei1 ⊗ ei3 ⊗ · · · ⊗ ei2k+1

)(
ei2 ⊗ ei4 ⊗ · · · ⊗ ei2k

)′
if r = 2k + 1,

(10)

where (ei)i∈[[1,n]] denotes the canonical basis of Rn and ⊗ the Kronecker product.

Closed-form expressions of cumulant matrices in terms of lower-order moments were given in Ref. [26] up to
orders 3 and 4, and for the first time in Ref. [38] up to order 6. They are reproduced in Appendix (Appendix
B) for the sake of completeness. Not only are such expressions easy to handle due to their compactness, but
they also lead to faster numerical computation with matrix-based languages such as Matlabr(interested
readers are invited to consult [38] for the systematic derivation of these formulae). It is noteworthy that
Definition 2 produces nk × nk square and symmetric cumulant matrices of even orders (r = 2k) which, as
compared to other possible definitions, will turn out advantageous; for instance, on order r = 4, c4(x) is
a n2 × n2 matrix known as the “quadricovariance” [2]; similarly, on order r = 6, c6(x) is a n3 × n3 matrix
known as the “hexacova riance” [3]. For odd orders r = 2k + 1, the cumulant matrices have dimensions
nk+1 × nk. Several useful properties can be deduced from Definition 2, a few of which are reminded here
below.

Proposition 1. (i) If z is a Gaussian random vector, then

∀r > 2, cr(z) = 0. (11)

(ii) If x and y are two independent vectors with identical dimensions, then

∀r ∈ N cr(x+ y) = cr(x) + cr(y). (12)

(iii) If x = As, where A is a matrix with dimension m × n and x and s are two random vectors with
dimensions m× 1 and n× 1, respectively, then

cr(x) =





(A⊗ · · · ⊗A)︸ ︷︷ ︸
k fois

cr(s) (A⊗ · · · ⊗A)′︸ ︷︷ ︸
k fois

=
(
⊗kA

)
cr(s)

(
⊗kA′) if r = 2k

(A⊗ · · · ⊗A)︸ ︷︷ ︸
k+1 fois

cr(s) (A⊗ · · · ⊗A)′︸ ︷︷ ︸
k fois

=
(
⊗k+1A

)
cr(s)

(
⊗kA′) if r = 2k + 1 .

(13)
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(iv) If x = As =
(
A1 · · · Ap

)



s1
...
sp


 ∈ R

m, where si ∈ R
ni are independent random vectors,

Ai ∈ R
m×ni , n = n1 + · · ·+ np and A ∈ R

m×n, then for any integer r,

cr(x) =





Ak bdiag (cr(s1), . . . , cr(sp))A
′
k if r = 2k

Ak+1 bdiag (cr(s1), . . . , cr(sp))A
′
k if r = 2k + 1

(14)

where matrices Ak are returned by

Ak =
(
⊗kA1 ⊗kA2 · · · ⊗kAp

)
∈ R

mk×
∑p

j=1 nk
j . (15)

Proof. See Appendix A. �

Properties (i) to (iv) will be used to establish the main results of this paper.

4. Contracted cumulant matrices

The higher-order-statistic solution to MICA is based on an extension of the former cumulant matrix
which is referred herein as the “contracted” cumulant matrix. This generalizes a notion initially introduced
on the fourth-order by Cardoso and Soulomiac in Ref. [8] in the JADE algorithm. The definition is first
given hereafter on the fourth-order, and then on arbitrary order.

Definition 3 (contracted matrix cumulant on order 4). Let M = (mi1,i2)(i1,i2)∈[[1,n]]2 be an n × n

matrix and x an n × 1 random vector. The contracted cumulant matrix of order four of dimension n × n,
denoted as Qx

(4)[M], has generic term

(
Qx

(4)[M]
)

i3,i4

=

n∑

i1,i2=1

cum(xi1 , xi2 , xi3 , xi4)mi1,i2 . (16)

The following lemma shows how the contracted cumulant matrix Qx

(4) can be directly expressed as the star

product MacRae [32] (see Appendix Appendix C) of matrix M with the cumulant matrix c4. This will be
needed in Definition 4.

Lemma 2. Let M = (mi1,i2)(i1,i2)∈[[1,n]]2 be a matrix with dimension n× n; then

Qx

(4)[M] = M ∗ c4(x) =

n∑

i1,i2=1

mi1,i2 [c4(x)]i1,i2 (17)

where [c4(x)]i1,i2 is an n× n matrix corresponding to block (i1, i2) of the cumulant matrix c4(x).

Proof. It suffices to realize that element (i3, i4) of matrix [c4(x)]i1,i2 is

(
[c4(x)]i1,i2

)

i3,i4

= cum(xi1 , xi2 , xi3 , xi4). (18)

An alternative proof is to apply properties (P1) to (P3) (see Appendix C.2, C.3 and C.4) of the star product
∗ to the expression of c4(x) given in Appendix B; it follows that

M ∗ c4(x) = E(x′Mxxx′)−ΣMΣ−ΣM′Σ− tr(ΣM)Σ (19)

which is the explicit expression of Qx

(4)[M] (see [7]). �

The generalization of the definition to any order r is obtained as follows.
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Definition 4 (contracted cumulant matrix of order r). Given q ∈ N, any matrix matrix M(q) ex-
pands as

M(q) =

n∑

i1,i2,...,iq=1

mi1,i2,··· ,iqEi1,i2,...,iq (20)

where matrices Ei1,i2,...,iq have been introduced in Eq. (10) and mi1,i2,··· ,iq are arbitrary constants. Then,
the n× n contracted cumulant matrix of order r is defined as

Qx

(r)[M
(r−2)] = M(r−2) ∗ cr(x) =

n∑

i1,i2,...,ir−2=1

mi1,i2,··· ,ir−2

[
cr(x)

]

i1,i2,··· ,ir−2

(21)

where
[
cr(x)

]

i1,i2,··· ,ir−2

denotes the matrix indexed by (i1, i2, · · · , ir−2) in the partition of cr(x) into ma-

trices of dimensions n× n; that is, element (ir−1, ir) of
[
cr(x)

]

i1,i2,··· ,ir−2

is

([
cr(x)

]

i1,i2,··· ,ir−2

)

ir−1,ir

= cum(xi1xi2 · · ·xir ). (22)

It results immediately that element (ir−1, ir) of the contracted cumulant matrix Qx

(r)[M
(r−2)] reads

(
Qx

(r)[M
(r−2)]

)

ir−1,ir

=

n∑

i1,i2,...,ir−2=1

cum(xi1xi2 · · ·xir )mi1,i2,··· ,ir−2 , (23)

which corresponds to the natural generalization of (16).

5. r-th order MICA by means of joint block diagonalization

Equipped with the tools introduced hitherto, ones is now in a position to prove the main result of this
paper concerning the block-diagonalization of the contracted cumulant matrices. The first step towards this
perspective is to note that the cumulant matrix of the observations in the MICA model (1) reads

cr(x) =





AkC2k(s)A
′
k if r = 2k

Ak+1C2k+1(s)A
′
k if r = 2k + 1

(24)

with

Cr(s) = bdiag

(
cr(s1), cr(s2), · · · , cr(sp)

)
(25)

where use has been made of property (iv) of proposition 1 and of the statistical independence of the sources.
The structure of matrices Ak in Eq. (24) is given in the following lemma:

Lemma 3 (structure of Ak).
Given any integer k > 1, matrix Ak =

(
⊗kA1 ⊗kA2 · · · ⊗kAp

)
of dimension nk ×

∑p

i=1 n
k
i is

7



returned by the block matrix

Ak =




AD11···11
AD11···12

...
AD11···1n
AD11···21
AD11···22

...
AD11···2n

...
AD1n···nn
AD2n···nn

...
ADnn···nn




(26)

where, for any (i1, i2, · · · , ik−1) ∈ [[1, n]]k−1, the n×
∑p

i=1 n
k
i matrix Di1i2···ik−1

reads

Di1i2···ik−1
= bdiag

(
ℓ1i1 ⊗ · · · ⊗ ℓ1ik−1

⊗ In1 , ℓ
2
i1
⊗ · · · ⊗ ℓ2ik−1

⊗ In2 , · · · , ℓ
p
i1
⊗ · · · ⊗ ℓ

p
ik−1

⊗ Inp

)
(27)

with ℓik the k-th raw of matrix Ai (see subsection 2.4).

Proof. See Appendix D. �

It directly results from lemma 3 and Eq. (24) that the cumulant matrix is made of n× n blocks

[
cr(x)

]

i1,i2,··· ,ir−2

=





ADi1i3···ir−3C2k(s)D
′
i2i4···ir−2A

′ if r = 2k

ADi1i3···ir−2C2k+1(s)D
′
i2i4···ir−3

A′ if r = 2k + 1.
(28)

One is now ready to state the main result of the paper.

Theorem 4 (joint block-diagonalization of contracted cumulant matrices).
Let s = (s′1, s

′
2, · · · , s

′
p)

′ be a random vector where the si’s are mutually independent with dimensions
dim(si) = ni, n =

∑p

i=1 ni. Let also A be an n × n orthogonal matrix such that x = As. Then, for any
integer r > 2, the contracted cumulant matrix reads

Qx

(r)[M
(r−2)] = A bdiag

(
∆(r)

s1
,∆(r)

s2
, · · · ,∆(r)

sp

)
A′ (29)

with

(∀i ∈ [[1, p]]) ∆(r)
si

=





Qsi

(2k)

[ (
⊗k−1A′

i

)
M(2k−2)

(
⊗k−1Ai

) ]
if r = 2k

Qsi

(2k+1)

[ (
⊗kA′

i

)
M(2k−1)

(
⊗k−1Ai

) ]
if r = 2k + 1

(30)

Proof. See Appendix E. �

Theorem 4 clearly answers the questions raised in the introduction: contracted cumulant matrices are
block-diagonalizable in the basis spanned by matrix A at any order r. In addition, it also returns the general

structure of the diagonal blocks in terms of the cumulant matrices ∆
(r)
si of the sources.

A particular consequence of Theorem 4 is given in the following corollary.
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Corolary 5 (The ICA case). In the case of scalar sources, p = n and ni = 1 for any i ∈ [[1, p]], the contracted
cumulant matrix reads

Qx

(r)[M
(r−2)] = A diag

(
δ(r)s1

, δ(r)s2
, · · · , δ(r)sp

)
A′ (31)

where

(∀i ∈ [[1, n]]) δ(r)si
=





((
⊗k−1a′i

)
M(2k−2)

(
⊗k−1ai

))
k
(2k)
i if r = 2k

((
⊗ka′i

)
M(2k − 1)

(
⊗k−1ai

))
k
(2k+1)
i if r = 2k + 1

(32)

with ai the i-th column of A and k
(r)
i = cr(si) = cum(si, · · · , si) the r-order cumulant of source si.

In particular, when all sources are scalar and 2k = 4 (fourth-order statistics), corollary 5 returns the
classical ICA result originally proved in [8, page 5],

Qx

(4)

[
M(2)

]
= A diag

(
k
(4)
1 a′1M

(2)a1, k
(4)
2 a′2M

(2)a2, · · · , k
(4)
p a′pM

(2)ap

)
A′ (33)

with k
(4)
i the kurtosis of source si. It is emphasized here that corollary 5 extends classical fourth-order

ICA to any order r and theorem 4 generalizes it to any dimension. For instance, the block diagonal forms
involved on orders r ∈ {3; 4; 5; 6} (which are to be used in the experimental section of the paper) are readily
found as:

Qx

(3)[M
(1)] = A bdiag

(
Qs1

(3)

[
A′

1M
(1)
]
, · · · ,Q

sp

(3)

[
A′

pM
(1)
])

A′ (34)

Qx

(4)[M
(2)] = A bdiag

(
Qs1

(4)

[
A′

1M
(2)A1

]
, · · · ,Q

sp

(4)

[
A′

pM
(2)Ap

])
A′ (35)

Qx

(5)[M
(3)] = A bdiag

(
Qs1

(5)

[
(A′

1 ⊗A′
1)M

(3)A1

]
, · · · ,Q

sp

(5)

[
(A′

p ⊗A′
p)M

(3)Ap

])
A′ (36)

Qx

(6)[M
(4)] = A bdiag

(
Qs1

(6)

[
(A′

1 ⊗A′
1)M

(4) (A1 ⊗A1)
]
, · · · ,Q

sp

(6)

[
(A′

p ⊗A′
p)M

(4) (Ap ⊗Ap)
])

A′

(37)
with M(1), M(2), M(3) and M(4) of dimensions n× 1, n× n, n2 × n, and n2 × n2, respectively.

6. SJADEr: a family of MICA algorithms

Theorem 4 makes it possible to propose a generalization of the JADE algorithm originally introduced
by Cardoso and Soulomiac [8] to any dimension and to any order. Indeed, since it has been proven that
contracted cumulant matrices Qx

(r)[M
(r−2)] are block-diagonalizable in the basis spanned by matrix A for

any order r, it suggests that joint block-diagonalization will effectively return the unknown mixing matrix
in model (1). Two families of JBD algorithms have actually been proposed in the literature:

(a) algorithms that estimate an orthogonal block diagonalizer ([13, 43, 33]);

(b) algorithms that avoid the whitening step by estimating an non-orthogonal block diagonalizer ([37, 15,
14]).

Both approaches are applicable to the results of this paper. However, for the sake of consistency with the
assumption of section 2 (matrix A is orthogonal as a result of pre-whitening), the first strategy only will be
considered from now on.
As for the set of cumulant matrices to be jointly block-diagonalized, a natural choice is to consider the con-
tracting matrices M(r−2) = Ei1,i2,··· ,ir−2

which return Qx

(r)[Ei1,i2,··· ,ir−2
] = [cr(x)]i1,i2,··· ,ir−2

. The synopsis
of the SJADEr algorithm that solves the MICA problem on order r is as follows.

Algorithm 1 (SJADEr).

9



- Whiten the observations,

- Construct of a set of contracted cumulant matrices: for instance, the set of nr−2 matrices,

M(r) =

{
Qx

(r)

[
Ei1,i2,··· ,ir−2

]
; 1 6 i1, i2, · · · , ir−2 6 n

}
, (38)

estimated from the data according the formulae worked out in the previous sections where empirical
moment matrices are substituted for their theoretial versions [38].

- Joint block-diagonalization (JBD): estimation of the orthogonal matrix A′ which jointly block-
diagonalizes M(r).

- Separation of sources: s = A′x.

It is noteworthy that the particular case on the fourth-order coincides with the so-called SJADE algorithm
introduced in Ref. [43]. It should also be noted at this point that the set

{
Qx

(r)[Ei1,i2,··· ,ir−2 ] ; 1 6 i1, i2, · · · , ir−2 6 n
}

of contracted matrices is highly redundant due to the symmetries of the cumulant matrices cr(x). Specifically,
it is seen from expression (23) that for any permutation σ ∈ Sr−2,

(
Qx

(r)[σ ·M(r−2)]

)

ir−1,ir

=

n∑

i1,i2,...,ir−2=1

cum(xi1xi2 · · ·xir )︸ ︷︷ ︸
=cum(xiσ(1)

···xiσ(r−2)
xir−1

xir )

miσ(1),iσ(2),··· ,iσ(r−2)

=

(
Qx

(r)[M
(r−2)]

)

ir−1,ir

. (39)

As a consequence, the set of matrices to be jointly block-diagonalized is indeed

M(r) =

{
Qx

(r)

[
Ei1,i2,··· ,ir−2

]
; 1 6 i1 6 i2 6 · · · 6 ir−2 6 n

}
, (40)

with cardinality

card(M(r)) =

(
n+ r − 3

r − 2

)
=

n(n+ 1) · · · (n+ r − 3)

(r − 2)!
. (41)

For instance, on order 4, instead of block-diagonalizing the set of n2 matrices (38), a wiser choice is to

consider the set of n(n+1)
2 matrices

M(4) =

{
Qx

(4)[Ei,j ], 1 6 i 6 j 6 n

}
(42)

where

Ei,j =





eie
′
i if i = j

1√
2

(
eie

′
j + eje

′
i

)
if i < j .

(43)

This basis was first proposed in Ref.[7]. Similarly, on order 5, instead of block-diagonalizing the set of n3

(38) matrices, it suffices to consider the set of n(n+1)(n+2)
6 matrices

M(5) =

{
Qx

(5)[Ei,j,k], 1 6 i 6 j 6 k 6 n

}
(44)
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where

Ei,j,k =





ei ⊗ eie
′
i if i = j = k

1√
3
(ek ⊗ eie

′
i + ei ⊗ eke

′
i + ei ⊗ eie

′
k) if i = j < k

1√
3
(ei ⊗ eke

′
k + ek ⊗ eie

′
k + ek ⊗ eke

′
i) if i < j = k

1√
6

(
ei ⊗ eje

′
k + ei ⊗ eke

′
j + ej ⊗ eie

′
k + ej ⊗ eke

′
i + ek ⊗ eie

′
j + ek ⊗ eje

′
i

)
if i < j < k .

(45)

7. On the advantage of combining several orders

Theorem 4 generalizes the JADE algorithm to any order and to any dimension. It also justifies other
generalizations, such as the combination of orders. Indeed, since it has been proved that contracted cumulant
matrices are block diagonalizable in the same basis whatever their orders, this makes possible to solve the
MICA problem by considering the union of sets,

M =

q⋃

l=1

M(rl), (46)

of contracted cumulant matrices at several orders r1, . . . , rq. Let us refer to the corresponding algorithm as
SJADEr1,...,rq . The motivation beyond such an approach is to allow the separation of sources characterized
by higher-order statistics of different orders. By way of an example, let us consider the case of independent

scalar sources si (i = 1, · · · , 4) such that k
(4)
1 = k

(4)
2 = k

(6)
3 = k

(6)
4 = 0, k

(6)
1 6= 0, k

(6)
2 6= 0, k

(4)
3 6= 0, and

k
(4)
4 6= 0, where k

(4)
i = cum(si, si, si, si) et k

(6)
i = cum(si, si, si, si, si, si). According to corollary 5, the

contracted cumulant matrices of orders 4 and 6 of the observations x = As, A ∈ R
4×4, s = (s1, s2, s3, s4)

′,
have expressions

Qx

(4)[M
(2)] = A diag

(
0, 0,a′3M

(2)a3k
(4)
3 ,a′4M

(2)a4k
(4)
4

)
A′ (47)

Qx

(6)[M
(4)] = A diag

(
(a1 ⊗ a1)

′M(4)(a1 ⊗ a1)k
(6)
1 , (a2 ⊗ a2)

′M(4)(a2 ⊗ a2)k
(6)
2 , 0, 0

)
A′, (48)

respectively. It is clear that in such a scenario matrix A cannot be estimated neither from order 4 nor from
order 6 alone because of the existence of some zero cumulants in each case (see assumption (H2) of section
2.1). Nevertheless, resorting to the combination Q(4,6) = Qx

(4)[M
(2)] +Qx

(6)[M
(4)] of orders 4 and 6, one has

Q(4,6) = A diag

(
(a1 ⊗ a1)

′M(4)(a1 ⊗ a1)k
(6)
1 , (a2 ⊗ a2)

′M(4)(a2 ⊗ a2)k
(6)
2 ,a′3M

(2)a3k
(4)
3 ,a′4M

(2)a4k
(4)
4

)
A′

(49)
which shows that matrix A can be estimated by block-diagonalizing contracted cumulant matrices of the

type Q(4,6). This is illustrated with the numerical values k
(6)
1 = 0.9730, k

(6)
2 = 1.2980, k

(4)
3 = −0.8003, and

k
(4)
4 = 1.3614 and the mixing matrix

A =
(
a1 a2 a3 a4

)
=




0.9787 0.0596 0.5216 0.7224
0.7127 0.6820 0.0967 0.1499
0.5005 0.0424 0.8181 0.6596
0.4711 0.0714 0.8175 0.5186


 . (50)

Two set of contracted cumulant matrices, M(4) and M(6), are then constructed according to Eq. (40), and
the joint diagonalization algorithm (FFdiag) of Ref. Ziehe et al. [47] is used to return three estimates of the
inverse of matrix A:
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- B4, from the joint diagonalization of set M(4);

- B6, from the joint diagonalization of set M(6);

- B4,6, from the joint diagonalization of the union of sets M(4,6) = M(4) ∪M(6).

The separation results are assessed by the product B•A, • = (4), (6), (4, 6):

B4A =




−0.5109 −0.6400 −0.0000 0.0061
0.5266 0.6311 −0.0000 0.0007
0.0420 0.2293 0.0001 0.0000
−0.0479 −0.2329 0.0039 0.0000


 (51)

B6A =




0.0027 −0.0000 −0.0631 −0.1051
−0.0000 0.0000 −0.3507 −0.0808
−0.0001 0.0000 0.6606 0.2647
−0.0000 0.0043 0.3823 0.0952


 (52)

B4,6A =




0.0000 −0.1792 −0.0000 −0.0000
0.0000 0.0000 −0.1813 0.0000
−0.1435 −0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.0801


 . (53)

As expected, orders 4 and 6 alone are unable to separate the 4 sources whereas their combination returns a
perfect separation (up to the ICA undeterminacies).

8. Towards automatic sizing of sources

The previous section has proposed a family of algorithms apt to separate sources of different dimensions.
This section now addresses the issue of determining the respective source dimensions from the observations,
an objective of considerable importance in practice. An original solution is devised based on the joint
diagonalization of the contracted cumulant matrices introduced previously. This is addressed here on order
4 for the sake of conciseness, yet it is easily generalizable to other orders. It proceeds from the concept of
irreducibility of the sources.

8.1. Irreducibility of vector sources

It has been shown in Ref. [43, 16, 18] that the irreducibility of sources is a fundamental assumption of
MICA that guaranties the unicity of the solution. However, testing for the irreducibilty of vector sources
from Definition 1 is not obvious. A simple but sufficient condition of irreducibility is proposed hereafter
that makes use of the rank of the cumulant matrix.

Lemma 6. Let y ∈ R
d be a random vector satisfying the condition

r(c4(y)) =
d(d+ 1)

2
. (54)

Then y is irreducible.

Proof. Appendix F �

Remark 1. Lemma 6 can be easily extended to other orders; for instance, on order 6, it reads

r(c6(y)) =
d(d+ 1)(d+ 2)

6
. (55)

It must be highlighted that conditions (54) and (55) are sufficient, but not necessary. In particular, one may
be fulfilled whilst the other one is not.

This leads to the following proposition.
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Proposition 7. Suppose that vector sources s1, s2, · · · , sp are irreducible in the sense of lemma 6 and let
V be the modal matrix in the eigenvalue decomposition VΛV′ of the cumulant matrix c4(x). Then, matrix

R =

n∑

k=1

[
V′V

]

k,k
(56)

where
[
V′V

]

k,k
stands for the k-th diagonal block of dimension n× n in matrix V′V has factorization

R = A




n1+1
2 In1 0 · · · 0

0 n2+1
2 In2

. . . 0
...

...
. . .

...

0 0 · · ·
np+1

2 Inp


A′. (57)

Proof. Appendix F �

Proposition 7 means that the sought mixing matrix A that jointly block-diagonalizes the set M(4) also
diagonalizes matrix R. The eigenvalues of R are then returned by the p positive quantities n1+1

2 , · · · ,
np+1

2
with respective multiplicities n1, · · · , np. Two particular cases of proposition 7 are the following: for ICA,
R = In, whereas for k-MICA, R = k+1

2 In. In both cases, matrix R alone does not allow the recovery of the
unknown permutation of independent subspaces in general.

The implications of Proposition 7 are twofold. First, it allows the determination of unknown source
dimensions in the mixture by inspecting the eigenvalues of matrix R. Second, it allows the grouping of
source components by ordering the eigenvalues. This is now illustrated on a numerical example.

8.2. A numerical example

The following mixture is considered

x = A




s1
s2
s3
s4


 , (58)

where sources si, i = 1, · · · , 4 are independent, verify condition (54), and have dimensions dim(s1) =
dim(s2) = 1, dim(s3) = 2, and dim(s4) = 3. The corresponding cumulant matrices are

c4(s1) = 1.2331; c4(s2) = −0.5013; c4(s3) =




0.1449 0.5279 0.5279 0.2170
0.5279 0.2170 0.2170 0.6261
0.5279 0.2170 0.2170 0.6261
0.2170 0.6261 0.6261 0.4908


 ;

c4(s4) =




0.9636 0.2654 0.5322 0.2654 0.3258 0.5285 0.5322 0.5285 0.5011
0.2654 0.3258 0.5285 0.3258 0.6258 0.5011 0.5285 0.5011 0.5933
0.5322 0.5285 0.5011 0.5285 0.5011 0.5933 0.5011 0.5933 0.5717
0.2654 0.3258 0.5285 0.3258 0.6258 0.5011 0.5285 0.5011 0.5933
0.3258 0.6258 0.5011 0.6258 0.7213 0.3073 0.5011 0.3073 0.8174
0.5285 0.5011 0.5933 0.5011 0.3073 0.8174 0.5933 0.8174 0.2943
0.5322 0.5285 0.5011 0.5285 0.5011 0.5933 0.5011 0.5933 0.5717
0.5285 0.5011 0.5933 0.5011 0.3073 0.8174 0.5933 0.8174 0.2943
0.5011 0.5933 0.5717 0.5933 0.8174 0.2943 0.5717 0.2943 0.4781




.
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Note that the condition of irreducibility of the sources given in lemma 6 is perfectly satisfied since r(c4(s1)) =
r(c4(s2)) = 1, r(c4(s3)) = 3, and r(c4(s4)) = 6. Beside, the mixing matrix A is the 7× 7 orthogonal matrix,

A =




-0.4658 0.1112 -0.558 -0.1817 0.2191 0.4352 0.4346
-0.4135 -0.5279 0.1581 -0.3195 -0.1066 0.3515 -0.5369
-0.3009 0.341 0.3417 -0.317 0.6814 -0.3005 -0.1464
-0.3266 0.1716 -0.5732 0.2306 -0.146 -0.4625 -0.4969
-0.4304 -0.4736 0.1607 0.0361 -0.1486 -0.5413 0.4982
-0.2615 -0.0762 0.2171 0.8426 0.3111 0.2634 -0.0504
-0.4014 0.5772 0.3813 0.0024 -0.5797 0.1432 0.0614




.

These data are then used to compute the cumulant matrix c4(x) by means of Eq. 24, which is from now on
considered as the only available observation. Note that r = r(c4(x)) = r(c4(s1)) + r(c4(s2)) + r(c4(s3)) +
r(c4(s4)) = 1 + 1 + 3 + 6 = 11. The joint diagonalization algorithm of Ref. [8] is then applied to the
contracted cumulant matrices M(4) and returns

E =




0.5301 -0.4458 0.2827 -0.4352 0.4346 0.0333 0.247
0.4377 0.5072 0.1577 -0.3515 -0.5369 -0.2976 0.161
-0.2347 0.0354 0.6996 0.3005 -0.1464 0.2745 0.5169
0.4274 -0.5085 -0.2677 0.4625 -0.4969 0.0534 0.1533
0.4142 0.4731 -0.1286 0.5413 0.4982 -0.0827 0.2001
0.0582 0.2287 -0.3952 -0.2634 -0.0504 0.8066 0.2562
-0.3386 -0.0907 -0.4017 -0.1432 0.0614 -0.418 0.7188




.

The next step is to compute the eigenvalue decomposition VΛV′ of c4(x) with r = 11 eigen-elements and
to construct matrix R from Eq. (56):

R =




1.5813 0.0631 0.0909 0.4541 0.0386 -0.0503 -0.0253
0.0631 1.5314 0.0127 -0.0752 0.4556 0.0315 -0.0479
0.0909 0.0127 1.6059 -0.1254 -0.0334 0.0993 0.2499
0.4541 -0.0752 -0.1254 1.502 -0.0178 0.0223 0.0542
0.0386 0.4556 -0.0334 -0.0178 1.4471 0.1756 0.0038
-0.0503 0.0315 0.0993 0.0223 0.1756 1.5247 0.0546
-0.0253 -0.0479 0.2499 0.0542 0.0038 0.0546 1.8077




.

Finally, using the above entries of E and R,

E′RE =




2 -0 -0 0 -0 0 0
-0 2 0 -0 0 -0 -0
-0 0 1.5 -0 0 -0 0
0 -0 -0 1 -0 0 -0
-0 0 0 -0 1 -0 0
0 -0 -0 0 -0 1.5 -0
0 -0 0 -0 0 -0 2




.

As indicated by proposition 7, matrix E′RE is made of 3 diagonal blocks with n1 = n2 = 1, n3 = 2, and
n4 = 3. This returns the a priori unknown dimensions of the vector sources. Eventually, the permutation
that rearrange the eigenvalues in decreasing order is

P =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0




14



such that

P′E′A =




-0.8289 0.4456 0.3382 0 0 -0 -0
-0.5545 -0.5748 -0.6017 -0 -0 0 0
-0.0737 -0.6863 0.7236 0 -0 -0 -0

0 0 0 -0.7239 0.6899 -0 -0
-0 -0 -0 0.6899 0.7239 0 0
0 0 0 -0 -0 -0 1
-0 0 -0 0 0 -1 -0




,

which correctly groups together the components of the independent vector sources. This proves that B =
P′E′ is a solution to the MICA problem up to the usual indeterminations.

8.3. Estimation in the presence of noise

The previous example has been designed to satisfy exactly the condition of irreducibility of the sources,

r(c4(x)) =
∑ ni(ni+1)

2 . This assumes the data are free of noise. In order to address the more realistic
situation were noise is present, let us add to matrix c4(x) a small perturbation ǫc4(z), where z is a random
vector independent of s and ǫ a small positive parameter:

c4 = c4(x) + ǫc4(z). (59)

In such a situation, one will generally have r(c4) =
n(n+1)

2 6=
∑ ni(ni+1)

2 . After computing Ê by joint
diagonalization, it remains to find the effective rank r of c4(x) as would be observed in the absence of noise.
A natural idea is to try all values from r = n (the ICA case with n mutually independent sources) to

r = n(n−1)
2 + 1 (2 independent sources with dimensions (n − 1) and 1) and select that value which makes

matrix Ê′RrÊ the closest to a diagonal matrix. This can be tested by means of Amari’s index [5] which
takes values within 0 and 1: the closer it is to 0, the more diagonal the matrix.

The following example generates z from a standardized Gaussian and sets ǫ = 10−2; the rank of the

cumulant matrix is r(c4) = r(c4(x) + ǫc4(z)) =
n(n+1)

2 = 28. The corresponding Amari’s indices are

{0.038, 0.048, 0.022, 0.016, 0.001, 0.025, 0.035, 0.035, 0.040, 0.044, 0.048, 0.046, 0.040, 0.039, 0.033, 0.032}

for r varying from n = 7 to n(n−1)
2 + 1 = 22. The minimum is found in the fifth entry, which corresponds

to r = n+ 4 = 11 and, accordingly,

Ê′R11Ê =




2.0000 0.0000 0.0098 -0.0027 0.0015 -0.0045 -0.0001
0.0000 2.0000 0.0054 -0.0016 -0.0003 0.0016 -0.0000
0.0098 0.0054 1.4996 -0.0012 0.002 0.0003 -0.0106
-0.0027 -0.0016 -0.0012 1.0002 -0.0013 -0.0015 -0.0010
0.0015 -0.0003 0.002 -0.0013 1.0002 -0.0004 0.0029
-0.0045 0.0016 0.0003 -0.0015 -0.0004 1.4998 0.0096
-0.0001 -0.0000 -0.0106 -0.001 0.0029 0.0096 2.0002




.

It is seen that matrix Ê′R11Ê is quite close to a diagonal matrix. After rearranging the diagonal elements
in decreasing order, one finds the corresponding permutation matrix P, which finally returns the separation
matrix

B̂ = P′Ê′ =




0.5301 0.4373 -0.2347 0.4274 0.4145 0.0581 -0.3388
-0.4454 0.5069 0.0356 -0.5085 0.4736 0.2288 -0.0902
0.2472 0.1609 0.5172 0.1539 0.1997 0.2564 0.7185
0.033 -0.2975 0.2746 0.0534 -0.083 0.8063 -0.4185
0.2815 0.1595 0.6997 -0.2666 -0.1303 -0.3953 -0.4019
0.4357 -0.5368 -0.144 -0.4975 0.4974 -0.0512 0.0606
-0.4351 -0.3518 0.3008 0.4622 0.5412 -0.2637 -0.1433




.
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The quality of the separation is assessed by the matrix product,

B̂A =




-0.5544 -0.5749 -0.6018 0.0000 0.0002 -0.0003 0.0003
-0.0742 -0.6861 0.7237 0.0001 -0.0001 -0.0001 0.0006
-0.829 0.4459 0.3377 0.0001 0.0005 -0.0001 -0.0005
0.0005 -0.0002 -0.0001 0.6897 0.7241 -0.0001 -0.0004
0.0003 -0.0001 0.0000 -0.7241 0.6897 0.0005 -0.0029
-0.0002 0.0008 -0.0000 -0.0018 0.0023 0.0003 1.0000
0.0003 0.0002 0.0001 -0.0004 0.0003 -1.0000 0.0003




,

which clearly singles out four independent subspaces of dimensions 3, 2, 1, and 1.

The synopsis of the algorithm is as follows.

Algorithm 2 (A simple Fourth-order Multidimensional ICA).

- Whiten the observations,

- Construct of a set of contracted cumulant matrices: for instance, the set of n(n+1)
2 matrices,

M(4) =

{
Qx

(4)[Ei1,i2 ] = E(x′Ei1,i2xxx
′)− 2(Ei1,i2)− tr(Ei1,i2)In; 1 6 i1 6 i2 6 n

}
(60)

- Joint diagonalization (JD): estimation of the orthogonal matrix E′ by JD of M(4).

- Compute the eigenvalue decomposition VΛV′ of c4(x), where V ∈ R
n2×n(n−1)

2 +1.

- For r = n to r = n(n−1)
2 + 1

compute Vr =
(
v1 · · · vr

)
(where vi is the i−th column of V),

compute VrV
′
r and Rr (by means of Eq. 56),

compute the matrices Dr = E′RrE and the Amari-index of Dr, noted error(r),

- End.

- Select r0 that minimizes error(r) and the corresponding Dr0.

- Estimate the sources dimensions.

- Compute the permutation matrix P by the eigenvalue decomposition of diag(diag(Dr0)).

- Separation of sources: s = P′E′x.

9. Experimental analyzes

This section now investigates the performance of the proposed SJADEr algorithm on two numerical
examples.

9.1. Performance index for MICA

In order to measure the quality of the MICA separation, it is proposed to generalize the performance
index originally introduced in Moreau [36]. The idea is to assess the proximity of G = BA to the product
PD of a permutation matrix and a block-diagonal matrix. Assume without loss of generality that the
estimated sources are sorted according to their dimensions, i.e. n1 ≤ n2 ≤ · · · ≤ np. Next, let us partition
the n×n matrix G into blocks Gij of dimension ni ×nj , with (i, j) ∈ [[1, p]]2. Then, define the p× p matrix
G as

Gij =
1

ninj

ni,nj∑

k,l=1

|(Gij)kl|. (61)
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Having matrix G block-diagonal (for blocks of size n1 ≤ n2 ≤ · · · ≤ np) is equivalent to having matrix G
diagonal. Therefore, the performance index I(G) for MICA is defined as

I(G) =
1

2p(p− 1)




p∑

i




p∑

j

Gij

maxl Gil

− 1


+

p∑

j

(
p∑

i

Gij

maxl Glj

− 1

)
 . (62)

A perfect separation corresponds to I(G) = 0 (or −∞ on a logarithmic scale). Note that for ∀i, ni = 1, the
proposed performance index reduces to the one introduced in [36] for scalar sources.

9.2. Comparisons

9.2.1. First simulation

This first example considers the case of three synthetic sources, of which two are vectors of dimension 2:

s1 =

(
exp(2(0.007t+ 0.5− floor(0.007t+ 0.5))− 1)

2(0.007t+ 0.5− floor(0.007t+ 0.5))− 1

)

s2 =

(
exp(cos(0.3t))

cos(0.3t)

)
(63)

s3 = square(0.2t)

with t = 0, 1, · · · , 2999 and “floor” the operator that rounded down to the nearest whole number. Square
mixing matrix Ai, i = 1, · · · , 100, were randomly generated by sampling a uniform distribution in the interval
[0, 1], so as to produce the observations xi = Ais. No noise was added. The JBD algorithm of Ref. [43]
was used with threshold θ = 0.06. Performances of SJADE3, SJADE [43], SJADE5, SJADE6, MHICA,[42]
and MSOBI [42] are compared in Fig. 1. It is seen that SJADE6 evidences the best performance on this
example.

−50

−45

−40

−35

−30

−25

−20

−15

−10

MHICA SJADE_3 SJADE_4 SJADE_5 SJADE_6 MSOBI

I(
G
)

Figure 1: Box-plot of I(G) for SJADE3, SJADE [43], SJADE5, SJADE6, MHICA,[42] et MSOBI [42] (100 Monte-Carlo runs).
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9.2.2. Second simulation

The second example is inspired from Ref. [39, 43], where the random vector s = (s′1, s
′
2, s

′
3, s

′
4)

′, of
dimension 8 is composed of 4 sources s1, s2, s3 and s4, of dimensions 1, 3, 2 and 2, respectively. Source s1
is computed from formula

s1(ω) = exp(2(0.007ω + 0.5− floor(0.007ω + 0.5))− 1), (64)

whereas sources s2, s3 and s4 take the shape of a trihedron, a “β”, and a “µ”, respectively. Figure 2.(a)
displays 3000 samples of the sources and Fig. 2.(b) their observations after mixing with a matrix A ∈ R

8×8

whose entries are sampled in a uniform distribution on [0, 1].
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(b) Projection of mixed sources on 4 planes.

Figure 2: MICA, second simulation.

The performance indices of the separations obtained with SJADE3, SJADE [43], SJADE5, SJADE6,
MHICA,[42] and MSOBI [42] are displayed in Table 1. It is seen that SJADE5 achieves the best perfor-
mance in this case.

Méthode MSOBI SJADE3 SJADE4 SJADE5 SJADE6 MHICA
I(G)[dB] -4.05 - 26.76 -30.10 -32.09 -24.21 -24.95

Table 1: Performance index (MICA, seconde simulation)

The separated sources are displayed in Fig. 3 for SJADE3 to SJADE6. The product of the estimated
separation matrix B with the mixing matrix A is shown in Fig. 4 for SJADE and SJADE5. It is clearly
seen that B4 and B5 are equal up to a permutation, that is the indeterminacy of MICA.
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(c) Separated sources with SJADE5.
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(d) Separated sources with SJADE6.

Figure 3: Separated sources (MICA, second simulation)

(a) G(SJADE4) = B4A; (b) G(SJADE5) = B5A;

Figure 4: Product of the estimated separation matrix with the mixing matrix (MICA, second simulation)

10. Conclusion

The present work addressed the problem of multidimensional ICA in the most general setting where
sources may have different dimensions. The objective was to propose a solution that does not make use of
the strong assumptions of mutually independent scalar sources (ICA) or independent groups of components
of equal size (k-MICA). In particular, it has been shown that contracted cumulant matrices are all block-
diagonalizable in the same basis. This opens the door to a family of algorithms coined SJADEr1,...,rq that
jointly block-diagonalize a set of contracted cumulant matrices at various orders. One advantage is that
different orders can be easily combined together according to the nature of the sources in order to improve
their separation. Another result of the paper is to provide a solution to infer the dimensions of the sources
when these are unknown. The idea proceeds from the concept of irreducibility of vector sources and leads to
an algorithm that provides th e source dimensions as well as a permutation matrix that groups together the
components of each vector source. The theoretical results of the paper have been illustrated by means of a
few numerical examples, which have clearly evidenced the advantage of exploiting various higher orders.

Appendix A. Proof of proposition 1

Point (i) is a direct consequence of the property that ∀r > 2, cum(z1, z2, · · · , zr) = 0, for a Gaussian
vector.
Point (ii) is a direct consequence of the property (see e.g. [35, p. 280]) that

cum(x1 + y1, x2 + y2, · · · , xr + yr) = cum(x1, x2, · · · , xr) + cum(y1, y2, · · · , yr) (A.1)

for independent random vectors x and y.
Point (iii) is proved here for r = 2k only, the case r = 2k + 1 following similar lines. It suffices to use the
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multilinearity of cumulants with xj =
∑n

i=1 aj,isi for j ∈ [[1,m]], where A = (aj,i)(j,i)∈[[1,m]]×[[1,n]]:

cr(x) =

m∑

j1,j2,...,j2k=1

cum(xj1 , · · · , xj2k)Ej1,j2,...,j2k

=

m∑

j1,j2,...,j2k=1

cum

(
n∑

i1=1

aj1,i1si1 , · · · ,

n∑

i2k=1

aj2k,i2ksi2k

)
Ej1,j2,...,j2k

=

m∑

j1,j2,...,j2k=1




n∑

i1,i2,...,i2k=1

aj1,i1 · · · aj2k,i2kcum(si1 , · · · , si2k)


Ej1,j2,...,j2k

=

n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k)




m∑

j1,j2,...,j2k=1

aj1,i1 · · · aj2k,i2kEj1,j2,...,j2k




=

n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k)

m∑

j1,j2,...,j2k=1

aj1,i1 · · · aj2k,i2k
(
ej1e

′
j2
⊗ · · · ⊗ ej2k−1

e′j2k
)
. (A.2)

The notation (ej)j∈[[1,m]] denotes the canonical basis of Rm. Now, denoting (fi)i∈[[1,n]] the canonical basis of

R
n, it comes Afi =

∑m

j=1 aj,iej , for any i ∈ [[1, n]]; thus,

cr(x) =
n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k)






m∑

j1=1

aj1,i1ej1






m∑

j2=1

aj2,i2ej2




′

⊗ · · ·

· · · ⊗




m∑

j2k−1=1

aj2k−1,i2k−1
ej2k−1






m∑

j2k=1

aj2k,i2kej2k




′


=
n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k)
(
(Afi1) (Afi2)

′
⊗ · · · ⊗

(
Afi2k−1

)
(Afi2k)

′)

=

n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k) (A⊗ · · · ⊗A) (fi1f
′
i2
⊗ · · · ⊗ fi2k−1

f ′i2k) (A⊗ · · · ⊗A)
′

= (A⊗ · · · ⊗A)




n∑

i1,i2,...,i2k=1

cum(si1 , · · · , si2k)(fi1f
′
i2
⊗ · · · ⊗ fi2k−1

f ′i2k)


 (A⊗ · · · ⊗A)

′

= (A⊗ · · · ⊗A) cr(s) (A⊗ · · · ⊗A)
′
. (A.3)

Point (iv) is again proved for r = 2k only, the other case following similarly. One has

x = As =

p∑

j=1

Ajsj (A.4)

where the independence of the sources sj implies the independence of the components Ajsj . Using (ii) and
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(iii), it comes

cr(x) = cr(As) = cr




p∑

j=1

Ajsj




=

p∑

j=1

cr (Ajsj)

=

p∑

j=1

⊗kAjcr(sj)⊗
k A′

j

=
(
⊗kA1 · · · ⊗kAp

)
︸ ︷︷ ︸

=Ak




cr(s1) · · · 0
...

. . .
...

0 · · · cr(sp)







⊗kA′
1

...
⊗kA′

p




︸ ︷︷ ︸
A′

k

. (A.5)

Appendix B. Cumulant matrices

Let x be a real-valued random vector of dimension p× 1, with assumed zero-mean for simplicity (E [x] =
0). Let us further assume that E [|x|n] < ∞ for a given integer n ≥ 6 so as to guarantee the existence of
moments and cumulants up to order six.
Next let us define the four matrices:

K = Ip2 +Kpp (B.1)

P = Ip3 +Kpp ⊗ Ip +Kpp2 (B.2)

R = Ip3 + Ip ⊗Kpp +Kp2p (B.3)

Q = Ip3 +Kpp ⊗ Ip + Ip ⊗Kpp +Kp2p +Kpp2 +Kp2p(Kpp ⊗ Ip) (B.4)

which depend only on dimension p. Thus, the cumulant matrices of orders 2 to 6 read

c2(x) = m2(x) = E [xx′] = Σ (B.5)

c3(x) = m3(x) = E [xx′ ⊗ x] (B.6)

c4(x) = m4(x)−K
{
m2(x)⊗m2(x)

}
− vecm2(x)vec

′m2(x) (B.7)

c5(x) = m5(x)−R
{
m3(x)⊗m2(x)

}
K−P

{
m3(x)

′ ⊗ vecm2(x)
}
− vecm3(x)vec

′m2(x) (B.8)

c6(x) = m6(x)− Γ(4,2)(x)− Γ(3,3)(x) + 2Γ(2,2,2)(x), (B.9)

respectively, where

m4(x) = E [xx′ ⊗ xx′]

m5(x) = E [xx′ ⊗ xx′ ⊗ x]

m6(x) = E [xx′ ⊗ xx′ ⊗ xx′]

M4(x) = E [xx′ ⊗ x⊗ x]

Γ(4,2)(x) = R
{
m4(x)⊗m2(x)

}
R′ +

{
M4(x)⊗ vec′m2(x)

}
P′ +P

{
M4(x)

′ ⊗ vecm2(x)
}

Γ(3,3)(x) = R
{
m3(x)⊗m3(x)

′
}
P′ + vecm3(x)vec

′m3(x)

Γ(2,2,2)(x) = Q
{
m2(x)⊗m2(x)⊗m2(x)

}
+P

{
m2(x)⊗ vecm2(x)vec

′m2(x)
}
P′

(B.10)
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where Kpq, is the pq × pq commutation matrix (see Magnus and Neudecker [34]) and the vec operator

defined by vecA = vec
(
a1 . . . ap

)
=




a1
...
ap


.

Appendix C. The star product

Definition 5. Let A be a matrix of size p× q and B a matrix of size rp× sq. The star product of A and
B, noted A ∗B, is the matrix of size r × s defined as

A ∗B =

p,q∑

i1,i2=1

ai1,i2Bi1,i2 (C.1)

where Bi1,i2 is the block indexed by (i1, i2) in the partition of B into matrices of size r × s.

Some useful properties of the star product are listed below.

Proposition 8. (P1) Let A and B be two matrices of same dimension. Then

A ∗B = tr(A′B). (C.2)

(P2) Let A, B and C be three matrices of size p× q, pr × sq and m× n, respectively. Then

A ∗ (B⊗C) = (A ∗B)⊗C. (C.3)

(P3) Let A, B and C be three matrices of size p× q, q × r and r × s, respectively. Then

ABC = B ∗ vecAvec′C′ = B′ ∗ (C⊗ Ip)Kps(A⊗ Is). (C.4)

(P4) Let a and b be two column vectors of dimensions p and q, respectively, and let M be a matrix of size
pr × qs. Then

(a′ ⊗ Ir)M (b⊗ Is) = ab′ ∗M. (C.5)

Proof. Properties (P1), (P2) et (P3) are given without proof in Ref. [32]; a proof is found in [25, pp.
34-37]. Property (P4) is proved hereafter because it will be used subsequently in the proof of theorem 4
(see Appendix E). Matrix M, of size pr × qs, is partitioned into blocks of size r × s as follows

M =




M1,1 M1,2 · · · M1,q

M2,1 M2,2 · · · M2,q

...
...

. . .
...

Mp,1 Mp,2 · · · Mp,q


 . (C.6)

If a = (a1, ..., ap)
′ and b = (b1, ..., bq)

′, one has

(a′ ⊗ Ir)M (b⊗ Is) =
(
a1Ir a2Ir · · · apIr

)




M1,1 M1,2 · · · M1,q

M2,1 M2,2 · · · M2,q

...
...

. . .
...

Mp,1 Mp,2 · · · Mp,q







b1Is
b2Is

...
bqIs




=
( ∑p

i=1 aiMi,1

∑p

i=1 aiMi,2 · · ·
∑p

i=1 aiMi,p

)




b1Is
b2Is

...
bqIs




= b1

p∑

i=1

aiMi,1 + b2

p∑

i=1

aiMi,2 + · · ·+ bq

p∑

i=1

aiMi,p =

p∑

i=1

q∑

j=1

aibjMi,j

= ab′ ∗M. (C.7)
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Appendix D. Proof of lemma 3

For the sake of simplicity, the proof is given for k ∈ {2, 3} only, the general proof thus resulting by
mathematical induction.

Case k = 2. One has

A2 =
(
A1 ⊗A1 A2 ⊗A2 . . . Ap ⊗Ap

)
=




B1

B2

...
Bn


 (D.1)

where, for i ∈ [[1, n]], matrix Bi of size n×
∑p

j=1 n
2
j has expression

Bi =
(
ℓ1i ⊗A1 ℓ2i ⊗A2 · · · ℓ

p
i ⊗Ap

)
, (D.2)

with ℓ
j
i , of size 1×nj , is the i-th raw of matrix Aj (voir (8)). Making use of the properties of the Kronecker

product, it comes

ℓ
j
i ⊗Aj = (1ℓji )⊗ (AjInj

) = Aj

(
ℓ
j
i ⊗ Inj

)
. (D.3)

Inserting (D.3) into (D.2), one gets

Bi =
(
A1

(
ℓ1i ⊗ In1

)
A2

(
ℓ2i ⊗ In2

)
· · · Ap

(
ℓ
p
i ⊗ Inp

) )

=
(
A1 A2 · · · Ap

)
︸ ︷︷ ︸

=A




ℓ1i ⊗ In1
0n1×n2

2
. . . 0n1×n2

p

0n2×n2
1

ℓ2i ⊗ In2
. . . 0n2×n2

p

...
...

. . .
...

0np×n2
1

0np×n2
2

. . . ℓ
p
i ⊗ Inp




︸ ︷︷ ︸
=Di

= A bdiag
(
ℓ1i ⊗ In1

, ℓ2i ⊗ In2
, . . . , ℓ

p
i ⊗ Inp

)
. (D.4)

Case k = 3.

A3 =
(
A1 ⊗A1 ⊗A1 A2 ⊗A2 ⊗A2 · · · Ap ⊗Ap ⊗Ap

)

=




B11

B12

...
B1n

B21

B22

...
B2n

...
Bn1

Bn2

...
Bnn




=




B1

B2

...
Bn


 (D.5)
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where Bij has size n×
∑p

k=1 n
3
k and matrix Bi size n2 ×

∑p

k=1 n
3
k. The expression of matrix Bi is

Bi =




Bi1

Bi2

...
Bin


 =

(
ℓ1i ⊗A1 ⊗A1 ℓ2i ⊗A2 ⊗A2 · · · ℓ

p
i ⊗Ap ⊗Ap

)

=
(
(A1 ⊗A1)(ℓ

1
i ⊗ In2

1
) · · · (Ap ⊗Ap)(ℓ

p
i ⊗ In2

p
)
)

= A2 bdiag
(
ℓ1i ⊗ In2

1
, ℓ2i ⊗ In2

2
, · · · , ℓpi ⊗ In2

p

)
. (D.6)

Replacing A2 by its expression given in case k = 2,

Bi =




AD1

AD2

...
ADn


 bdiag

(
ℓ1i ⊗ In2

1
, ℓ2i ⊗ In2

2
, · · · , ℓpi ⊗ In2

p

)
, (D.7)

which implies

Bij = ADj bdiag
(
ℓ1i ⊗ In2

1
, ℓ2i ⊗ In2

2
, · · · , ℓpi ⊗ In2

p

)

= A bdiag
(
ℓ1j ⊗ In1

, · · · , ℓpj ⊗ Inp

)
bdiag

(
ℓ1i ⊗ In2

1
, · · · , ℓpi ⊗ In2

p

)

= A bdiag
(
1⊗ ℓ1j ⊗ In1

, · · · , 1⊗ ℓ
p
j ⊗ Inp

)
bdiag

(
ℓ1i ⊗ In1 ⊗ In1 , · · · , ℓ

p
i ⊗ Inp

⊗ Inp

)

= A bdiag
(
ℓ1i ⊗ ℓ1j ⊗ In1

, ℓ2i ⊗ ℓ2j ⊗ In2
, · · · , ℓpi ⊗ ℓ

p
j ⊗ Inp

)

︸ ︷︷ ︸
=Dij

. (D.8)

Appendix E. Proof of theorem 4

Again the proof is given for r = 2k only, the case r = 2k + 1 following similar lines.
Let replace Ak in c2k(x) = AkC2k(s)A

′
k by its expression given in lemma 3. It is then seen that the block

of size n× n in matrix c2k(x) indexed by (i1, j1, · · · , ik−1, jk−1) has expression
[
c2k(x)

]

i1,j1,··· ,ik−1,jk−1

= ADi1···ik−1
C2k(s)D

′
j1···jk−1

A′. (E.1)

Using definition (21) of the contracted cumulant matrix of order 2k, it comes

Qx

(2k)[M] =
n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1

[
c2k(x)

]

i1,j1,··· ,ik−1,jk−1

=

n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1
ADi1···ik−1

C2k(s)D
′
j1···jk−1

A′

= A




n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1
Di1···ik−1

C2k(s)D
′
j1···jk−1




︸ ︷︷ ︸
=∆

A′. (E.2)

It is noted that ∆ is block-diagonal since Di1···ik−1
, C2k(s) and D′

j1···jk−1
are block-diagonal. Thus

∆ =

n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1
Di1···ik−1

C2k(s)D
′
j1···jk−1

= bdiag

(
∆(2k)

s1
, · · · ,∆(2k)

sp

)
, (E.3)
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where, upon invoking (25) and (27),

∆(2k)
si

=

n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1

(
ℓii1 ⊗ · · · ⊗ ℓiik−1

⊗ Ini

)
c2k(si)

(
ℓij1 ⊗ · · · ⊗ ℓijk−1

⊗ Ini

)′
.

(E.4)
Making use of property (C.5) of the star product,

∆(2k)
si

=




n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1

(
ℓii1 ⊗ · · · ⊗ ℓiik−1

)′ (
ℓij1 ⊗ · · · ⊗ ℓijk−1

)

 ∗ c2k(si)

=




n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1

(
A′

iei1 ⊗ · · · ⊗A′
ieik−1

)
(e′j1Ai ⊗ · · · ⊗ e′j1Ai)


 ∗ c2k(si)

=




n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1
(⊗k−1A′

i)
(
ei1 ⊗ · · · ⊗ eik−1

)
(e′j1 ⊗ · · · ⊗ e′j1) (⊗

k−1Ai)


 ∗ c2k(si)

=


(⊗k−1A′

i)




n∑

i1,j1,··· ,ik−1,jk−1=1

mi1,j1,··· ,ik−1,jk−1
Ei1,j1,··· ,ik−1,jk−1


 (⊗k−1Ai)


 ∗ c2k(si)

=
(
(⊗k−1A′

i)M
(2k−2)(⊗k−1Ai)

)
∗ c2k(si)

= Qsi

(2k)

[ (
⊗k−1A′

i

)
M(2k−2)

(
⊗k−1Ai

) ]
. (E.5)

Appendix F.

Proof of lemma 6. Let us give a proof by contraposition. Let assume y is reducible, then according to
definition 1, there exists an invertible matrix A =

(
A1 A2

)
∈ R

d×d and independent vectors y1 ∈ R
d1

and y2 ∈ R
d2 (d = d1 + d2) such that

y = A

(
y1

y2

)
. (F.1)

This implies from (14) that

c4(y) =
(
A1 ⊗A1 A2 ⊗A2

)
︸ ︷︷ ︸

=A2

bdiag
(
c4(y1), c4(y2)

) (
A1 ⊗A1 A2 ⊗A2

)′
. (F.2)

Therefore,

r
(
c4(y)

)
= r

(
A2 bdiag

(
c4(y1), c4(y2)

)
A′

2

)

= r

(
bdiag

(
c4(x1), c4(x2)

))

= r
(
c4(x1)

)
+ r

(
c4(x2)

)

≤
d1(d1 + 1)

2
+

d2(d2 + 1)

2

<
d1(d1 + 1)

2
+

d2(d2 + 1)

2
+ d1d2 =

d(d+ 1)

2
, (F.3)

where equality r
(
A1 ⊗A1 A2 ⊗A2

)
= d21 + d22 holds true since r(A) = r(A1)+ r(A2) (see [46]). Thus,

the majoration of rank (r
(
c4(yi)

)
6

di(di+1)
2 , ∀i ∈ {1, 2} ). This means that r

(
c4(y)

)
<

d(d+1)
2 when y is

reducible. Therefore, if r(c4(y)) =
d(d+1)

2 , then y is irreducible. �
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Lemma 9. Let y be a random vector verifying (54) and UΛU′ be the eigenvalue decomposition of c4(y),
where Λ = diag(λ1, λ2, · · · , λ d(d+1)

2
). Then,

UU′ =
1

2
(Kdd + Id2), (F.4)

with Kdd the commutation matrix (see [34]).

Proof of lemma 9. Since c4(y) is a symmetric matrix with rank d(d+1)
2 , it accepts the eigenvalue decompo-

sition UΛU′, where U ∈ R
d2× d(d+1)

2 is a semi-orthogonal matrix (U′U = I d(d+1)
2

) and Λ ∈ R
d(d+1)

2 × d(d+1)
2

is a diagonal matrix made of the d(d+1)
2 non-zero eigenvalues of c4(y). let K̃ = 1

2 (Kdd + Id2). Since

K̃c4(y)K̃ = c4(y), one has K̃UΛU′K̃ = UΛU′. Thus, it comes U′K̃K̃U = I d(d+1)
2

. Since K̃ is idempotent

(K̃K̃ = K̃), it comes U′K̃U = I d(d+1)
2

, and UU′K̃UU′ = UU′. Therefore UU′ is t he pseud o-inverse of

K̃ which is equal to K̃. �

Proof of proposition 6. Assume that all multidimensional sources fulfill condition (54), i.e. r(c4(si)) =
ni(ni+1)

2 . It then follows that none of them is Gaussian since r(c4(si)) 6= 0. In addition, it follows from Eq.
(24) that

c4(x) =




AD1

...
ADn







c4(s1) · · · 0
...

. . .
...

0 · · · c4(sp)



(
D′

1A
′ · · · D′

nA
′ ) . (F.5)

Let us now introduce UiΛiU
′
i, i = 1, · · · , p, the eigen-elements of c4(si) of lemma 9, with UiU

′
i =

1
2 (Knini

+ In2
i
). Thus

U = bdiag
(
U1, · · · ,Up

)
(F.6)

and
Λ = bdiag

(
Λ1, · · · ,Λp

)
, (F.7)

so that Eq. (F.5) becomes

c4(x) =




AD1U
...

ADnU







Λ1 · · · 0
...

. . .
...

0 · · · Λp



(
U′D′

1A
′ · · · U′D′

nA
′ ) . (F.8)

One recognizes the eigenvalue decomposition of c4(x) = VΛV′ with

V =




AD1U

AD2U
...

ADnU


 . (F.9)

The next step is to evaluate the product,

V′V =

n∑

k=1

U′D′
k A

′A︸︷︷︸
=In

DkU = U′
( n∑

k=1

D′
kDk

)
U. (F.10)
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Substituting Eq. (27) for Dk, one has

V′V = U′

(
n∑

k=1

bdiag
(
ℓk1 ⊗ In1 , . . . , ℓ

k
p ⊗ Inp

)′
bdiag

(
ℓk1 ⊗ In1 , . . . , ℓ

k
p ⊗ Inp

]
)
U

= U′

(
n∑

k=1

bdiag
[
ℓk

′

1 ℓk1 , . . . , ℓ
k′

p ℓkp
)
)
U

= U′ bdiag

(
n∑

k=1

ℓk
′

1 ℓk1 , . . . ,

n∑

k=1

ℓk
′

p ℓkp

)
U

= U′ bdiag
[
A′

1A1, . . . ,A
′
pAp

)
U

= U′ bdiag
(
In1 , . . . , Inp

)
U

= U′U

= bdiag
(
U′

1U1, . . . ,U
′
pUp

)

= bdiag
(
In1(n1+1)

2

, . . . , Inp(np+1)

2

)

= I∑p

i=1
ni(ni+1)

2

. (F.11)

Therefore, matrix V′V is made of n2 blocks of size n× n,

[
V′V

]

i,j
= ADiUU′D′

jA
′. (F.12)

Besides, from lemma 9,

UU′ = bdiag
(
U1U

′
1, · · · ,UpU

′
p

)
= bdiag

(
1

2
(Kn1n1

+ In2
1
), · · · ,

1

2
(Knpnp

+ In2
p
)

)
, (F.13)

so that,

[
V′V

]

i,j
= A bdiag

(
(ℓi1 ⊗ In1)

1

2
(Kn1n1 + In2

1
)(ℓj1 ⊗ In1)

′, · · · , (ℓip ⊗ Inp
)
1

2
(Knpnp

+ In2
p
)(ℓjp ⊗ Inp

)′
)
A′,

(F.14)
and, finally upon using property (P4) of the star product (see (Appendix C)),

[
V′V

]

i,j
= A bdiag

(
ℓi

′

1 ℓ
j
1 ∗

1

2
(Kn1n1

+ In2
1
), · · · , ℓi

′

p ℓ
j
p ∗

1

2
(Knpnp

+ In2
p
)

)
A′. (F.15)

From (F.15), one has

R =

n∑

k=1

[
V′V

]

k,k
=

n∑

k=1

A bdiag

(
ℓk

′

1 ℓk1 ∗
1

2
(Kn1n1

+ In2
1
), · · · , ℓk

′

p ℓkp ∗
1

2
(Knpnp

+ In2
p
)

)
A′

= A bdiag




n∑

k=1

ℓk
′

1 ℓk1

︸ ︷︷ ︸
=A′

1A1

∗
1

2
(Kn1n1

+ In2
1
), · · · ,

n∑

k=1

ℓk
′

p ℓkp

︸ ︷︷ ︸
=A′

pAp

∗
1

2
(Knpnp

+ In2
p
)




A′

= A bdiag

(
(A′

1A1) ∗
1

2
(Kn1n1 + In2

1
), · · · , (A′

pAp) ∗
1

2
(Knpnp

+ In2
p
)

)
A′

= A bdiag

(
In1

∗
1

2
(Kn1n1

+ In2
1
), · · · , Inp

∗
1

2
(Knpnp

+ In2
p
)

)
A′

= A bdiag

(
n1 + 1

2
In1

, · · · ,
np + 1

2
Inp

)
A′. (F.16)
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