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Abstract

Concise formulae are given for the cumulant matrices of a random vector up to order 6. In addition

to usual matrix operations, they involve only the Kronecker product, the vec operator, and the

commutation matrix. Orders 5 and 6 are provided here for the first time; the same method as

provided in the paper can be applied to compute higher orders. An immediate consequence of these

formulae is to return 1) upper bounds on the rank of the cumulant matrices and 2) the expression

of the sixth-order moment matrix of a Gaussian vector. Due to their conciseness, the proposed

formulae also have a computational advantage as compared to the repeated use of Leonov and

Shiryaev formula.

Keywords: Moments, cumulants, cumulant matrix, commutation matrix, independent component

analysis, rank of cumulant matrices, moment matrix of a Gaussian vector

1. Introduction

Cumulants are useful quantities for characterizing some important statistical properties, such

as independence, gaussianity, or possible (a)symmetry of probability distributions. They were

first introduced in 1899 by T.N. Thiele under the name halfinvariants (see Hald [1] where original

Thiele’s paper is translated into English). In particular, higher order cumulants make it possible

to solve problems that are otherwise intractable on the second order. This is typically the case

in Independent Component Analysis (ICA, as introduced in Comon [2]), where fourth-order cu-

mulants are used to blindly separate (over-)determined (as many as or less sources than sensors)

mixtures of independent sources (e.g. Cardoso and Soulomiac [3], Albera et al. [4]. Recently,

several researchers have investigated the use of sixth-order cumulants (Albera et al. [5]) and, more

generally, cumulants of order 2k, k > 2, (Albera et al. [6]) for the separation of under-determined

mixtures of sources (more sources than sensors).
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This paper is concerned with the matrix expression of the cumulants of a random vector.

Loosely speaking, the cumulant matrix of a random vector is a collection of the various cross-

cumulants between its elements. It is often convenient to arrange such a collection into a matrix

(a square symmetric matrix in the case of even order cumulants) for both notational and practical

reasons. This makes it easier to to handle cumulants for algorithmic perspectives and to exploit

some of their statistical properties, such as “matrix redundancy” (see e.g. Albera et al. [5, 4, 6]).

An important example is ICA where the blind separation of statistically independent sources is

solved by zeroing all cross-cumulants between independent sources: if properly set up, the issue

then boils down to the diagonalization of a cumulant matrix (see Cardoso and Soulomiac [3], Kollo

[7]).

It is a well-known fact that scalar cumulants can be evaluated from lower-order moments by use

of the classical Leonov and Shiryaev formula (see Leonov and Shiryaev [8] or Speed [9], Mac Cul-

lagh [10]). This trivially applies to all (cross-)cumulants of a vector which can eventually be re-

arranged into a matrix. The main drawback of that approach is to involve lengthy formulae and,

when calculation is of concern, a computational burden, which both become rapidly prohibitive

as the dimension of the random vector increases. It is therefore advisable to search for direct and

more concise expressions of cumulant matrices. One solution is actually returned by Neudecker

matrix derivative (Neudecker [11]) (see e.g. Kollo and von Rosen [12, pages 187-188]). Unfortu-

nately, it faces two difficulties which limit its practical use:

(i) the resulting cumulant matrix is not square except on the second order;

(ii) matrix derivatives of the logarithm of the characteristic function are hardly tractable for

orders higher than four and, according to the authors knowledge, no formulae have ever

been derived for those cases.

Limitation (i) can be overcome on the fourth order by using an algebraic technique such as

proposed by Jinadasa and Tracy [13] and Tracy and Sultan [14] to obtain the matrix expression

of the fourth-order moment of a Gaussian vector; the same result is found in Kollo [7], Loperfido

[15]. However, point (ii) has not been solved till now. In this paper we give the expressions of fifth

and sixth-order cumulant matrices of a real-valued random vector. The expression of the sixth-

order cumulant matrix is symmetric.

The paper is organized as follows. Section 2 resumes the basic definitions of moments and

cumulants of a random vector and deduces Leonov and Shiryaev formula as a consequence of de

Faà di Bruno formula (following the lines in Lukacs [16] and Hardy [17]). The main result of the

paper – a theorem providing the formulae of cumulant matrices up to order six – is given in section

3. At the same time a general strategy is described as how to obtain similar results to any order.

In section 4, the formulae are used to get, without pain, i) upper bounds on the rank of cumulant

matrices and ii) the sixth-order moment matrix of a Gaussian vector. Since the latter is a known

formula (see for instance Magnus and Neudecker [18], Tracy and Sultan [14], and more recently

Schott [19]), it somehow validates the expression of the cumulant matrix from which it is derived.
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Finally, section 5 concludes on the advantages implied by the proposed matrix expressions as

compared to the classical use of Leonov and Shiryaev formula.

2. Generalities on moment and cumulant matrices

This section first recalls the link between the scalar moments and cumulants of a random

vector, in order to pave the way for our main theorem given in section 3.

2.1. Scalar moments and cumulants

Let x = (x1, . . . , xp)′ be a real-valued random vector of dimension p × 1. Its characteristic

function φ is defined on R
p as

φ(u) = E
[
exp(i(u, x))

]
= E


p∏

j=1

exp(iu jx j)

 . (1)

Let n ∈ N; vector x is said to admit moments of order n if

E [|x|n] < ∞, (2)

where |x| =
(∑p

j=1
x2

j

)1/2
stands for the euclidian norm of Rp. In that case, (i) φ is n times differen-

tiable and (ii) all the scalar (cross-)moments of order k ≤ n of x are well defined as

(∀( j1, . . . , jk) ∈ [[1, p]]k) mom(k)(x j1 , . . . , x jk)
def
= E

[
x j1 · · · x jk

]
= (−i)k ∂kφ

∂u j1 · · · ∂u jk

(0). (3)

Moreover, since φ is a continuous function on R
p and φ(0) = 1, it is necessarily non-zero in

a neighborhood of 0 ∈ R
p. The second characteristic function (also referred to as the “cumulant

function” in the literature),

ψ(u) = log (φ(u)) , (4)

is thus considered. By composition under condition (2), it is n times differentiable in a neigh-

borhood of 0; this makes possible the definition of scalar (cross-)cumulants of order k ≤ n of x

as

(∀( j1, . . . , jk) ∈ [[1, p]]k) cum(k)(x j1 , . . . , x jk)
déf
= (−i)k ∂kψ

∂u j1 · · · ∂u jk

(0). (5)

Since Eq. (4) implicitly connects moments to cumulants, it suggests two methods to compute

the later in terms of the former:

1. expand up to order n the following function

log

1 +
n∑

k=1

(i)k

k!

∑

( j1,..., jk)∈[[1,p]]k

mom(k)(x j1 , . . . , x jk)u j1 · · · u jk

 (6)

where the sum in the brackets is the Taylor series to order n of φ(u);
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2. use de Faà di Bruno formula which returns the partial derivatives of a composition of appli-

cations.

The first method is carried out for instance in Mac Cullagh [10]. However, calculation becomes

rapidly intractable as the order increases: Mac Cullagh provides formulae only up to order six; a

few authors, like Albera and Comon [20], have attempted to pursue the calculations up to order

eight. The second method has been used by Lukacs [16] in the case of random variables (p = 1);

using a generalization of de Faà di Bruno formula to the multivariable case, several authors have

proposed general formulae to calculate cumulants of a random vector in terms of its moments,

which only differ in the way terms are collected. One of the simplest is provided by Hardy [17];

with the notations of the present paper, it reads

∂k

∂u j1 · · · ∂u jk

f ◦ φ(u) =
∑

π∈P([[1,k]])

f (|π|) ◦ φ(u)
∏

B∈π

∂|B|∏
l∈B ∂u jl

φ(u) (7)

where f is a function of one variable, P([[1, k]]) denotes the set of partitions of [[1, k]], and |E| the

cardinality of set E such that, for instance, with B = {2; 3; 6},

∂|B|∏
l∈B ∂u jl

=
∂3

∂u j2∂u j3∂u j6

. (8)

The main advantage of Eq. (7) is to be fully developed, that is it no longer contains factorials

assigned to the collection of equal partial derivatives when some indices jl happen to coincide.

In order to compute cumulants in terms of moments, one sets f = log, u = 0 and φ(0) = 1 in

Eq. (7). In particular,

f (n)(1) = (−1)n−1(n − 1)! (9)

and, in accordance with (3),

∂|B|∏
l∈B ∂u jl

φ(0) = i|B|mom(|B|)(x jl : l ∈ B). (10)

By noting that for any π ∈ P([[1, k]]) it comes
∑

B∈π |B| = k, one eventually arrives at the Leonov

and Shiryaev formula:

cum(k)(x j1 , . . . , x jk) =
∑

π∈P([[1,k]])

(−1)|π|−1(|π| − 1)!
∏

B∈π

mom(|B|)(x jl : l ∈ B). (11)

Alternatively, in order to compute moments in terms of cumulants, one sets f = exp, ψ in place

of Φ, u = 0 and ψ(0) = 0 in Eq. (7), so as to obtain

mom(k)(x j1 , . . . , x jk) =
∑

π∈P([[1,k]])

∏

B∈π

cum(|B|)(x jl : l ∈ B). (12)

This formula will be used in section 4.2 to find the expression of the sixth-order moment, m6(x),

of a centered Gaussian random vector x.
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2.2. Moment and cumulant matrices

There are many different ways to arrange the pk scalar moments of Eq.(3) in a matrix. It is

natural to select those arrangements which are maximally symmetric, as is often practiced in the

literature (see e.g. Schott [19], Jinadasa and Tracy [13], Tracy and Sultan [14]).

Definition 1 (The moment matrix). The moment matrix of a real-valued random vector x =

(x1, . . . , xp)′, E [|x|n] < ∞, n ∈ N, of even order 2k ≤ n is defined as

m2k(x) = E

[
⊗kxx′

]
(dimension pk × pk) (13)

and that of odd order, 2k + 1 ≤ n, as

m2k+1(x) = E

[
⊗kxx′ ⊗ x

]
(dimension pk+1 × pk), (14)

where ⊗ is the Kronecker product and ⊗kxx′ = xx′ ⊗ · · · ⊗ xx′︸            ︷︷            ︸
k matrices p×p

.

Note there are several ways to write down the moment matrix since, for any pair of vectors a and

b of dimension p × 1,

ab′ = a ⊗ b′ = b′ ⊗ a. (15)

It is easy to verify that all scalar (cross-)moments are included in definition 1. To do so, let

decompose x =
∑

j∈[[1,p]] x je j onto the canonical basis of Rp; thus, from the multilinearity property

of the Kronecker product and the linearity of the expected value,

m2k(x) = E

[
⊗kxx′

]
= E

⊗
k
∑

( j1, j2)∈[[1,p]]2

x j1 x j2e j1e
′
j2



= E


∑

( j1, j2)∈[[1,p]]2

x j1 x j2e j1e
′
j2
⊗ · · · ⊗

∑

( j2k−1, j2k)∈[[1,p]]2

x j2k−1
x j2k

e j2k−1
e′j2k



=
∑

( j1, j2,..., j2k−1, j2k)∈[[1,p]]2k

E

[
x j1 x j2 · · · x j2k−1

x j2k

]
e j1e

′
j2
⊗ · · · ⊗ e j2k−1

e′j2k

=
∑

( j1, j2,..., j2k−1, j2k)∈[[1,p]]2k

mom(2k)(x j1 , . . . , x j2k
)e j1e

′
j2
⊗ · · · ⊗ e j2k−1

e′j2k
. (16)

Similarly, for odd orders,

m2k+1(x) =
∑

( j1, j2,..., j2k−1, j2k , j2k+1)∈[[1,p]]2k+1

mom(2k+1)(x j1 , . . . , x j2k+1
)e j1e

′
j2
⊗ · · · ⊗ e j2k−1

e′j2k
⊗ e j2k+1

. (17)

It is then possible to define the cumulant matrix in a similar way as the moment matrix.
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Definition 2 (The cumulant matrix). Let x = (x1, . . . , xp)′ be a real-valued random vector of

dimension p × 1, such that E [|x|n] < ∞ for a given n ∈ N. The cumulant matrix of even order,

2k ≤ n, of x is a pk × pk matrix defined as

c2k(x) =
∑

( j1, j2,..., j2k−1, j2k)∈[[1,p]]2k

cum(2k)(x j1 x j2 · · · x j2k−1
x j2k

)e j1e
′
j2
⊗ · · · ⊗ e j2k−1

e′j2k
(18)

whereas the cumulant matrix of odd order, 2k + 1 ≤ n, is a pk+1 × pk matrix defined as

c2k+1(x) =
∑

( j1, j2,..., j2k−1, j2k , j2k+1)∈[[1,p]]2k+1

cum(2k+1)(x j1 x j2 · · · x j2k−1
x j2k

x j2k+1
)e j1e

′
j2
⊗ · · · ⊗ e j2k−1

e′j2k
⊗ e j2k+1

.

(19)

Except for the special case of a Gaussian random vector, cumulants are much more difficult

to compute than moments. Hitherto, the only way to computing the cumulant matrix cn(x) has

consisted in

1. deriving the pn scalar cumulants from the scalar moments of orders lower than n via Eq.

(11),

2. arranging the scalar cumulants in a matrix according definition 2.

However, Eq. (11) tends to return lengthy expressions that are hardly tractable beyond order four

or so; for instance, the sixth-order cumulant requires the consideration (and computation) of 41

moments. It is the object of this paper to compute the cumulant matrix cn(x) directly from the

moment matrices of orders lower than n, thus providing formulae that are much more concise and

convenient to handle.

3. Cumulant matrices from lower-order moment matrices

3.1. Statement of results for orders 2 to 6

In order to state the theorem of the paper, it is first necessary to introduce the commutation

matrix and the vec operator. The following definitions and properties are borrowed from Magnus

and Neudecker [18].

Lemma 1 (The commutation matrix). Let p ≥ 1 be an integer. The commutation matrix Kpp of

dimension p2 × p2 is defined as

Kpp =
∑

(i, j)∈[[1,p]]2

eie
′
j ⊗ e je

′
i , (20)

where (ei)i∈[[1,p]] stands for the canonical basis of Rp.

Let us define two other related commutation matrices, of dimension p3 × p3:

P3,2 = Ip ⊗Kpp (21)

P2,1 = Kpp ⊗ Ip. (22)
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Therefore, if a, b, and c are three vectors of dimension p × 1, the following equalities hold:

Kp(a ⊗ b) = b ⊗ a (23)

P3,2 (a ⊗ b ⊗ c) = a ⊗ c ⊗ b (24)

P2,1 (a ⊗ b ⊗ c) = b ⊗ a ⊗ c. (25)

Since K′pp = Kpp, it comes P′
3,2
= P3,2, P′

2,1
= P2,1, and

(a′ ⊗ b′)Kp = b′ ⊗ a′ (26)
(
a′ ⊗ b′ ⊗ c′

)
P3,2 = a′ ⊗ c′ ⊗ b′ (27)

(
a′ ⊗ b′ ⊗ c′

)
P2,1 = b′ ⊗ a′ ⊗ c′. (28)

Proof.

Kp(a ⊗ b) =
∑

(i, j)∈[[1,p]]2

eie
′
j ⊗ e je

′
i (a ⊗ b)

=
∑

(i, j)∈[[1,p]]2

(eie
′
ja)︸ ︷︷ ︸

a jei

⊗ (e je
′
ib)︸ ︷︷ ︸

bie j

=
∑

(i, j)∈[[1,p]]2

bia jei ⊗ e j = b ⊗ a (29)

P3,2 (a ⊗ b ⊗ c) =
(
Ip ⊗Kpp

)
(a ⊗ b ⊗ c) = a ⊗Kpp (b ⊗ c) = a ⊗ c ⊗ b (30)

P2,1 (a ⊗ b ⊗ c) =
(
Kpp ⊗ Ip

)
(a ⊗ b ⊗ c) = Kpp (a ⊗ b) ⊗ c = b ⊗ a ⊗ c (31)

�

We are now in a position to state the main result of the paper.

Theorem 2. Let x = (x1, . . . , xp)′ be a real-valued random vector of dimension p×1, with assumed

zero-mean for simplicity (E [x] = 0). Let us further assume that E [|x|n] < ∞ for a given integer

n ≥ 6 so as to guarantee the existence of moments and cumulants up to order six.

Next let us define the four matrices:

K = Ip2 +Kpp (32)

P = Ip3 + P2,1 + P3,2P2,1 (33)

R = Ip3 + P3,2 + P2,1P3,2 (34)

Q = Ip3 + P3,2 + P2,1 + P2,1P3,2 + P3,2P2,1 + P2,1P3,2P2,1 (35)

which depend only on dimension p. Thus, the cumulant matrices of orders 2 to 6 read

c2(x) = m2(x) = E
[
xx′
]

(36)

c3(x) = m3(x) = E
[
xx′ ⊗ x

]
(37)

c4(x) = m4(x) −K
{
m2(x) ⊗ m2(x)

}
− vecm2(x)vec′m2(x) (38)

c5(x) = m5(x) − R
{
m3(x) ⊗ m2(x)

}
K − P

{
m3(x)′ ⊗ vecm2(x)

}
− vecm3(x)vec′m2(x) (39)

c6(x) = m6(x) − Γ(4,2)(x) − Γ(3,3)(x) + 2Γ(2,2,2)(x), (40)

7



respectively, where

Γ(4,2)(x) = R
{
m4(x) ⊗ m2(x)

}
R′ +

{
M4(x) ⊗ vec′m2(x)

}
P′ + P

{
M4(x)′ ⊗ vecm2(x)

}

Γ(3,3)(x) = R
{
m3(x) ⊗ m3(x)′

}
P′ + vecm3(x)vec′m3(x)

Γ(2,2,2)(x) = Q
{
m2(x) ⊗ m2(x) ⊗ m2(x)

}
+ P
{
m2(x) ⊗ vecm2(x)vec′m2(x)

}
P′

M4(x) = E
[
xx′ ⊗ x ⊗ x

]
.

3.2. Outline of the proof

The sketch of the proof consists of

(a) injecting Eq. (11) that returns cumulants in terms of moments into Eqs. (18) and (19) which

define cumulant matrices;

(b) expressing the terms of the resulting sum with moment matrices.

Let us detail the first step in the case of even orders (the principle is identical for odd orders):

c2k(x) =
∑

( j1,..., j2k)∈[[1,p]]2k


∑

π∈P([[1,2k]])

(−1)|π|−1(|π| − 1)!
∏

B∈π

mom(|B|)(x jl : l ∈ B)

 e j1e
′
j2
⊗ · · · ⊗ e j2k−1

e′j2k

=
∑

s∈P(2k)

(−1)|s|−1(|s| − 1)!Γs(x) (41)

where P(2k) denotes the set of all s = (s1, . . . , sl), where s1, . . . , sl are strictly positive integers

such that s1 + . . . + sl = 2k partitions, |s| denotes the length of s – that is the number l of integers

in s – and

Γs(x) =
∑

π∈Ps([[1,2k]])


∑

( j1,..., j2k)∈[[1,p]]2k

∏

B∈π

mom(|B|)(x jl : l ∈ B)e j1e
′
j2
⊗ · · · ⊗ e j2k−1

e′j2k


︸                                                                            ︷︷                                                                            ︸

Tπ

, (42)

with Ps([[1, 2k]]) the set of partitions of [[1, 2k]] of type s. For instance, for k = 2,

P(4) = {(4); (3, 1); (2, 2); (2, 1, 1); (1, 1, 1, 1)} , (43)

and for s = (2, 2), |s| = 2 and

Ps([[1, 4]]) = {{{1; 2}; {3; 4}}; {{1; 3}; {2; 4}}; {{1; 4}; {2; 3}}} . (44)

For the second step, it is convenient to browse set P(2k) in the lexicographic order, as suggested

in Eq. (43), so that the first term in Eq. (41) will correspond to s = (2k), |s| = 1, Ps([[1, 2k]]) =

{{{1; · · · ; 2k}}}; that is partition π = {{1; · · · ; 2k}} with one block B = {1; · · · ; 2k}, such that

Γ(2k)(x) = T{{1;···;2k}} =
∑

( j1,..., j2k)∈[[1,p]]2k

mom(2k)(x jl : l ∈ B)e j1e
′
j2
⊗ · · · ⊗ e j2k−1

e′j2k
= m2k(x). (45)
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In addition, in each product
∏

B∈π of (42), blocks B will be browsed from the smallest to the largest,

as suggested by Eq. (43). Therefore, for each partition s of the integer 2k, there exists a unique

type-s partition π of set [[1, 2k]] that globally preserves the natural order on [[1, 2k]]. This will be

denoted as the canonical partition associated with s. For instance, the canonical partition of type

s = (2, 2) is πs = {{1; 2}; {3; 4}}. Since the blocks of a canonical partition are consecutive, the

corresponding terms are easily found. In general, if the type-s partition is such that the number of

odd indices is not greater than the number of even indices plus one, then the corresponding term

in (42) is simply

Tπs
=

∑

( j1,..., j2k)∈[[1,p]]2k

∏

B∈πs

mom(|B|)(x jl : l ∈ B)e j1 ⊗ e′j2 ⊗ · · · ⊗ e j2k−1
⊗ e′j2k

=
⊗

B∈πs

m|B|(x). (46)

For non-canonical partitions, e j1 ⊗ e′j2 ⊗ · · · ⊗ e j2k−1
⊗ e′j2k

will be rearranged according to the

blocks in partitions πs. Unfortunately, there is no general matrix formulation in this case. However,

since e j ⊗ e′
k
= e′

k
⊗ e j, we will make use of the identity

e j1⊗e′j2⊗· · ·⊗e j2k−1
⊗e′j2k

= e j1⊗· · ·⊗e j2k−1
⊗e′j2⊗· · ·⊗e′j2k

= (e j1⊗· · ·⊗e j2k−1
)(e j2⊗· · ·⊗e j2k

)′. (47)

For orders greater than 4, lemma 1 will be used to rearrange Kronecker products of length

3. For blocks where the number of odd indices is neither equal to nor greater than the number

of even indices, the corresponding factor will not be of type m|B|(x). Since orders up to 6 are

considered only in this paper, this will be fixed by using the vec operator and the moment matrix

M4(x) = E [xx′ ⊗ x ⊗ x], and its transpose. Finally, let us note that for a zero-mean random vector,

all terms involving a first-order moment – corresponding to partitions with blocks of unit length –

will be nil.

3.3. Proof for order 3

The only partition of 3 which does not involve 1 is (3): P(3)([[1, 3]]) = {{{1; 2; 3}}}. Thus

c3(x) = Γ(3)(x) =
∑

( j1, j2, j3)∈[[1,p]]3

mom(3)(x j1 , x j2 , x j3)e j1e
′
j2
⊗ e j3 = m3(x). (48)

3.4. Proof for order 4

The only partitions of 4 (see Eq. (43)) which do not involve 1 are (4) and (2, 2):

P(4)([[1, 4]]) = {{{1; 2; 3; 4}}}

P(2,2)([[1, 4]]) = {{{1; 2}; {3; 4}}; {{1; 3}; {2; 4}}; {{1; 4}; {2; 3}}} .

In order to avoid any ambiguity, each term of Γ(2,2)(x) will be dentoted by Tπ where π is the

corresponding partition in (42). Therefore,

c4(x) = m4(x) − Γ(2,2)(x) (49)

= m4(x) − m2(x) ⊗ m2(x)︸           ︷︷           ︸
T{{1;2};{3;4}}
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−
∑

( j1,..., j4)∈[[1,p]]4

mom(2)(x j1 , x j3)mom(2)(x j2 , x j4)e j1e
′
j2
⊗ e j3e

′
j4

︸                                                                     ︷︷                                                                     ︸
T{{1;3};{2;4}}

−
∑

( j1,..., j4)∈[[1,p]]4

mom(2)(x j1 , x j4)mom(2)(x j2 , x j3)e j1e
′
j2
⊗ e j3e

′
j4

︸                                                                     ︷︷                                                                     ︸
T{{1;4};{2;3}}

. (50)

For

e j1e
′
j2
⊗ e j3e

′
j4
= e j1 ⊗ e′j2 ⊗ e j3 ⊗ e′j4 = e j1 ⊗ e j3 ⊗ e′j2 ⊗ e′j4 = (e j1 ⊗ e j3) ⊗ (e j2 ⊗ e j4)

′ (51)

= Kpp(e j3 ⊗ e j1)(e j2 ⊗ e j4)
′ = Kpp(e j3e

′
j2
⊗ e j1e

′
j4

), (52)

it comes

T{{1;3};{2;4}} =


∑

( j1, j3)∈[[1,p]]2

mom(2)(x j1 , x j3)e j1 ⊗ e j3




∑

( j2, j4)∈[[1,p]]2

mom(2)(x j2 , x j4)e j2 ⊗ e j4



′

= vecm2(x)vec′m2(x), (53)

T{{1;4};{2;3}} = Kpp


∑

( j2, j3)∈[[1,p]]2

mom(2)(x j2 , x j3)e j3e
′
j2

 ⊗

∑

( j1, j4)∈[[1,p]]2

mom(2)(x j1 , x j4)e j1e
′
j4



= Kppm2(x) ⊗ m2(x). (54)

Upon collecting m2(x) ⊗ m2(x), one finally arrives at

c4(x) = m4(x) −Km2(x) ⊗ m2(x) − vecm2(x)vec′m2(x). (55)

3.5. Proof for order 5

The only partitions of 5 which do not involve 1 are (5) et (3, 2):

P(5)([[1, 5]]) = {{{1; 2; 3; 4; 5}}}

P(3,2)([[1, 5]]) = {{{1; 2; 3}; {4; 5}}; {{1; 2; 4}; {3; 5}}; {{1; 3; 4}; {2; 5}}; {{2; 3; 4}; {1; 5}};

{{1; 2; 5}; {3; 4}}; {{1; 3; 5}; {2; 4}}; {{2; 3; 5}; {1; 4}}; {{1; 4; 5}; {2; 3}};

{{2; 4; 5}; {1; 3}}; {{3; 4; 5}; {1; 2}}} .

One may check that P(3,2)([[1, 5]]) contains 5!
3!2!
= 10 elements. As before, each term of Γ(3,2)(x)

will be denoted as Tπ where π is the corresponding partition in Eq. (42). Thus

c5(x) = m5(x) − Γ(3,2)(x), (56)
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where Γ(3,2)(x) =
∑
π∈P(3,2)([[1,5]]) Tπ. Next, the Tπ’s are computed by factoring terms of order 3 in first

positions. The principle is illustrated for instance on T{{2;3;5};{1;4}}:

T{{2;3;5};{1;4}} =
∑

( j1,..., j5)∈[[1,p]]5

mom(3)(x j2 , x j3 , x j5)mom(2)(x j1 , x j4)e j1 ⊗ e′j2 ⊗ e j3 ⊗ e′j4 ⊗ e j5

=
∑

( j1,..., j5)∈[[1,p]]5

mom(3)(x j2 , x j3 , x j5)mom(2)(x j1 , x j4)(e j1 ⊗ e j3 ⊗ e j5) ⊗ (e′j2 ⊗ e′j4)

=
∑

( j1,..., j5)∈[[1,p]]5

mom(3)(x j2 , x j3 , x j5)mom(2)(x j1 , x j4)P2,1P3,2(e j3 ⊗ e j5 ⊗ e j1) ⊗ (e′j2 ⊗ e′j4)

= P2,1P3,2

∑

( j1,..., j5)∈[[1,p]]5

mom(3)(x j2 , x j3 , x j5)︸                  ︷︷                  ︸
=mom(3)(x j3

,x j2
,x j5

)

mom(2)(x j1 , x j4)(e j3 ⊗ e′j2 ⊗ e j5) ⊗ (e j1 ⊗ e′j4)

= P2,1P3,2m3(x) ⊗ m2(x). (57)

Following similar lines,

T{{1;2;3};{4;5}} = m3(x) ⊗ m2(x) (58)

T{{1;2;4};{3;5}} = m3(x)′ ⊗ vecm2(x) (59)

T{{1;3;4};{2;5}} = m3(x) ⊗ m2(x)Kpp (60)

T{{2;3;4};{1;5}} = P2,1m3(x)′ ⊗ vecm2(x) (61)

T{{1;2;5};{3;4}} = P3,2m3(x) ⊗ m2(x) (62)

T{{1;3;5};{2;4}} = vecm3(x)vec′m2(x) (63)

T{{1;4;5};{2;3}} = P3,2m3(x) ⊗ m2(x)Kpp (64)

T{{2;4;5};{1;3}} = P3,2P2,1m3(x)′ ⊗ vecm2(x) (65)

T{{3;4;5};{1;2}} = P2,1P3,2m3(x) ⊗ m2(x).Kpp. (66)

The last step is to collect terms in m3(x) ⊗ m2(x), m3(x)′ ⊗ vecm2(x), and vecm3(x)vec′m2(x),

respectively:

Γ(3,2)(x) =
(
Ip3 + P3,2 + P2,1P3,2

)
︸                      ︷︷                      ︸

R

m3(x) ⊗ m2(x) +
(
Ip3 + P3,2 + P2,1P3,2

)
︸                      ︷︷                      ︸

R

m3(x) ⊗ m2(x)Kpp

+
(
Ip3 + P2,1 + P3,2P2,1

)
︸                      ︷︷                      ︸

P

m3(x)′ ⊗ vecm2(x) + vecm3(x)vec′m2(x)

= Rm3(x) ⊗ m2(x)
(
Ip2 +Kpp

)
︸       ︷︷       ︸

K

+Pm3(x)′ ⊗ vecm2(x) + vecm3(x)vec′m2(x)

= Rm3(x) ⊗ m2(x)K + Pm3(x)′ ⊗ vecm2(x) + vecm3(x)vec′m2(x). (67)

3.6. Proof for order 6

The 4 partitions of 6 which do not involve 1 are: (6), (4, 2), (3, 3) et (2, 2, 2). Therefore c6(x)

is a sum of four terms,

c6(x) = m6(x) − Γ(4,2)(x) − Γ(3,3)(x) + 2Γ(2,2,2)(x), (68)
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the last three of which are detailed hereafter.

Expression of Γ(4,2)(x):

It is seen that P(4,2)([[1, 6]]) contains 6!
4!2!
= 15 elements:

P(4,2)([[1, 6]]) = {{{1; 2; 3; 4}; {5; 6}}; {{1; 2; 3; 5}; {4; 6}}; {{1; 2; 4; 5}; {3; 6}};

{{1; 3; 4; 5}; {2; 6}}; {{2; 3; 4; 5}; {1; 6}}; {{1; 2; 3; 6}; {4; 5}};

{{1; 2; 4; 6}; {3; 5}}; {{1; 3; 4; 6}; {2; 5}}; {{2; 3; 4; 6}; {1; 5}};

{{1; 2; 5; 6}; {3; 4}}; {{1; 3; 5; 6}; {2; 4}}; {{2; 3; 5; 6}; {1; 4}};

{{1; 4; 5; 6}; {2; 3}}; {{2; 4; 5; 6}; {1; 3}}; {{3; 4; 5; 6}; {1; 2}}} (69)

Γ(4,2)(x) =
∑

π∈P(4,2)([[1,6]])

Tπ. (70)

In the above equation, each Tπ is computed so that factors of order 4 come first (e.g. there will be

no such term as m2(x) ⊗ m4(x)). For instance,

T{{1;3;5;6};{2;4}} =
∑

( j1,..., j6)∈[[1,p]]6

mom(4)(x j1 , x j3 , x j5 , x j6)mom(2)(x j2 , x j4)e j1e
′
j2
⊗ e j3e

′
j4
⊗ e j5e

′
j6

=
∑

( j1,..., j6)∈[[1,p]]6

mom(4)(x j1 , x j3 , x j5 , x j6)mom(2)(x j2 , x j4)(e j1 ⊗ e j3 ⊗ e j5)(e
′
j2
⊗ e′j4 ⊗ e′j6)

=
∑

( j1,..., j6)∈[[1,p]]6

mom(4)(x j1 , x j3 , x j5 , x j6)mom(2)(x j2 , x j4)(e j1 ⊗ e j3 ⊗ e j5)(e
′
j6
⊗ e′j2 ⊗ e′j4)P2,1P3,2

=
∑

( j1,..., j6)∈[[1,p]]6

mom(4)(x j1 , x j3 , x j5 , x j6)mom(2)(x j2 , x j4)(e j1e
′
j6
⊗ e j3 ⊗ e j5) ⊗ (e′j2 ⊗ e′j4)P2,1P3,2

= M4(x) ⊗ vec′m2(x)P2,1P3,2. (71)

Following similar lines,

T{{1;2;3;4};{5;6}} = m4(x) ⊗ m2(x) (72)

T{{1;2;3;5};{4;6}} = M4(x) ⊗ vec′m2(x) (73)

T{{1;2;4;5};{3;6}} = P3,2m4(x) ⊗ m2(x) (74)

T{{1;3;4;5};{2;6}} = M4(x) ⊗ vec′m2(x)P2,1 (75)

T{{2;3;4;5};{1;6}} = P2,1P3,2m4(x) ⊗ m2(x) (76)

T{{1;2;3;6};{4;5}} = m4(x) ⊗ m2(x)P3,2 (77)

T{{1;2;4;6};{3;5}} = M4(x)′ ⊗ vecm2(x) (78)

T{{1;3;4;6};{2;5}} = m4(x) ⊗ m2(x)P3,2P2,1 (79)

T{{2;3;4;6};{1;5}} = P2,1M4(x)′ ⊗ vecm2(x) (80)

T{{1;2;5;6};{3;4}} = P3,2m4(x) ⊗ m2(x)P3,2 (81)

T{{2;3;5;6};{1;4}} = P2,1P3,2m4(x) ⊗ m2(x)P3,2 (82)

T{{1;4;5;6};{2;3}} = P3,2m4(x) ⊗ m2(x)P3,2P2,1 (83)

T{{2;4;5;6};{1;3}} = P3,2P2,1M4(x)′ ⊗ vecm2(x) (84)

T{{3;4;5;6};{1;2}} = P2,1P3,2m4(x) ⊗ m2(x)P3,2.P2,1. (85)
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The last step is to collect terms in m4(x) ⊗ m2(x), M4(x) ⊗ vec′m2(x), and M4(x)′ ⊗ vecm2(x)

respectively:

Γ(4,2)(x) = (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m4(x) ⊗ m2(x) + (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m4(x) ⊗ m2(x)P3,2P2,1

+ (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m4(x) ⊗ m2(x)P3,2

+M4(x) ⊗ vec′m2(x) (Ip3 + P2,1 + P2,1P3,2)︸                      ︷︷                      ︸
P′

+ (Ip3 + P2,1 + P3,2P2,1)︸                      ︷︷                      ︸
P

M4(x)′ ⊗ vecm2(x)

= R
{
m4(x) ⊗ m2(x)

}
R′ +

{
M4(x) ⊗ vec′m2(x)

}
P′ + P

{
M4(x)′ ⊗ vecm2(x)

}
. (86)

Expression of Γ(3,3)(x):

It is seen that P(3,3)([[1, 6]]) contains 6!
2!3!3!

= 10 elements:

P(3,3)([[1, 6]]) = {{{1; 2; 3}; {4; 5; 6}}; {{1; 2; 4}; {3; 5; 6}}; {{1; 3; 4}; {2; 5; 6}};

{{2; 3; 4}; {1; 5; 6}}; {{1; 2; 5}; {3; 4; 6}}; {{1; 3; 5}; {2; 4; 6}};

{{2; 3; 5}; {1; 4; 6}}; {{1; 4; 5}; {2; 3; 6}}; {{2; 4; 5}; {1; 3; 6}};

{{3; 4; 5}; {1; 2; 6}}} (87)

Γ(3,3)(x) =
∑

π∈P(3,3)([[1,6]])

Tπ. (88)

In the above equation, each Tπ is computed so that factor m3(x) comes first (e.g. there will be no

such term as m3(x)′ ⊗ m3(x)):

T{{1;2;3};{4;5;6}} = m3(x) ⊗ m3(x)′ (89)

T{{1;2;4};{3;5;6}} = P2,1P3,2m3(x) ⊗ m3(x)′P2,1P3,2 (90)

T{{1;3;4};{2;5;6}} = m3(x) ⊗ m3(x)′P2,1 (91)

T{{2;3;4};{1;5;6}} = P3,2m3(x) ⊗ m3(x)′P2,1P3,2 (92)

T{{1;2;5};{3;4;6}} = P3,2m3(x) ⊗ m3(x)′ (93)

T{{1;3;5};{2;4;6}} = vecm3(x) ⊗ vec′m3(x) (94)

T{{2;3;5};{1;4;6}} = P2,1P3,2m3(x) ⊗ m3(x)′ (95)

T{{1;4;5};{2;3;6}} = P3,2m3(x) ⊗ m3(x)′P2,1 (96)

T{{2;4;5};{1;3;6}} = m3(x) ⊗ m3(x)′P2,1P3,2 (97)

T{{3;4;5};{1;2;6}} = P2,1P3,2m3(x) ⊗ m3(x)′P2,1. (98)

Therefore,

Γ(3,3)(x) = (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m3(x) ⊗ m3(x)′ + (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m3(x) ⊗ m3(x)′P2,1
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+ (Ip3 + P3,2 + P2,1P3,2)︸                      ︷︷                      ︸
R

m3(x) ⊗ m3(x)′P2,1P3,2 + vecm3(x) ⊗ vec′m3

= R
{
m3(x) ⊗ m3(x)′

}
P′ + vecm3(x) ⊗ vec′m3. (99)

Expression of Γ(2,2,2)(x):

It is seen that P(2,2,2)([[1, 6]]) contains 6!
2!2!2!2!

= 15 elements:

P(2,2,2)([[1, 6]]) = {{{1; 2}; {3; 4}; {5; 6}}; {{1; 3}; {2; 4}; {5; 6}}; {{2; 3}; {1; 4}; {5; 6}};

{{1; 2}; {3; 5}; {4; 6}}; {{1; 3}; {2; 5}; {4; 6}}; {{2; 3}; {1; 5}; {4; 6}};

{{1; 2}; {4; 5}; {3; 6}}; {{1; 4}; {2; 5}; {3; 6}}; {{2; 4}; {1; 5}; {3; 6}};

{{1; 3}; {4; 5}; {2; 6}}; {{1; 4}; {3; 5}; {2; 6}}; {{3; 4}; {1; 5}; {2; 6}};

{{2; 3}; {4; 5}; {1; 6}}; {{2; 4}; {3; 5}; {1; 6}}; {{3; 4}; {2; 5}; {1; 6}}} (100)

Γ(2,2,2)(x) =
∑

π∈P(2,2,2)([[1,6]])

Tπ. (101)

In the above equation, each Tπ is computed by imposing the ordering m2(x) < vecm2(x) <

vec′m2(x), which amounts to placing first blocks with polarities {even}{odd}, then {odd}{odd},

and finally {even}{even}:

T{{1;2};{3;4};{5;6}} = m2(x) ⊗ m2(x) ⊗ m2(x) (102)

T{{1;3};{2;4};{5;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1P3,2 (103)

T{{2;3};{1;4};{5;6}} = P2,1m2(x) ⊗ m2(x) ⊗ m2(x) (104)

T{{1;2};{3;5};{4;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′m2(x) (105)

T{{1;3};{2;5};{4;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x) (106)

T{{2;3};{1;5};{4;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x) (107)

T{{1;2};{4;5};{3;6}} = P3,2m2(x) ⊗ m2(x) ⊗ m2(x) (108)

T{{1;4};{2;5};{3;6}} = P3,2P2,1m2(x) ⊗ m2(x) ⊗ m2(x) (109)

T{{2;4};{1;5};{3;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1P3,2 (110)

T{{1;3};{4;5};{2;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1 (111)

T{{1;4};{3;5};{2;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1 (112)

T{{3;4};{1;5};{2;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1 (113)

T{{2;3};{4;5};{1;6}} = P2,1P3,2m2(x) ⊗ m2(x) ⊗ m2(x) (114)

T{{2;4};{3;5};{1;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1P3,2 (115)

T{{3;4};{2;5};{1;6}} = P2,1P3,2P2,1m2(x) ⊗ m2(x) ⊗ m2(x). (116)

Therefore,

Γ(2,2,2)(x) = (Ip3 + P2,1 + P3,2 + P3,2P2,1 + P2,1P3,2 + P2,1P3,2P2,1)︸                                                                  ︷︷                                                                  ︸
Q

m2(x) ⊗ m2(x) ⊗ m2(x)
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+ (Ip3 + P2,1 + P3,2P2,1)︸                      ︷︷                      ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)

+ (Ip3 + P2,1 + P3,2P2,1)︸                      ︷︷                      ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1

+ (Ip3 + P2,1 + P3,2P2,1)︸                      ︷︷                      ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)P2,1P3,2

= Q
{
m2(x) ⊗ m2(x) ⊗ m2(x)

}
+ P
{
m2(x) ⊗ vecm2(x) ⊗ vec′m2(x)

}
P′. (117)

This completes the proof of theorem 2.

4. Two immediate consequences

4.1. Upper bounds on the rank of cumulant matrices

Corollary 3. Let x be a real-valued random vector of dimension p × 1 such that E [|x|n] < ∞ for

a given integer n ≥ 6. Then, its cumulant matrices of orders 2 to 6 have their rank upper-bounded

as follows:

R
(
c2(x)
)
≤ p (118)

R
(
c3(x)
)
≤ p (119)

R
(
c4(x)
)
≤

p(p + 1)

2
(120)

R
(
c5(x)
)
≤

p(p + 1)

2
(121)

R
(
c6(x)
)
≤

p(p + 1)(p + 2)

6
. (122)

Proof. The first two inequalities are obvious. For the other ones, let us introduce

K̃ =
1

2
K and Q̃ =

1

6
Q, (123)

where K and Q are matrices of dimension p2 × p2 and p3 × p3, as given in Eqs. (32) and (35),

respectively. By using the symmetry properties of cumulants, it comes that

c4(x) = K̃c4(x), c5(x) = c5(x)K̃, et c6(x) = Q̃c6(x), (124)

from which the following majorations immediately follows:

R
(
c4(x)
)
≤ R
(
K̃
)
, R

(
c5(x)
)
≤ R
(
K̃
)
, and R

(
c6(x)
)
≤ R
(
Q̃
)
. (125)

Since matrices K̃ and Q̃ are idempotent (see Schott [19, Theorem 1]), their rank is returned by

their trace. Thus,

R
(
K̃
)
= Tr(K̃) =

1

2
Tr(Ip2 +Kpp) =

1

2

(
p2 + Tr(Kpp)

)
. (126)
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The trace of the commutation matrices is in given Magnus and Neudecker [18] as

Tr(Kab) = 1 + gcd(a − 1, b − 1); (127)

where gcd stands for “greatest common divisor”. This implies, in particular, Tr(Kpp) = p; there-

fore,

R
(
K̃
)
=

1

2

(
p2 + p

)
=

p(p + 1)

2
. (128)

Similarly,

R
(
Q̃
)
= Tr(Q̃) =

1

6
Tr(Q)

=
1

6
Tr
(
Ip3 + Ip ⊗Kpp +Kpp ⊗ Ip +Kpp2 +Kp2 p + (Kpp ⊗ Ip)Kp2 p

)

=
1

6

(
p3 + p2 + p2 + p + p + p2

)

=
p3 + 3p2 + 2p

6
=

p(p + 1)(p + 2)

6
. (129)

�

4.2. The sixth-order moment matrix of a Gaussian vector

The expression of the sixth-order moment matrix of a Gaussian vector has been the aim of

several research works. It has been provided by Neudecker [11], Magnus and Neudecker [18],

Tracy and Sultan [14], and more recently by Schott [19]. It happens here to be a direct corollary

of theorem 2.

Corollary 4. Let z ∼ N(0p,Σ) be a zero-mean, real-valued, Gaussian vector. Its sixth-order

moment matrix reads

m6(z) = E(zz′ ⊗ zz′ ⊗ zz′) = Q (Σ ⊗ Σ ⊗ Σ) + P
(
Σ ⊗ vecΣ ⊗ vec′Σ

)
P′ (130)

where matrices Q and P are defined in theorem 2.

Proof. Since z is Gaussian, all its cumulants of order greater than two are nil. Therefore, the only

non-zero terms in Eq. (12), with k = 6, corresponds to the partition of type (2, 2, 2). Hence,

m6(z) = Γ(2,2,2)(x), (131)

where

Γ(2,2,2)(x) =
∑

π∈P(2,2,2)([[1,6]])


∑

( j1,..., j6)∈[[1,p]]6

∏

B∈π

cum(2)(x jl : l ∈ B)e j1e
′
j2
⊗ e j3e

′
j4
⊗ e j5e

′
j6

 . (132)

This quantity is given by Eq. (117), wherein m2(x) = c2(x) = Σ. �
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5. Conclusion

This paper has introduced a methodology for deriving explicit formulae for the cumulant matri-

ces of a random vector in terms of moment matrices of lower order. The methodology reproduces

known formulae, up to order four, and returns new ones at order five and six, which are all embod-

ied in theorem 2. In principle, it can also be applied to address higher orders. Such formulae of

the cumulant matrices have several advantages. First, from the notational point of view, they are

quite concise. Second, from the theoretical point of view, they evidence a direct link with moment

matrices. As a consequence, the moment matrices of a random Gaussian vector – which have been

of some interest in the literature – are easily found be setting the cumulant matrix to zero (e.g. see

corollary (4)). In addition, they make possible to upper-bound the rank of the cumulant matrices,

as described in corollary (3)). These properties have considerable importance in applications as

such independent component analysis (ICA) [2], which strongly rely on the use of the cumulant

matrices of order four - the Quadricovariance [4] – or six – the Hexacovariance Albera et al. [6].

In this case, the upper-bound on the rank of the cumulant matrices indicates the maximum num-

ber of independent sources that can be separated. Finally, the proposed formulae have a definite

advantage when they come to be coded with high-level matrix/array programming language, such

as Matlab R©. By way of an example, it has been verified by the authors that the numerical compu-

tation of the cumulant matrices of orders five and six with dimension p = 6 are about 150 times

faster than with coded with Leonov and Shiryaev formula (version 7 of Matlab used on a laptop

computer with 2.10GHz clock and 4Go RAM).
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