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Introduction

Since the beginning, robustness to uncertainties is a major issue. The sensitivity transfer function was introduced by Bode as a measure of the impact of uncertainties on the closed loop. Some design methods were developed with robustness at their core. It is the case for Quantitative Feedback Theory [START_REF] Houpis | Quantitative feedback theory: fundamentals and applications[END_REF] or H ∞ [28]. In the 80's-90's, µ-analysis [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF][START_REF] Safonov | Stability margin of diagonaly perturbed multivariable feedback systems[END_REF] was developed to investigate the (H ∞ ) performances of Linear Time Invariant systems in the presence of structured uncertainties. This approach is based on the computation of the structured singular value µ of frequency dependent matrices, which was proved to be NPhard [START_REF] Braatz | Computational complexity of µ calculation[END_REF]. Fortunately, lower and upper bounds on µ can be efficiently computed; the µ upper bounds [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF] allow to guarantee a certain level of performances with some conservatism. By efficient, it is understood that the computation time is bounded by a power function of the problem size [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-Completeness[END_REF]. A major interest of the use of µ upper bounds is to obtain a satisfying trade-off between the computation time and the conservatism of the obtained result.

Nevertheless, even if the computation of µ upper bound is efficient, its computation time can be important in the case of uncertain large-scale systems. The purpose of this paper is to propose a robustness analysis (of performances) method with a trade-off between computation time and conservatism adapted to large-scale systems. Our motivating example is the robustness analysis of Phase-Locked-Loop (PLL) networks [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], a challenging problem in Microelectronics.

In the case of large-scale systems with uncertainties defined by conic sector properties, that is unstructured uncertainties, Safonov approached the problem via an hierarchical analysis using recursively a propagation of conic sector properties result [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF]. To the authors' best knowledge, the work of [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] is the only one devoted to the problem. Basically, a hierarchical system can be described as a tree with layers, each of them is composed of systems. Each system is modeled as the interconnection of sub-systems. These sub-systems are in fact the systems of the preceding layer. Assuming that the conic properties of the sub-systems are known, the propagation problem is to find 'propagated' conic properties for the system that are not trivially connected to the ones of the sub-systems. If one is able to find these 'propagated' properties, then the hierarchical analysis boils down to a recursive application of the propagation.

Unfortunately, its direct application to a (large-scale) system with structured uncertainties can lead to an overly conservative result. While keeping the same overall approach, we propose in this paper a new hierarchical analysis method which overcomes the disadvantages of [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF]: the method is efficient and adapted to structured uncertainties. Our method is based on a generalization of the propagation of conic properties to quadratic ones. Preliminary results of the present work can be found in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF] where there was only one 'propagated' quadratic property (the conic sector one) with the uncertainties already described by quadratic properties. We present here other quadratic 'propagated' proper-ties. Combining them (their 'intersection'), a finer description can be made of the system. The user can then set the trade-off by choosing the 'propagated' properties used, the main contributor to the computation time being their number.

As in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF], this propagation can be viewed as an embedding problem: find (simpler) sets that includes the uncertain system. Beyond the hierarchical analysis, this embedding has many interesting applications. For instance, in the Quantitative Feedback Theory [START_REF] Houpis | Quantitative feedback theory: fundamentals and applications[END_REF], the aim is to design a controller that achieves some level of performances in front of all the uncertainties in the system. In the method, it is assumed that it is possible to know the propagation of the uncertainties through the system. Another interesting application, is the use of the embedding to perform µ-synthesis in the integrated framework of [START_REF] Paw | Development and application of an integrated framework for small uav flight control development[END_REF]; the advantage being the computation time thanks to the embedding.

Our solution is based on a separation of graph theorem. First proposed in [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] as a general approach to feedback system analysis, specialized forms were proposed in e.g. [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF][START_REF] Scorletti | A more praticle formulation for robustness analysis[END_REF][START_REF] Scherer | LPV control and full block multipliers[END_REF] for (uncertain) LTI system analysis. Since the µ upper bound proposed in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF] can be interpreted as a particular application of the separation of graph theorem, this theorem was applied to extend µ-analysis to time-delay systems [START_REF] Scorletti | Approche Unifiée de l'analyse et la commande des systèmes par formulation LMI[END_REF] or time-varying/nonlinear systems [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF], to reduce the conservatism of the µ upper bound [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF] to cite a few. We reveal here another interesting application of this powerful theorem.

Paper outline

Section 2 begins with definitions and fundamental properties of dissipative systems which are used afterward. It explicits then the uncertain large-scale system that is considered with the proposed approach. Section 3 proposed several dissipative properties that can be used practically. A numerical example on a PLL network is performed in Section 4. Section 5 concludes the paper.

Notations R (respectively C) denotes the set of real (resp. complex) numbers. R denotes R ∪ {-∞, +∞}. M R and M I stands for the real and imaginary parts of M .

R m×n (respectively C m×n ) denotes the set of real (resp. complex) matrices of dimension m × n. I r and 0 r denote the identity and the zero matrices of size r. M * (respectively M T ) stands for the transpose conjugate (resp. transpose) of M . For several matrices M i , i = 1, . . . , n, bdiag i (M i ) denotes the matrix

     M 1 . . . Mn      . RH ∞ (respectively RL ∞ )
denotes the set of matrices of stable (resp. non-causally stable) rational transfer function.

Throughout the paper, when dimensions are omitted, they are assumed to be clear from the context. Moreover, we consistently denote uncertainties by ∆ and interconnections by M . The set ∆ is referred to as the uncertainty set. We denote by ∆ M the set {∆ M, ∆ ∈ ∆}, with standing for the Redheffer star product. This set is also referred to as an uncertain system. For the uncertain system ∆ M , we further denotes the interconnection's partitioning of appropriate dimension by

M = A B C D .
Finally, we denote

L(M, Φ 11 , Φ 12 , Φ 22 , X, Y, Z) = M I *       -Φ 22 0 -Φ * 12 0 0 X 0 Y -Φ 12 0 -Φ 11 0 0 Y * 0 Z       M I .
2 Approach for Hierarchical Analysis of Performances

Definitions and preliminaries

An uncertain system is modeled as an interconnection ∆ M with ∆ ∈ ∆. Along with this definition, we assume: Introducing the internal signals and using the Fourier transform, we get for uncertain system ∆ M represented in the Fig. 1 and for all ω ∈ R:

p(jω) = ∆(jω) q(jω) q(jω) z(jω) = M (jω) p(jω) w(jω) = A(jω) B(jω) C(jω) D(jω) p(jω) w(jω) . (1) 
The stability of an uncertain system is now defined.

Definition 2.1 An uncertain system ∆ M is said to be stable (respectively non-causally stable) if for any ∆ ∈ ∆, the system ∆ M is stable (respectively non-causally stable).

In this section, dissipative properties are used. They are defined below.

Definition 2.2 Let X(jω), Y (jω) and Z(jω) be 3 transfer functions of RL ∞ such that X(jω) = X(jω) * and Z(jω) = Z(jω) * . Then, 

∆ ∈ ∆, the system ∆ M is {X(jω), Y (jω), Z(jω)} dissipative.
Note that when H is stable and

X(jω) Y (jω) Y (jω) * Z(jω) = -I 0 0 γ 2 I ,
H has an H ∞ norm strictly less than γ. More generally, dissipative properties can model performance indices. A dissipativity property can also be viewed as an inclusion of sets (of systems or signals). With the preceding example, the set composed of H is included in the ball of systems with an H ∞ norm strictly less than γ. This set of systems is convex which is proved by the following Lemma.

Lemma 2.1 Let X(jω), Y (jω) and Z(jω) be 3 transfer functions of RL ∞ such that X(jω) = X(jω) * and Z(jω) = Z(jω) * . Then, the set of systems

{H | H is {X(jω), Y (jω), Z(jω)} dissipative }
is convex, and thus connected.

Proof See Appendix A.

Fundamental properties are now given with a direct corollary. They states that new dissipativity properties can be generated from original ones. For ease of notation, they are stated for certain systems. The extension to uncertain systems is straightforward.

Lemma 2.2 Let H i be {X i (jω), Y i (jω), Z i (jω)} dissipative, i = 1, . . . , m. Then H = bdiag i (H i ) is {bdiag i (X i (jω)), bdiag i (Y i (jω)), bdiag i (Z i (jω))} dissipative. Lemma 2.3 Let H be {X k (jω), Y k (jω), Z k (jω)} dissipative, k = 1, . . . , n. Then for any τ k (jω) > 0, k = 1, . . . , n, H is { k τ k (jω)X k (jω), k τ k (jω)Y k (jω), k τ k (jω)Z k (jω)} dissipative. Corollary 2.1 Let H i be {X ik (jω), Y ik (jω), Z ik (jω)} dissipative, i = 1, . . . , m, k = 1, . . . , n. Then for any τ ik (jω) > 0, i = 1, . . . , m, k = 1, . . . , n, H = bdiag i (H i ) is {bdiag i ( k τ ik (jω)X ik (jω)), bdiag i ( k τ ik (jω)Y ik (jω)), bdiag k ( k τ ik (jω)Z ik (jω))} dissipative.
This corollary also defines a set of linearly parameterized dissipative properties. Let us denote it Φ(jω).

Hierarchical system description and proposed approach

From [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF], a large-scale system is described by a tree as illustrated in Figure 2 where a hierarchical structure arises naturally. Each branch of the tree is assigned an index. A branch, say i, is a two-way channel through which a signal w i (the input) ascends and another signal z i (the output) descends. The tree obtained by cutting branch i and retaining everything connected above is an uncertain system called T i with input w i and output z i . If a tree T i has other branches besides branch i then there is a single node denoted M i from which other branches ascend. If branch i is the only branch in the tree T i , then T i is called a leaf and is denoted by ∆ i . It is uncertain system belonging to the uncertain set ∆ i . Each M i and ∆ i is an LTI system. Furthermore, it is supposed that for each leaf ∆ i its dissipative properties are a priori known.

It should be noted from the practical point of view, that all uncertainties are represented by the leafs ∆ i while the certain part as well as the system interconnection structure are described by nodes M i . Assumption 2.2 Each ∆ i is a bounded and connected subset of RH ∞ and each M i belongs to RH ∞ . This is the counterpart of Assumption 2.1.

Assumption 2.3 For any i, ∆ i is an elementary uncertainty set: there exists a priori known X ik (jω), Y ik (jω) and Z ik (jω) such that ∆ i is {X ik (jω), Y ik (jω), Z ik (jω)} dissipative for k = 1, . . . , n and some n > 0. Examples of elementary uncertainty sets along with their dissipative properties can be found in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF][START_REF] Scorletti | Robustness analysis with time delays[END_REF][START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF]. The interest of this assumption will be made clearer in the discussion of the propagation theorem.

M 1 M 2 ∆ 5 M 3 ∆ 6 M 4 M 7 ∆ 8 ∆ 9 ∆
The proposed approach for the performance analysis of a hierarchical system as described in the introduction is based on a recursive application of the following propagation1 of dissipativity properties of uncertainties through an interconnection theorem.

Theorem 2.1 The uncertain system ∆ M is stable and {X(jω), Y (jω), Z(jω)} dissipative if and only if:

1. there exists ∆ 0 ∈ ∆ such that the system ∆ 0 M is stable; 2. there exists 3 transfer functions Φ 11 (jω), Φ 12 (jω) and

Φ 22 (jω) of RL ∞ , with Φ 11 (jω) = Φ 11 (jω) * and Φ 22 (jω) = Φ 22 (jω) * , such that: the uncertainty set ∆ is {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipative and ∀ω ∈ R, L(M (jω), Φ 11 (jω), Φ 12 (jω), Φ 22 (jω), X(jω), Y (jω), Z(jω)) > 0. ( 2 
)
The uncertain system ∆ M is non-causally stable if and only if merely the condition 1 holds.

Proof See Appendix B.

Condition 1 is generally viewed as an assumption which is verified beforehand on the nominal system. This assumption is hopefully very mild and is extremely similar (even weaker in fact) to the one of µ-analysis [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF].

The fact that the uncertainty set ∆ is {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipative in condition 2 can also be verified a priori using Assumption 2.3 and the set of linearly parameterized dissipativity properties Φ(jω) as defined by Corollary 2.1. Note however that this leads to sufficient conditions only. Note also that it is not compulsory as an assumption as it is not used in the proof. It is possible to find them directly as in [START_REF] Feron | Analysis and synthesis of robust control systems via parameter-dependent lyapunov functions[END_REF] for instance. This choice has been made to increase the efficiency of the approach.

As a consequence, Theorem 2.1 boils down in practise to verify condition (2).

Corollary 2.2 Let Φ(jω) be a set (defined by Corollary 2.1) such that for any

(Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)) ∈ Φ(jω), the uncertainty set ∆ is {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipative.
Then the uncertain system ∆ M is non-causally stable and {X(jω), Y (jω), Z(jω)} dissipative if there exists

(Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)) ∈ Φ(jω) such that ∀ω ∈ R, L(M (jω), Φ 11 (jω), Φ 12 (jω), Φ 22 (jω), X(jω), Y (jω), Z(jω)) > 0.
Moreover, ∆ needs to be a bounded and connected set only: it does not need to contain 0 as usually assumed. In our case it is an important fact from a practical point of view as the theorem is recursively applied so that the uncertainty set (the previous branches) does not necessarily contain 0.

When two uncertain systems ∆ 1 M 1 and ∆ 2 M 2 are homogenous, then they share the same dissipative properties: if

M 1 = M 2 and ∆ 1 = ∆ 2 , then ∆ 1 M 1 is {X(jω), Y (jω), Z(jω)} dissipative if and only if ∆ 2 M 2 is {X(jω), Y (jω), Z(jω)} dissipative.
This is the case of the PLL network example of Section 4.

For computational purposes, it may also be interesting to replace

M (jω) I by N (jω) D(jω) with M (jω) = N (jω)D(jω) -1 .
Finally, the theorem also states that the analysis can be performed by a frequency by frequency i.e. applying the frequency gridding approach. This fact will be used in the next section to drop the dependency on jω.

Let us now illustrate the use of Theorem 2.1 with the system presented in Figure 2. First, from the dissipative properties of ∆ 9 and ∆ 10 , find some dissipative properties of the branch T 7 using Theorem 2.1 with ∆ = bdiag(∆ 9 , ∆ 10 ) and M = M 7 . From these several dissipative properties and from the ones of ∆ 8 , use again Theorem 2.1 (and Corollary 2.1) with ∆ = bdiag(T 7 , ∆ 8 ) and M = M 4 to find dissipative properties of the branch T 4 . However, it is possible if T 7 is a bounded set (the connected part of the assumption is ensured by Lemma 2.1). This is the case if its dissipativity properties were well chosen: typically, a conic sector property is needed, see Section 3.1. And so on until branch T 1 where the dissipativity property is a performance index. The overall trade-off between conservatism and computation time then depends on the number of dissipative properties that are searched for at each step. The user can thus set this trade-off by setting the number of dissipative properties.

Practical Formulation of Dissipativity Propagation

In this section, we show how to find dissipative properties (referred to as 'propagated' in the introduction) for the uncertain system ∆ M from the ones of ∆: it is the propagation of dissipativity properties. For the sake of simplicity, we set the value of the frequency without loss of generality as the system is linear time-invariant, so that the dependency on jω is dropped. The problem can be stated as follows.

Problem 3.1 Let Φ be a set such that for any

(Φ 11 , Φ 12 , Φ 22 ) ∈ Φ, the uncertainty set ∆ is {Φ 11 , Φ 12 , Φ 22 } dissipative.
From the set Φ, find X, Y and Z such that the uncertain system ∆ M is {X, Y, Z} dissipative. 

L(M, Φ 11 , Φ 12 , Φ 22 , X, Y, Z) > 0. Proof It is a direct consequence of Corollary 2.2.
Note that the optimization problem defined in Corollary 3.1 parameterizes all the possible propagated properties from the ones of ∆ in Φ: it is non conservative from a propagation perspective.

In the way the propagation is used, ∆ is either a leaf or a branch. In both case, either due to Assumption 2.3 or Corollary 2.1, the set Φ is of the form

i τ i Φ i 11 , Φ i 12 , Φ i 22 with a priori known (Φ i 11 , Φ i 12 , Φ i 22 )
. The optimization problem defined in Corollary 3.1 boils down to find τ i and X, Y and Z such that L(M, Φ 11 , Φ 12 , Φ 22 , X, Y, Z) > 0 with

Φ 11 = i τ i (Φ i 11 ), Φ 12 = i τ i (Φ i 12 ), Φ 22 = i τ i (Φ i 22 )
. It is thus an LMI optimization problem, is convex and can be solved efficiently. Corollary 3.1 defines a optimization problem with complex LMI constraints. For computational purpose, they can readily be converted as real LMI constraints [START_REF] Boyd | Method of centers for minimizing generalized eigenvalues[END_REF]: a complex matrix M is positive definite if and only if the real matrix

M R M I -M I M R is positive definite.
The three preceding remarks hold for all the optimization problems involved in this section.

To improve the overall conservatism of the hierarchical analysis, it is interesting to obtain the 'tightest' propagated dissipativity property. It is performed by interpreting the property in geometrical terms. For each geometrical interpretation, a notion of size is defined and one is interested in minimizing this size.

Conic sector: X < 0

In the case, when X < 0, let us define

H c = -X -1 Y and R * R = Z -Y * X -1 Y.
The dissipativity property of a system H writes then

(z -z c ) * (-X)(z -z c ) < w * R * Rw with z = Hw and z c = H c w. (3) 
which defines the same set as a conic sector [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] in which a system H is said to be in the conic sector (C, P, Q), with C the cone center, whenever

Q -1/2 (z -Cw) 2 < P 1/2 w 2 with z = Hw
The link is provided by

-X = Q -1 , H c = C and R * R = P.
For a SISO system, the inequality (3) defines a disk of center z c and radius w * (X/(R * R))w.

More generally, it is an ellipsoid. Indeed, the inequality can be rewritten as

z R -z cR -(z I -z cI ) T P z R -z cR -(z I -z cI ) < 1 with P = 1 w R -w I T (R * R) R (R * R) I -(R * R) I (R * R) R w R -w I -X R -X I X I -X R . (4) 
Thus, for a given non null input w, the corresponding output signal z = z T R -z T I T , with zc = z T cR -z T cI T , belongs to the ellipsoid

P = {z | (z -zc ) T P(z -zc ) < 1}. ( 5 
)
The volume is here evaluated as in [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF].

Definition 3.1 The volume of the ellipsoid P defined by ( 5) and ( 4) is defined as

vol( P ) 2 = β det(P -1 )
where β is a positive scalar which depends on the size n z of the vector z -zc .

We are interested in finding the smallest one for all inputs such that w = 1. 

-X R -X I X I -X R -1
and such that

1. L(M, Φ 11 , Φ 12 , Φ 22 , X, Y, Z) > 0 holds; 2.      I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0      ≥      Z R Y * R Z I Y * I Y R X R Y I X I -Z I -Y * I Z R Y * R -Y I -X I Y R X R      holds.
This optimization problem is a determinant maximization under linear matrix inequality constraints [START_REF] Vandenberghe | Determinant maximization with linear matrix inequality constraints[END_REF] and is convex.

Proof Problem 3.2 writes minimize maximize maximize vol( P ) 2 over X, Y, Z over ∆ ∈ ∆ over w = 1 subject to ∆ M is {X, Y, Z} dissipative
As the logarithm function is strictly increasing and as β is constant, the optimization problem is equivalent to minimize maximize maximize log(det(P

-1 )) over X, Y, Z over ∆ ∈ ∆ over w = 1 subject to ∆ M is {X, Y, Z} dissipative Now max w =1 log(det(P -1 )) is equal to max w =1 log det λ max -X R -X I X I -X R -1
with λ max the minimal value verifying

λ max I ≥ (R * R) R (R * R) I -(R * R) I (R * R) R .
As a dissipativity property is defined up to a strictly positive multiplicative coefficient and as {X, Y, Z} dissipativity defines the same ellipsoid as {τ X, τ Y, τ Z} dissipativity for any τ > 0 since

1 w R w I T τ (R * R) R τ (R * R) I -τ (R * R) I τ (R * R) R w R w I -τ X R -τ X I τ X I -τ X R = P,
one can search for X, Y and Z such that λ max = 1 without loss of generality. Thus, the optimization problem is equivalent to

minimize maximize log det -X R -X I X I -X R -1 over X, Y, Z over ∆ ∈ ∆ subject to ∆ M is {X, Y, Z} dissipative I ≥ (R * R) R (R * R) I -(R * R) I (R * R) R
Finally, condition 1 of Theorem 3.1 is obtained by applying Corollary 3.1 and condition 2 is obtained by applying Schur's lemma [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF].

Half Planes: X = 0

Half plane A dissipativity property with X = 0 rewrites

ξ T z R -z I -η > 0 with ξ = 2 Y R Y I -Y I Y R w R -w I , η = - w R -w I T Z R Z I -Z I Z R w R -w I .
This last inequality express that the output signal belongs to a half plane defined by the hyperplane

z R z I ξ T z R -z I = η .
ξ is a vector normal to the hyperplane and η the 'signed distance' of the hyperplane to the origin (the dot product of any point of the hyperplane with ξ).

Remark: the passitivity kind of performance is a specific half plane with

X Y Y * Z = 0 I I 0 .
Band A band is the intersection of two half planes with the same normal direction but opposite way. As for the conic sector, we are interested in the smallest band for a given direction, that is for a given Y . The size of a band is defined by the distance between the two parallel hyperplanes.

Definition 3.2 Let ξ, η 1 and η 2 be of appropriate dimensions and define the two half planes

ξ T z R -z I -η 1 > 0 and -ξ T z R -z I -η 2 > 0.
The size of the corresponding band can be defined by

d Y = |η 1 + η 2 | = -η 1 -η 2 > 0.
We are interested in finding the smallest band for all inputs such that w = 1. 

Problem
) ∈ Φ, Z 1 , λ 1 , (Φ 2 11 , Φ 2 12 , Φ 2 22 ) ∈ Φ, Z 2 , λ 2 and d that minimize d such that 1. L(M, Φ 1 11 , Φ 1 21 , Φ 1 22 , 0, Y, Z 1 ) > 0 holds; 2. L(M, Φ 2 11 , Φ 2 12 , Φ 2 22 , 0, -Y, Z 2 ) > 0 holds; 3. dI ≥ (Z 1 + Z 2 ) holds.
This optimization problem is a minimization of a linear cost under linear matrix inequality constraints [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] and is convex.

It is then possible to generate several bands with different normals as performed in the example of Section 4. It is also possible to search for the direction of the band by letting Y to be free.

Proof Problem 3.3 writes minimize maximize maximize |η 1 + η 2 | over X, Y, Z over ∆ ∈ ∆ over w = 1 subject to ∆ M is {0, Y, Z 1 } dissipative ∆ M is {0, -Y, Z 2 } dissipative with η 1 = - w R -w I T Z 1R Z 1I -Z 1I Z 1R w R -w I and η 2 = - w R -w I T Z 2R Z 2I -Z 2I Z 2R w R -w I .
Noting that, |η 1 + η 2 | = -η 1 -η 2 > 0 since the set ∆ M is not empty, the previous problem is equivalent to the optimization problem:

minimize maximize maximize (η 1 + η2 ) over Z 1 , Z 2 over ∆ ∈ ∆ over w = 1 subject to ∆ M is {0, Y, Z 1 } dissipative ∆ M is {0, -Y, Z 2 } dissipative with η1 = w R w I T Z 1R Z 1I -Z 1I Z 1R w R w I and η2 = w R w I T Z 2R Z 2I -Z 2I Z 2R w R w I . Now max w =1 (η 1 + η2 ) is equivalent to min d constrained by dI ≥ Z 1R Z 1I -Z 1I Z 1R + Z 2R Z 2I -Z 2I Z 2R .
After rewriting the LMI in complex form, the optimization is thus equivalent to

minimize maximize minimize d over Z 1 , Z 2 , d over ∆ ∈ ∆ over d subject to ∆ M is {0, Y, Z 1 } dissipative ∆ M is {0, -Y, Z 2 } dissipative dI ≥ (Z 1 + Z 2 )
Finally, conditions 1 and 2 of Theorem 3.2 are obtained by applying Corollary 3.1.

PLL network Example

Let us consider now a numerical example of hierarchical performance analysis of an uncertain large-scale system. One takes as an example the performance analysis of the active clock distribution network from [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF] subject to technological dispersions. An active clock distribution network is composed of N = 16 mutually synchronized Phase-Locked-Loops (they constitute branches of the tree) delivering the clock signals to the chip (see the Fig. 3). To be able to synchronize the PLLs exchange the information on their relative phase through the interconnection network and the phase detectors. This example is particularly well adapted as the performance is measured in frequency domain with homogeneous PLLs.

PLL network description

Since the principal aim of the system is the synchronization, the PLLs are homogeneous, that is have a common interconnection and the same uncertainty set. Of course, during the manufacturing process, there are inevitable technological dispersions which can be represented in the form of parametric uncertainties belonging to the same set. We have thus ∀i ∈ {1, . . . , N }:

T i (jω) = k i (jω + a i ) -ω 2 + k i jω + k i a i (6) 
where k i , a i are the real uncertain parameters defined as k i ∈ (0.76 • 10 4 , 6.84 • 10 4 ) and a i ∈ (91.1, 273.3). ω is the current frequency defined by gridding as suggested in the previous sections.
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Figure 3: PLL network topology

The exchange of information between the PLLs is represented in the Fig. 3 and is modeled by an interconnection matrix M net defined in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF].
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                               (7)
In this example, the transfer function between external signals w and z expresses the performance of the global PLL network and namely its ability to synchronize with periodic reference signal w. This reference signal is represented by its phase so that the PLL network has to track a ramp. More details can be found in [START_REF] Korniienko | Control law synthesis for distributed multi-agent systems: Application to active clock distribution networks[END_REF].

Hierarchical analysis set up

The proposed hierarchical analysis approach is applied in two steps for this PLL network:

1. obtain dissipativity properties of each individual PLL, each PLL being a branch. Here note that the PLL are homogeneous so that the dissipativity properties obtained for one PLL is valid for the others as well;

2. obtain the performance of the overall network through the interconnection of the 16 PLL branches and the matrix M net .

Individual PLL Each PLL can be readily written in the form of an interconnection, which leads after normalization of the uncertainties to:

T i (jω) = ∆ i (jω) M P LL (jω), ∆ i (jω) ∈ ∆
with ∆ of the form

δk i 0 0 δa i , with δ = δk i δa i ∈ R 2 such that δ ∞ ≤ 1 .
It is a standard elementary uncertainty set (the leaves) of the form

{ bdiag i (δ i I n i ) , with δ = [δ i ] ∈ R r such that ∞ ≤ 1 }
representing parametric uncertainties. The dissipativity property of the uncertainty set can then be chosen of the form

Φ 11 Φ 12 Φ * 12 Φ 22 = -D G G * D where D = bdiag i (D i ), with D i = D * i > 0, and G = bdiag i (G i ), with G i = -G * i .
This corresponds to the usual D-G scalings of the µ-analysis ( [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF]). The L scaling was introduced in [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF] to reduce the conservatism in the case of r ≥ 2. Indeed, it is possible to represent the branches T i with a non standard uncertainty set ∆ (and the appropriate interconnection matrix M ) of the form

{ δ ⊗ I , with δ = [δ i ] ∈ R r such that δ ∞ ≤ 1 } .
The dissipativity property of the uncertainty set can then be chosen of the form

Φ 11 Φ 12 Φ * 12 Φ 22 = -D + jL G G * D i with L =       0 V 1,2 . . . V 1,r -V 1,2 0 . . . . . . . . . . . . . . . V r-1,r -V 1,r . . . -V r-1,r 0       (8) 
where

D = bdiag i (D i ), with D i = D * i > 0, G = [. . . G i . . .], with G i = -G * i , and V i,j = V T i,j
are real matrices. The elementary dissipativity properties of the uncertainty set are thus chosen of the form [START_REF] Feron | Analysis and synthesis of robust control systems via parameter-dependent lyapunov functions[END_REF].

As for the dissipativity properties of the PLL itself, we chose:

• a conic sector alone (for comparison with the result obtained in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF]) or with;

• 4 bands (vertical, horizontal, and with a slope of +/-45 deg):

Y ∈ { 1, j, 1 + j, 1 -j }.
This choice has been made a priori, without particular knowledge on a PLL frequency response.

Network performance

The network performance is measured by its frequency response magnitude. The performance dissipativity property is thus chosen of the form

-I 0 0 γ 2 I

Results

Individual PLL For illustration purpose, Figure 4 displays the obtained dissipativity properties of a PLL viewed as system embeddings for different frequencies. The red circle (the red star is its center) and lines represent the embeddings where as the green stars and purple circles represents the systems for some values of the uncertainties.

Network performance

We are now interested in the performance of the PLLs network displayed in Figure 5 while Table 1 displays the characteristics of the different analysis results (the number in brackets for the hierarchical analysis columns is a comparison with the µ-analysis results).

All the analysis results reveal that the PLL network is able to track a ramp since the slope of the max magnitude at low frequencies is +40 dB/dec. Table 1 illustrates the trade-off between conservatism and computation time that can be set by the user with the hierarchical analysis approach: when using the conic sector alone, the result is conservative but is obtained really quickly; when using the conic sector with the bands, the result is much less conservative but is obtained in much more time. For this last hierarchical set up, the 0.998 difference in the maximal peak value with µ-analysis is +0.1 dB, that corresponds to 1.2 % of ratio, which is negligible; the result was obtained in 60 % of the time needed for µ-analysis.

1 1.002 1.004 1. 006 1.008 -8 -7 -6 -5 -4 -3 -2 -1 0 1 x 10 -3 Real 
It should be noted that the computation time decrease of the proposed hierarchical analysis compared to the classical µ-analysis is expected even higher for the large scale system with bigger number of the subsystem. The difference (in the dB-scale) between the maximum gain given by µanalysis and by proposed hierarchical approaches is represented in the Fig. 6. It shows that the peak is not attained at the same frequency.

For most frequencies, µ-analysis performs better in terms of conservatism. Surprisingly, hierarchical analysis performs better in the frequency range (160,300) rad/s with a less demanding computation load at the same time.

Conclusion

In this paper, a hierarchical analysis approach has been proposed for the performance of uncertain large-scale systems. It relies on the propagation of dissipativity properties of subsystems through an interconnection; this propagation result is recursively applied leading to a multi steps analysis. The aim is to propose a trade-off adapted to these large-scale systems when a one-step approach as µ-analysis can lead to a large computation time. A numerical example on a PLL network illustrated the new achieved trade-off. • find other dissipative properties that can be used. We think to a cone as proposed in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF] for instance;

• further assess the achieved trade-off for other examples, especially MIMO ones;

• assess the evolution of the achieved trade-off as a function of the dissipativity properties used.

Another direction is to use differently the propagation result. It is used here in a multi steps approach; it could also be used to lead to a one step approach. This results in a less conservative approach but with more demanding computation. This trade-off can also be assessed.

[28] G. Zames. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Aut. Control, AC-26(2):301-320, April 1981.

A Proof of Lemma 2.1

Let H 1 and H 2 be {X(jω), Y (jω), Z(jω)} dissipative. We prove that, for any λ ∈ (0, 1), Then we have to prove that

λH 1 + (1 -λ)H 2 is {X(jω), Y ( 
f (λ) = (α + β -(γ + γ * )) λ 2 + (-2β + (γ + γ * )) λ + β with α = z 1 (jω) w(jω) * X(jω) Y (jω) Y (jω) * Z(jω) z 1 (jω) w(jω) , β = z 2 (jω) w(jω) * X(jω) Y (jω) Y (jω) * Z(jω) z 2 (jω) w(jω) , γ = z 1 (jω) w(jω) * X(jω) Y (jω) Y (jω) * Z(jω) z 2 (jω) w(jω) .
is strictly positive on (0, 1). f (λ) is a real-valued polynomial with real coefficients of degree 2. Note that, as w(jω) is non null otherwise z(jω) would also be null, we have f (0) = β > 0 and f (1) = α > 0. The only case where f (λ) could be negative for some value of λ is when (α + β -(γ + γ * )) > 0, df dλ (0) < 0 and df dλ (1) > 0. However

df dλ (λ) = 2 (α + β -(γ + γ * )) λ + (-2β + (γ + γ * )) .
The minimum of f is then attained for

λ 0 = 2β -(γ + γ * ) 2 (α + β -(γ + γ * )) . Then 4 (α + β -(γ + γ * )) f (λ 0 ) = 3 (-2β + (γ + γ * )) 2 + 4 (α + β -(γ + γ * )) β
is strictly positive as (α + β -(γ + γ * )) and β are strictly positive. Thus f (λ) is strictly positive on (0, 1).

B Proof of Theorem 2.1

It is a corollary of Lemma B.1 for stability and Lemma B.2 for dissipativity by noticing that condition [START_REF] Jakubovic | The S-procedure in nonlinear control theory[END_REF] implies condition [START_REF] Houpis | Quantitative feedback theory: fundamentals and applications[END_REF].

Lemma B.1 The uncertain system ∆ M is stable if and only if:

1. there exists ∆ 0 ∈ ∆ such that the system ∆ 0 M is stable; 

and for any ω ∈ R M (jω)

I *       -Φ 22 (jω) 0 -Φ 12 (jω) * 0 0 X(jω) 0 Y (jω) -Φ 12 (jω) 0 -Φ 11 (jω) 0 0 Y (jω) * 0 Z(jω)       M (jω) I > 0. (12) 
C Proof of Lemma B.1

Non-causal stability We begin by proving that the non-causal stability of ∆ M is equivalent to condition 2. As M is stable, we only need to prove the non-causal stability of the feedback ∆ A. By definition, we have: for any ∆ and ω det (I -A(jω)∆(jω)) = 0.

We prove it by contradiction. So let us assume that condition 2 is verified but there exists ∆ c and ω c such that det (I -A(jω c )∆ c (jω c )) = 0.

Equivalently, there exists a non null q c (jω c ) such that (I -A(jω c )∆ c (jω c )) q c (jω c ) = 0.

Let p c (jω c ) = ∆ c (jω c )q c (jω c ), then q c (jω c ) = A(jω c )p c (jω c ). By definition of dissipativity of ∆, we have:

p c (jω c ) q c (jω c ) * Φ 11 (jω c ) Φ 12 (jω c ) Φ 12 (jω c ) * Φ 22 (jω c ) p c (jω c ) q c (jω c ) > 0.
Post et pre multiplying of (10) by p c (jω c ) yields

q c (jω c ) p c (jω c ) * -Φ 22 (jω c ) -Φ 12 (jω c ) * -Φ 12 (jω c ) -Φ 11 (jω c ) q c (jω c ) p c (jω c ) > 0
which is a contradiction.

Necessity It is evident from the non-causal stability equivalence.

Sufficiency As M is stable, we only need to prove the stability of the feedback ∆ A.

We show it by contradiction. So let us assume that there exists ∆ u ∈ ∆ such that ∆ u A is unstable while conditions 1 and 2 are met. We show that this assumption with condition 1 leads to the existence of ∆ c and ω c such that det (I -A(jω c )∆ c (jω c )) = 0.

Which is a contradiction from the non-causal stability proof.

As ∆ u and A are stable, applying the Nyquist criterion, it shows that the Nyquist curve defined by det (I -A(jω)∆ u (jω)) , ω ∈ R encircles the origin in the complex plan. At the same time, as ∆ 0 A is stable, the curve det (I -A(jω)∆ 0 (jω)) , ω ∈ R does not encircle the origin. Now, as ∆ is a connected set, it is possible to find a continuous path inside the set that link ∆ 0 (jω) to ∆ u (jω), that is, a continuous function Ψ ω : satisfying constraints [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] and [START_REF] Jakubovic | The S-procedure in nonlinear control theory[END_REF]. For convenience of writing, we drop the dependency to jω in this part of the proof. By definition: for any ∆ ∈ ∆, the uncertain system

[0, 1] -→ ∆(jω) such that Ψ ω (0) = ∆ 0 ( 
∆ M is {X(jω), Y (jω), Z(jω)} dissipative if p w * C D 0 I * X Y Y * Z C D 0 I p w > 0 (13) such that p = ∆ q q = A B p w
This last equality can be rewritten as

I -∆ I 0 A B p w = 0. (14) 
From Finsler's lemma [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF], condition (13) holds for p * w * * defined by ( 14) if and only if there exists τ such that2 :

C D 0 I * X Y Y * Z C D 0 I + τ I 0 A B * I -∆ * I -∆ I 0 A B > 0.
That is: there exists τ such that for any ∆ ∈ ∆,

     C D 0 I I 0 A B      *      X Y Y * Z 0 0 τ I -∆ * I -∆           C D 0 I I 0 A B      > 0.
Let µ 1 µ 2 be such that

µ 1 µ 2 ⊥ =      C D 0 I I 0 A B     
, then, by applying Finsler's lemma, we get the equivalent condition: there exists τ and η such that for any ∆ ∈ ∆,

     X Y Y * Z 0 0 τ I -∆ * I -∆      + η µ * 1 µ * 2 µ 1 µ 2 > 0
It is equivalent by Schur's lemma to: there exists τ and η such that for any ∆ ∈ ∆,

         X Y Y * Z + ηµ * 1 µ 1 > 0 τ I -∆ * I -∆ + ηµ * 2 µ 2 -ηµ * 2 µ 1 X Y Y * Z + ηµ * 1 µ 1 -1 ηµ * 1 µ 2 > 0
Thus there exists τ , η and > 0 such that for any ∆ ∈ ∆,

τ I -∆ * I -∆ + ηµ * 2 µ 2 -ηµ * 2 µ 1 X Y Y * Z + ηµ * 1 µ 1 -1 ηµ * 1 µ 2 -I > 0 Let us define Φ = ηµ * 2 µ 2 -ηµ * 2 µ 1 X Y Y * Z + ηµ * 1 µ 1 -1
ηµ * 1 µ 2 -I.

Then, using Finsler's lemma, the condition there exists τ such that for any ∆ ∈ ∆, τ I -∆ * I -∆ + Φ > 0 is equivalent to for any ∆ ∈ ∆,

∆ I * Φ ∆ I > 0.
That is ∆ is {Φ 11 , Φ 12 , Φ 22 } dissipative.

For the remaining part, let us notice that

-Φ + ηµ * 2 µ 2 -ηµ * 2 µ 1 X Y Y * Z + ηµ * 1 µ 1 -1 ηµ * 1 µ 2 > 0.
Then by Schur's lemma, it is equivalent to Now, the uncertain system ∆ M is {X(jω), Y (jω), Z(jω)} dissipative if and only if condition ( 13) is verified for the set Λ. Due to the inclusion, this is implied by condition [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF] being verified for the set Γ. Using S-procedure [START_REF] Jakubovic | The S-procedure in nonlinear control theory[END_REF][START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF], it is the case if This is exactly condition (12) after factorization.

E Direct Additive Uncertainty Embedding

There exist:

• a matrix G nom ∈ C nz×nw ;

• invertible matrices W o ∈ C nz×nz and W i ∈ C nw×nw ; such that the uncertain system ∆ M is included in the set G u defined

G u = { G nom + W o ∆ u W i , σ(∆ u ) < 1 }
if and only if there exists a solution to one of the two following problems:

1. First: there exist

• a matrix P nom ∈ C nz×nw ;

• a positive definite matrix P o ∈ C nz×nz ;

• a positive definite matrix P i ∈ C nw×nw ;

• a matrix Φ ∈ C (no+n i )×(no+n i ) ; such that ( 15) and ( 16 
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  jω), Z(jω)} dissipative. Let z(jω) * w(jω) * be non null such that z(jω) = H(jω)w(jω) and define z 1 (jω) = H 1 (jω)w(jω) and z 2 (jω) = H 2 (jω)w(jω). Let us also denotef (λ) = z(jω) w(jω) * X(jω) Y (jω) Y (jω) * Z(jω)z(jω) w(jω) .

2 Necessity

 2 jω) and Ψ ω (1) = ∆ u (jω). As the determinant is a continuous function, the function which at ∆(jω) associates det (I -M (jω)∆(jω)) composed with Ψ ω is a continuous function of λ ∈ [0, 1]. Thus there exists ∆ c and ω c such that det (I -A(jω c )∆ c (jω c )) = 0. D Proof of Lemma B.The necessity is proved by construction of Φ(jω) = Φ 11 (jω) Φ 12 (jω) Φ 12 (jω) * Φ 22 (jω)

= 0

 0 constraint[START_REF] Jakubovic | The S-procedure in nonlinear control theory[END_REF] after rearrangement.Sufficiency It follows from the interpretation of a dissipativity property in terms of inclusion of sets. The {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipativity of ∆(jω) is equivalent to p(jω) q(jω) = 0 ∃∆(jω), p(jω) = ∆(jω)q(jω) ∃∆(jω), p(jω) = ∆(jω)q(jω), q(jω) = [ A(jω) B(jω) ]

2 .

 2 P o = W o W * o , P i = W *i W i and P nom = G nom . Second: there exist• a matrix P nom ∈ C nz×nw ;• a positive definite matrix P o ∈ C nz×nz ;• a positive definite matrix P i ∈ C nw×nw ;• a matrix Φ ∈ C (no+n i )×(no+n i ) ; such that (15) and (17) are satisfiedP o = W - * o W -1 o , P i = W * i W i and P nom = P o G nom .

  Problem 3.2 Let Φ be a set such that for any (Φ 11 , Φ 12 , Φ 22 ) ∈ Φ, the uncertainty set ∆ is {Φ 11 , Φ 12 , Φ 22 } dissipative. From the set Φ, find X, Y and Z such that: 1. the uncertain system ∆ M is {X, Y, Z} dissipative; 2. they minimize max ∆∈∆ max w =1 vol( P ) 2 . Problem 3.2 is solved by the following optimization problem: find (Φ 11 , Φ 12 , Φ 22 ) ∈ Φ and X, Y and Z that minimize log det

	Theorem 3.1

  3.3 Let Φ be a set such that for any (Φ 11 , Φ 12 , Φ 22 ) ∈ Φ, the uncertainty set ∆ is {Φ 11 , Φ 12 , Φ 22 } dissipative. Let Y be a matrix of appropriate dimension.From the set Φ and Y , find Z 1 and Z 2 such that:1. the uncertain system ∆ M is {0, Y, Z 1 } dissipative; 2. the uncertain system ∆ M is {0, -Y, Z 2 } dissipative;3. they minimize max ∆∈∆ max w =1 d Y .

	Theorem 3.2 Problem 3.3 is solved by the following optimization problem: find (Φ 1 11 , Φ 1 21 , Φ 1 22

Table 1 :

 1 Characteristics of the analysis results

		4 dB)	6.2 dB (+0.1 dB)	6.1 dB
	Computation time	72 sec (6 %)	767 sec (60 %)	1279 sec

  2. there exists 3 transfer functions Φ 11 (jω), Φ 12 (jω) and Φ 22 (jω) of RL ∞ , with Φ 11 (jω) = Φ 11 (jω) * and Φ 22 (jω) = Φ 22 (jω) * , such that: the uncertainty set ∆ is {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipative The uncertain system ∆ M is non-causally stable if and only if merely the condition 1 holds. The uncertain system ∆ M is {X(jω), Y (jω), Z(jω)} dissipative if and only if there exists 3 transfer functions Φ 11 (jω), Φ 12 (jω) and Φ 22 (jω) of RL ∞ , with Φ 11 (jω) = Φ 11 (jω) * and Φ 22 (jω) = Φ 22 (jω) * , such that: the uncertainty set ∆ is {Φ 11 (jω), Φ 12 (jω), Φ 22 (jω)} dissipative

						(9)
	and for any ω ∈ R					
	A(jω) I	*	-Φ 22 (jω) -Φ 12 (jω) * -Φ 12 (jω) -Φ 11 (jω)	A(jω) I	> 0.	(10)
	Lemma B.2					

The term propagation is kept in reference to[START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] even if the meaning is slightly different.

In fact, τ should depend on ∆, that is τ ∆ . As shown in[START_REF] Chou | Stability multipliers and µ upper bounds: connections and implications for numerical verification of frequency domain conditions[END_REF], it can be used a continuous function τ (∆) on the closure of ∆. But as ∆ is bounded, it can be selected independent of ∆ (take the maximum on the closure of ∆). This fact will be used several times.