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Abstract

The performance analysis of uncertain large-scale systems is considered in this

paper. It is performed via a hierarchical modelling and analysis of the systems thanks

to the recursive application of a propagation of dissipativity properties result. At each

step of the analysis, the local part of the system is viewed as the interconnection of

sub-systems. The propagation is used to obtain ’propagated’ dissipativity properties of

this local part from ’sub’ dissipativity properties of the sub-systems. At the next step,

the former ’propagated’ porperties are used as ’sub’ properties. This is in contrast

with an one-step approach such as (upper bound) µ-analysis which computation time

can be prohibitive for large-scale systems even if the associated optimization problem

is convex: the trade-off between conservatism and computation time is not necessarily

adapted. The purpose is then to obtain a trade-off suited to large-scale systems, an

interesting feature being that the trade-off can be set by the user. The approach is

used on a PLL network example and illustrates the new trade-off achieved.

Keywords Large-scale system, hierarchical analysis, convex optimization.
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1 Introduction

Since the beginning, robustness to uncertainties is a major issue. The sensitivity transfer

function was introduced by Bode as a measure of the impact of uncertainties on the closed

loop. Some design methods were developed with robustness at their core. It is the case

for Quantitative Feedback Theory [10] or H∞ [28]. In the 80’s-90’s, µ-analysis [6, 18] was

developed to investigate the (H∞) performances of Linear Time Invariant systems in the

presence of structured uncertainties. This approach is based on the computation of the

structured singular value µ of frequency dependent matrices, which was proved to be NP-

hard [3]. Fortunately, lower and upper bounds on µ can be efficiently computed; the µ upper

bounds [7] allow to guarantee a certain level of performances with some conservatism. By

efficient, it is understood that the computation time is bounded by a power function of the

problem size [9]. A major interest of the use of µ upper bounds is to obtain a satisfying

trade-off between the computation time and the conservatism of the obtained result.

Nevertheless, even if the computation of µ upper bound is efficient, its computation

time can be important in the case of uncertain large-scale systems. The purpose of this

paper is to propose a robustness analysis (of performances) method with a trade-off between

computation time and conservatism adapted to large-scale systems. Our motivating example

is the robustness analysis of Phase-Locked-Loop (PLL) networks [13], a challenging problem

in Microelectronics.

In the case of large-scale systems with uncertainties defined by conic sector properties,

that is unstructured uncertainties, Safonov approached the problem via a hierarchical analy-

sis using recursively a propagation of conic sector properties result [19]. To the authors’ best

knowledge, the work of [19] is the only one devoted to the problem. Basically, a hierarchical

system can be described as a tree with layers, each of them is composed of systems. Each

system is modeled as the interconnection of sub-systems. These sub-systems are in fact

the systems of the preceding layer. Assuming that the conic properties of the sub-systems

are known, the propagation problem is to find ’propagated’ conic properties for the system

that are not trivially connected to the ones of the sub-systems. If one is able to find these

’propagated’ properties, then the hierarchical analysis boils down to a recursive application

of the propagation.

Unfortunately, its direct application to a (large-scale) system with structured uncertain-

ties can lead to an overly conservative result. While keeping the same overall approach,

we propose in this paper a new hierarchical analysis method which overcomes the disad-

vantages of [19]: the method is efficient and adapted to structured uncertainties. Our

method is based on a generalization of the propagation of conic properties to quadratic

ones. Preliminary results of the present work can be found in [5] where there was only

one ’propagated’ quadratic property (the conic sector one) with the uncertainties already

described by quadratic properties. We present here other quadratic ’propagated’ proper-
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ties. Combining them (their ’intersection’), a finer description can be made of the system.

The user can then set the trade-off by choosing the ’propagated’ properties used, the main

contributor to the computation time being their number.

As in [5], this propagation can be viewed as an embedding problem: find (simpler) sets

that includes the uncertain system. Beyond the hierarchical analysis, this embedding has

many interesting applications. For instance, in the Quantitative Feedback Theory [10], the

aim is to design a controller that achieves some level of performances in front of all the

uncertainties in the system. In the method, it is assumed that it is possible to know the

propagation of the uncertainties through thet system. Another interesting application, is

the use of the embedding to perform µ-synthesis in the integrated framework of [16]; the

advantage being the computation time thanks to the embedding.

Our solution is based on a separation of graph theorem. First proposed in [17] as a general

approach to feedback system analysis, specialized forms were proposed in e.g. [11, 23, 20] for

(uncertain) LTI system analysis. Since the µ upper bound proposed in [7] can be interpreted

as a particular application of the separation of graph theorem, this theorem was applied

to extend µ-analysis to time-delay systems [21] or time-varying/nonlinear systems [15], to

reduce the conservatism of the µ upper bound [24] to cite a few. We reveal here another

interesting application of this powerful theorem.

Paper outline

Section 2 begins with definitions and fundamental properties of dissipativity properties

which are used afterwards. It explicits then the uncertain large-scale system that is con-

sidered with the proposed approach. Section 3 proposed several dissipative properties that

can be used practically. A numerical example on a PLL network is performed in Section 4.

Section 5 concludes the paper.

Notations

R (respectively C) denotes the set of real (resp. complex) numbers. R̄ denotes R ∪

{−∞,+∞}. MR and MI stands for the real and imaginary parts of M .

Rm×n (respectively Cm×n) denotes the set of real (resp. complex) matrices of dimension

m × n. Ir and 0r denote the identity and the zero matrices of size r. M∗ (respectively

MT ) stands for the transpose conjugate (resp. transpose) of M . For several matrices Mi,

i = 1, . . . , n, bdiagi(Mi) denotes the matrix











M1

.

.

.

Mn











. RH∞ (respectively RL∞)

denotes the set of matrices of stable (resp. non causally stable) rational transfer function.

Throughout the paper, when dimensions are omitted, they are assumed to be clear from

the context. Moreover, we consistently denote uncertainties by ∆ and interconnections by
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M . The set∆ is referred to as the uncertainty set. We denote by∆⋆M the set {∆⋆M, ∆ ∈

∆}, with ⋆ standing for the Redheffer star product. This set is also referred to as an

uncertain system. For the uncertain system ∆⋆M , we further denotes the interconnection’s

partitioning of appropriate dimension by

M =

[
A B

C D

]
.

Finally, we denote

L(M,Φ11,Φ12,Φ22, X, Y, Z) =

[
M

I

]∗




−Φ22 0 −Φ∗
12 0

0 X 0 Y

− Φ12 0 −Φ11 0

0 Y ∗ 0 Z




[
M

I

]
.

2 Approach for Hierarchical Analysis of Performances

2.1 Definitions and preliminaries

An uncertain system is modeled as an interconnection ∆ ⋆M with ∆ ∈ ∆. Along with this

definition, we assume:

Assumption 2.1 ∆ is a bounded and connected subset of RH∞ and M belongs to RH∞.

Introducing the internal signals and using the Fourier transform, we get:

p(jω) = ∆(jω) q(jω)

[
q(jω)

z(jω)

]
= M(jω)

[
p(jω)

w(jω)

]
=

[
A(jω) B(jω)

C(jω) D(jω)

] [
p(jω)

w(jω)

]
.

(1)

The stability of an uncertain system is now defined.

Definition 2.1 An uncertain system ∆ ⋆ M is said to be stable (respectively non-causally

stable) if for any ∆ ∈ ∆, the system ∆ ⋆ M is stable (respectively non-causally stable).

In this section, dissipative properties are used. They are defined below.

Definition 2.2 Let X(jω), Y (jω) and Z(jω) be 3 transfer functions of RL∞ such that

X(jω) = X(jω)∗ and Z(jω) = Z(jω)∗. Then,
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1. a system H is said to be {X(jω), Y (jω), Z(jω)} dissipative if for any ω ∈ R and for

any non null [z(jω)∗w(jω)∗]∗ verifying z(jω) = H(jω)w(jω) :

[
z(jω)

w(jω)

]∗ [
X(jω) Y (jω)

Y (jω)∗ Z(jω)

] [
z(jω)

w(jω)

]
> 0;

2. an uncertainty set ∆ is said to be {X(jω), Y (jω), Z(jω)} dissipative if for any ∆ ∈ ∆,

∆ is {X(jω), Y (jω), Z(jω)} dissipative;

3. more generally, an uncertain system ∆ ⋆ M is said to be {X(jω), Y (jω), Z(jω)} dis-

sipative if for any ∆ ∈ ∆, the system ∆ ⋆ M is {X(jω), Y (jω), Z(jω)} dissipative.

Note that when H is stable and

[
X(jω) Y (jω)

Y (jω)∗ Z(jω)

]
=

[
−I 0

0 γ2I

]
,

H has an H∞ norm strictly less than γ. More generally, dissipative properties can model

performance indices. A dissipativity property can also be viewed as an inclusion of sets (of

systems or signals). With the preceding example, the set composed of H is included in the

ball of systems with an H∞ norm strictly less than γ. This set of systems is convex.

Lemma 2.1 Let X(jω), Y (jω) and Z(jω) be 3 transfer functions of RL∞ such that X(jω) =

X(jω)∗ and Z(jω) = Z(jω)∗. Assume that X(jω) < 0, then the set of systems

{H | H is {X(jω), Y (jω), Z(jω)} dissipative}

is convex, and thus connected.

Due to its great interest in terms of geometrical interpretation, the proof is detailed hereafter.

Proof Let us define

Hc = −X−1Y and R∗R = Z − Y ∗X−1Y.

The dissipativity property of a system H writes then

(z − zc)
∗(−X)(z − zc) < w∗R∗Rw with z = Hw and zc = Hcw.

or equivalently

‖(−X)−1/2(H −Hc)w‖2 < ‖Rw‖2.

It is also equivalent to

σ̄((−X)−1/2(H − C)R−1) < 1 with σ̄ the maximum singular value. (2)
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This set corresponds to a ball centered around C with a weighted norm. It is thus convex

and bounded. �

Fundamental properties are now given with a direct corollary. They states that new

dissipativity properties can be generated from original ones. For ease of notation, they are

stated for certain systems. The extension to uncertain systems is straightforward.

Lemma 2.2 Let Hi be {Xi(jω), Yi(jω), Zi(jω)} dissipative, i = 1, . . . ,m. Then H =

bdiagi(Hi) is {bdiagi(Xi(jω)), bdiagi(Yi(jω)), bdiagi(Zi(jω))} dissipative.

Lemma 2.3 Let H be {Xk(jω), Yk(jω), Zk(jω)} dissipative, k = 1, . . . , n. Then for any

τk(jω) > 0, k = 1, . . . , n, H is {
∑

k τk(jω)Xk(jω),
∑

k τk(jω)Yk(jω),
∑

k τk(jω)Zk(jω)}

dissipative.

Corollary 2.1 Let Hi be {Xik(jω), Yik(jω), Zik(jω)} dissipative, i = 1, . . . ,m, k = 1, . . . , n.

Then for any τik(jω) > 0, i = 1, . . . ,m, k = 1, . . . , n, H = bdiagi(Hi) is

{bdiagi(
∑

k τik(jω)Xik(jω)), bdiagi(
∑

k τik(jω)Yik(jω)), bdiagk(
∑

k τik(jω)Zik(jω))}

dissipative.

This corollary also defines a set of linearly parameterized dissipative properties. Let us

denote it Φ(jω).

2.2 Hierarchical system description and proposed approach

From [19], a large-scale system is described by a tree as illustrated in Figure 1 where a

hierarchical structure arises naturally. Each branch of the tree is assigned an index. A

branch, say i, is a two-way channel through which a signal wi (the input) ascends and

another signal zi (the output) descends. The tree obtained by cutting branch i and retaining

everything connected above is an uncertain system called Ti with input wi and output zi.

If a tree Ti has other branches besides branch i then there is a single node denoted Mi from

which other branches ascend. If branch i is the only branch in the tree, then Ti is called a

leaf and is denoted by ∆i. Each Mi and ∆i is an LTI system. Furthermore, each leaf ∆i is

uncertain but its dissipative properties are a priori known.

Assumption 2.2 Each ∆i is a bounded and connected subset of RH∞ and each Mi belongs

to RH∞.

This is the counterpart of Assumption 2.1.

Assumption 2.3 For any i, ∆i is an elementary uncertainty set: there exists a priori

known Xik(jω), Yik(jω) and Zik(jω) such that ∆i is {Xik(jω), Yik(jω), Zik(jω)} dissipative.
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Figure 1: Uncertain linear large scale system
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Examples of elementary uncertainty sets along with their dissipative properties can be found

in [7, 22, 24]. The interest of this assumption will be made clearer in the discussion of the

propagation theorem.

The proposed approach for the performance analysis of a hierarchical system as described

in the introduction is based on a recursive application of the following propagation1 of

dissipativity properties of uncertainties through an interconnection theorem.

Theorem 2.1 The uncertain system ∆⋆M is stable and {X(jω), Y (jω), Z(jω)} dissipative

if and only if:

1. there exists ∆0 ∈ ∆ such that the system ∆0 ⋆ M is stable;

2. there exists 3 transfer functions Φ11(jω), Φ12(jω) and Φ22(jω) ofRL∞, with Φ11(jω) =

Φ11(jω)
∗ and Φ22(jω) = Φ22(jω)

∗, such that:

the uncertainty set ∆ is {Φ11(jω),Φ12(jω),Φ22(jω)} dissipative

and

∀ω ∈ R, L(M(jω),Φ11(jω),Φ12(jω),Φ22(jω), X(jω), Y (jω), Z(jω)) > 0. (3)

If the condition 1 does not hold then the uncertain system is non-causally stable.

Proof See Appendix A. �

The theorem allows to analyze the stability and performance of the uncertain large-scale

system in one shot so that there is no need to analyze the stability separately.

Condition 1 is generally viewed as an assumption that is verified beforehand on the

nominal system. This assumption is hopefully very mild and is extremely similar (even

weaker in fact) to the one of µ-analysis [25].

The fact that the uncertainty set∆ is {Φ11(jω),Φ12(jω),Φ22(jω)} dissipative in condition

2 can also be verified a priori using Assumption 2.3 and the set of linearly parameterized

dissipativity properties Φ(jω) as defined by Corollary 2.1. Note however that this leads to

sufficient conditions only. Note also that it is not compulsory as an assumption as it is not

used in the proof. This assumption allows to increase the efficiency of the approach. It is

possible to find them directly, and thus suppress it, as in [8] for instance.

As a consequence, Theorem 2.1 boils down to verify condition (3) in practise.

1The term propagation is kept in reference to [19] even if the meaning is slightly different.
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Corollary 2.2 Let Φ(jω) be a set such that for any (Φ11(jω),Φ12(jω),Φ22(jω)) ∈ Φ(jω),

the uncertainty set ∆ is {Φ11(jω),Φ12(jω),Φ22(jω)} dissipative.

Then the uncertain system ∆ ⋆ M is non causally stable and {X(jω), Y (jω), Z(jω)}

dissipative if there exists (Φ11(jω), Φ12(jω), Φ22(jω)) ∈ Φ(jω) such that

∀ω ∈ R, L(M(jω),Φ11(jω),Φ12(jω),Φ22(jω), X(jω), Y (jω), Z(jω)) > 0.

Moreover, ∆ needs to be a bounded and connected set only: it does not need to contain

0 as usually assumed. In our case it is an important fact from a practical point of view as

the theorem is recursively applied so that the uncertainty set (the previous branches) does

not necessarily contain 0.

When two uncertain systems ∆1 ⋆M1 and ∆2 ⋆M2 are homogenous, then they share the

same dissipative properties: ifM1 = M2 and∆1 = ∆2, then∆1⋆M1 is {X(jω), Y (jω), Z(jω)}

dissipative if and only if ∆2 ⋆ M2 is {X(jω), Y (jω), Z(jω)} dissipative. This is the case of

the PLL network example of Section 4.

For computational purposes, it may also be interesting to replace

[
M(jω)

I

]
by

[
N(jω)

D(jω)

]

with M(jω) = N(jω)D(jω)−1.

Finally, the theorem also states that the analysis can be performed by a frequency by

frequency approach. This fact will be used in the next section to drop the dependency on

jω.

Let us now exemplify the use of Theorem 2.1 with the system illustrated in Figure 1.

First, from the dissipative properties of ∆9 and ∆10, find some dissipative properties of the

branch T7 using Theorem 2.1 with ∆ = bdiag(∆9,∆10) and M = M7. From these several

dissipative properties and from the ones of ∆8, use again Theorem 2.1 (and Corollary 2.1)

with ∆ = bdiag(T7,∆8) and M = M4 to find dissipative properties of the branch T4.

However, it is possible if T7 is a bounded set (the connected part of the assumption is

ensured by Lemma 2.1). This is the case if its dissipativity properties were well chosen:

typically, it is needed a conic sector property, see Section 3.1. And so on until branch

T1 where the dissipativity property is a performance index. The overall trade-off between

conservatism and computation time then depends on the number of dissipative properties

that are searched for at each step. The user can thus set this trade-off by setting the number

of dissipative properties.
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3 Practical Formulation of Dissipativity Propagation

In this section, we show how to find dissipative properties (referred to as ’propagated’ in the

introduction) for the uncertain system ∆ ⋆ M from the ones of ∆: it is the propagation of

dissipativity properties. For the sake of simplicity, we set the value of the frequency without

loss of generality as the system is linear time-invariant, so that the dependency on jω is

dropped. The problem can be stated as follows.

Problem 3.1 Let Φ be a set such that for any (Φ11,Φ12,Φ22) ∈ Φ, the uncertainty set ∆

is {Φ11,Φ12,Φ22} dissipative.

From the set Φ, find X, Y and Z such that the uncertain system ∆ ⋆ M is {X, Y, Z}

dissipative.

Corollary 3.1 Problem 3.1 is solved by the following optimization problem: find (Φ11,Φ12,Φ22) ∈

Φ and X, Y and Z such that

L(M,Φ11,Φ12,Φ22, X, Y, Z) > 0.

Proof It is a direct consequence of Corollary 2.2. �

Note that the optimization problem defined in Corollary 3.1 parameterizes all the possible

propagated properties from the ones of ∆ in Φ: it is non conservative from a propagation

perspective.

In the way the propagation is used, ∆ is either a leaf or a branch. In both case, either

due to Assumption 2.3 or Corollary 2.1, the set Φ is of the form
{
∑

i

τi (Φ11i,Φ12i,Φ22i)

}

with a priori known (Φ11i,Φ12i,Φ22i). The optimization problem defined in Corollary 3.1

boils down to find τi and X, Y and Z such that L(M,Φ11,Φ12,Φ22, X, Y, Z) > 0. It is thus

an LMI optimization problem, is convex and can be solved efficiently.

Corollary 3.1 defines a optimization problem with complex LMI constraints. For com-

putational purpose, they can readily be converted as real LMI constraints [2]: a complex

matrix M is positive definite if and only if the real matrix
[

MR MI

−MI MR

]

is positive definite.

The three preceding remarks hold for all the optimization problems involved in this section.

To improve the overall conservatism of the hierarchical analysis, it is interesting to obtain

the ’tightest’ propagated dissipativity property. It is performed by interpreting the property

in geometrical terms. For each geometrical interpretation, a notion of size is defined and

one is interested in minimizing this size.
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3.1 Conic sector: X < 0

In the case X < 0, let us define

Hc = −X−1Y and R∗R = Z − Y ∗X−1Y.

The dissipativity property of a system H writes then

(z − zc)
∗(−X)(z − zc) < w∗R∗Rw with z = Hw and zc = Hcw. (4)

which defines the same set as a conic sector [19] in which a system H is said to be in the

conic sector (C, P,Q), with C the cone center, whenever

‖Q−1/2(z − Cw)‖2 < ‖P 1/2w‖2 with z = Hw

The link is provided by

−X = Q−1, Hc = C and R∗R = P.

For a SISO system, the inequality (4) defines a disk of center zc and radius w∗(X/(R∗R))w.

More generally, it is an ellipsoid. Indeed, the inequality can be rewritten as

[
zR − zcR
zI − zcI

]T
P

[
zR − zcR
zI − zcI

]
< 1

with

P =
1

[
wR

wI

]T [
(R∗R)R (R∗R)I
−(R∗R)I (R∗R)R

] [
wR

wI

]
[
−XR −XI

XI −XR

]
. (5)

Thus, for a given non null input w, the corresponding output signal z̃ =
[
zT
R

zT
I

]T
belongs

to the ellipsoid

ǫP = {z̃ | (z̃ − z̃c)
TP(z̃ − z̃c) < 1}. (6)

The volume is here evaluated as [1].

Definition 3.1 The volume of the ellipsoid ǫP defined by (6) and (5) is defined as

vol(ǫP) = β det(P−1)

where β is a positive scalar which depends on the size nz of the vector z̃ − z̃c.

We are interested in finding the smallest one for all inputs such that ‖w‖ = 1 xxx ref

Peaucelle xxx.
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Problem 3.2 Let Φ be a set such that for any (Φ11,Φ12,Φ22) ∈ Φ, the uncertainty set ∆

is {Φ11,Φ12,Φ22} dissipative.

From the set Φ, find X, Y and Z such that:

1. the uncertain system ∆ ⋆ M is {X, Y, Z} dissipative;

2. they minimize max∆∈∆ max‖w‖=1 vol(ǫP).

Theorem 3.1 Problem 3.2 is solved by the following optimization problem: find (Φ11,Φ12,Φ22) ∈

Φ and X, Y and Z that minimize log

(
det

([
−XR −XI

XI −XR

]−1
))

and such that

1. L(M,Φ11,Φ12,Φ22, X, Y, Z) > 0 holds;

2.




I 0 0 0

0 0 0 0

0 0 I 0

0 0 0 0


 ≥




ZR Y ∗
R

ZI Y ∗
I

YR XR YI XI

−ZI −Y ∗
I

ZR Y ∗
R

−YI −XI YR XR


 holds.

This optimization problem is a determinant maximization under linear matrix inequality

constraints [27] and is convex.

Proof Problem 3.2 writes

minimize maximize maximize vol(ǫP)

over X, Y, Z over ∆ ∈ ∆ over ‖w‖ = 1

subject to ∆ ⋆ M is {X, Y, Z} dissipative

As the logarithm function is strictly increasing and as β is constant, the optimization prob-

lem is equivalent to

minimize maximize maximize log(det(P−1))

over X, Y, Z over ∆ ∈ ∆ over ‖w‖ = 1

subject to ∆ ⋆ M is {X, Y, Z} dissipative

Now max‖w‖=1 log(det(P
−1)) is equal to log

(
det

(
λmax

[
−XR −XI

XI −XR

]−1
))

with λmax

the minimal value verifying λmaxI ≥

[
(R∗R)R (R∗R)I
−(R∗R)I (R∗R)R

]
. As a dissipativity property

is defined up to a strictly positive multiplicative coefficient and as {X, Y, Z} dissipativity

defines the same ellipsoid as {τX, τY, τZ} dissipativity for any τ > 0 since

1
[
wR

wI

]T [
τ(R∗R)R τ(R∗R)I
−τ(R∗R)I τ(R∗R)R

] [
wR

wI

]
[
−τXR −τXI

τXI −τXR

]
= P ,
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one can search for X, Y and Z such that λmax = 1 without loss of generality. Thus, the

optimization problem is equivalent to

minimize maximize log

(
det

([
−XR −XI

XI −XR

]−1
))

over X, Y, Z over ∆ ∈ ∆

subject to ∆ ⋆ M is {X, Y, Z} dissipative

I ≥

[
(R∗R)R (R∗R)I
−(R∗R)I (R∗R)R

]

Finally, condition 1 of Theorem 3.1 is obtained by applying Corollary 3.1 and condition 2

is obtained by applying Schur’s lemma [1]. �

3.2 Half Planes: X = 0

Half plane A dissipativity property with X = 0 rewrites

ξT
[
zR
zI

]
− η > 0

with

ξ =

[
YR YI

−YI YR

] [
wR

wI

]
,

η = −2

[
wR

wI

]T [
ZR ZI

−ZI ZR

] [
wR

wI

]
.

This last inequality express that the output signal belongs to a half plane defined by the

hyperplane {[
zR
zI

] ∣∣∣∣ ξT
[
zR
zI

]
= η

}
.

ξ is a vector normal to the hyperplane and η the ’signed distance’ of the hyperplane to the

origin (the dot product of any point of the hyperplane with ξ).

Remark: the passitivity kind of performance is a specific half plane with

[
X Y

Y ∗ Z

]
=

[
0 I

I 0

]
.

Band A band is the intersection of two half planes with the same normal direction but

opposite way. As for the conic sector, we are interested in the smallest band for a given

direction, that is for a given Y . The size of a band is defined by the distance between the

two parallel hyperplanes.
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Definition 3.2 Let ξ, η1 and η2 be of appropriate dimensions and define the two half planes

ξT
[
zR
zI

]
− η1 > 0 and −ξT

[
zR
zI

]
− η2 > 0. The size of the corresponding band is defined

by dY = |η1 + η2|.

We are interested in finding the smallest band for all inputs such that ‖w‖ = 1.

Problem 3.3 Let Φ be a set such that for any (Φ11,Φ12,Φ22) ∈ Φ, the uncertainty set ∆

is {Φ11,Φ12,Φ22} dissipative. Let Y be a matrix of appropriate dimension.

From the set Φ and Y , find Z1 and Z2 such that:

1. the uncertain system ∆ ⋆ M is {0, Y, Z1} dissipative;

2. the uncertain system ∆ ⋆ M is {0,−Y, Z2} dissipative;

3. they minimize max∆∈∆ max‖w‖=1 dY .

Theorem 3.2 Problem 3.3 is solved by the following optimization problem: find (Φ111,Φ121,Φ221) ∈

Φ, Z1, λ1, (Φ112,Φ122,Φ222) ∈ Φ, Z2, λ2 and d that minimize d such that

1. L(M,Φ111,Φ112,Φ122, 0, Y, Z1) > 0 holds;

2. λ1I ≥ Z1 holds;

3. L(M,Φ211,Φ212,Φ222, 0,−Y, Z2) > 0 holds;

4. λ2I ≥ Z2 holds;

5.

[
d λ1 + λ2

λ1 + λ2 1

]
≥ 0 holds.

This optimization problem is a minimization of a linear cost under linear matrix inequality

constraints [1] and is convex.

It is then possible to generate several bands with different normals as performed in the

example of Section 4. It is also possible to search for the direction of the band by letting Y

to be free.

Proof Problem 3.3 writes

minimize maximize maximize |η1 + η2|

over X, Y, Z over ∆ ∈ ∆ over ‖w‖ = 1

subject to ∆ ⋆ M is {0, Y, Z1} dissipative

∆ ⋆ M is {0,−Y, Z2} dissipative

14



with η1 = −2

[
wR

wI

]T [
Z1R Z1I

−Z1I Z1R

] [
wR

wI

]
and η2 = −2

[
wR

wI

]T [
Z2R Z2I

−Z2I Z2R

] [
wR

wI

]
.

This equivalent to the optimization problem

minimize maximize maximize (η̃1 + η̃2)
2

over Z1, Z2 over ∆ ∈ ∆ over ‖w‖ = 1

subject to ∆ ⋆ M is {0, Y, Z1} dissipative

∆ ⋆ M is {0,−Y, Z2} dissipative

with η̃1 =

[
wR

wI

]T [
Z1R Z1I

−Z1I Z1R

] [
wR

wI

]
and η̃2 =

[
wR

wI

]T [
Z2R Z2I

−Z2I Z2R

] [
wR

wI

]
.

Now max‖w‖=1(η̃1 + η̃2)
2 is equivalent to min d constrained by

d ≥ (λ1 + λ2)
2

λ1I ≥

[
Z1R Z1I

−Z1I Z1R

]

λ2I ≥

[
Z2R Z2I

−Z2I Z2R

]
.

After rewriting the LMI in complex form, the optimization is thus equivalent to

minimize maximize d

over Z1, Z2, λ1, λ2, d over ∆ ∈ ∆

subject to ∆ ⋆ M is {0, Y, Z1} dissipative

λ1I ≥ Z1

∆ ⋆ M is {0,−Y, Z2} dissipative

λ2I ≥ Z2

d ≥ (λ1 + λ2)
2

Finally, conditions 1 and 3 of Theorem 3.2 are obtained by applying Corollary 3.1 and

condition 5 is obtained by applying Schur’s lemma [1]. �

4 PLL network Example

Let us consider now a numerical example of hierarchical performance analysis of an uncer-

tain large-scale system. One takes as an example the performance analysis of the active

clock distribution network from [13] subject to technological dispersions. An active clock

distribution network is composed of N = 16 mutually synchronized Phase-Locked-Loops

(they constitute branches of the tree) delivering the clock signals to the chip. To be able to

synchronize the PLLs exchange the information on their relative phase through the inter-

connection network and the phase detectors. This example is particularly well adapted as

the performance is measured in frequency domain with homogeneous PLLs.
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4.1 PLL network description

Since the principal aim of the system is the synchronization, the PLLs are homogeneous,

that is have a common interconnection and the same uncertainty set. Of course, during

the manufacturing process, there are inevitable technological dispersions which can be rep-

resented in the form of parametric uncertainties belonging to the same set. We have thus

∀i ∈ {1, . . . , N}:

Ti (jω) =
ki (jω + ai)

−ω2 + kijω + kiai
(7)

where ki, ai are the real uncertain parameters defined as ki ∈ (0.76 · 104, 6.84 · 104) and

ai ∈ (91.1, 273.3). ω0 is the current frequency defined by gridding.

The exchange of information between the PLLs is modelled by an interconnection matrix

M defined in (8).

Mnet =




0 1
3 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 1
3

1
3 0 1

3 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0

0 1
3 0 1

3 0 0 1
3 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0
1
3 0 0 0 0 1

3 0 0 1
3 0 0 0 0 0 0 0 0

0 1
4 0 0 1

4 0 1
4 0 0 1

4 0 0 0 0 0 0 0

0 0 1
4 0 0 1

4 0 1
4 0 0 1

4 0 0 0 0 0 0

0 0 0 1
3 0 0 1

3 0 0 0 0 1
3 0 0 0 0 0

0 0 0 0 1
3 0 0 0 0 1

3 0 0 1
3 0 0 0 0

0 0 0 0 0 1
4 0 0 1

4 0 1
4 0 0 1

4 0 0 0

0 0 0 0 0 0 1
4 0 0 1

4 0 1
4 0 0 1

4 0 0

0 0 0 0 0 0 0 1
3 0 0 1

3 0 0 0 0 1
3 0

0 0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0

0 0 0 0 0 0 0 0 0 1
3 0 0 1

3 0 1
3 0 0

0 0 0 0 0 0 0 0 0 0 1
3 0 0 1

3 0 1
3 0

0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 1

2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1




(8)

In this example, the transfer function between external signals w and z expresses the

performance of the global PLL network and namely its ability to synchronize with periodic

reference signal w. This reference signal is represented by its phase so that the PLL network

has to track a ramp. More details can be found in [14].

4.2 Hierarchical analysis set up

The proposed hierarchical analysis approach is applied in two steps for this PLL network:

16



1. obtain dissipativity properties of each individual PLL, each PLL being a branch. Here

note that the PLL are homogeneous so that the dissipativity properties obtained for

one PLL is valid for the others as well;

2. obtain the performance of the overall network throught the interconnection of the 16

PLL branches and the matrix Mnet.

Individual PLL Each PLL can be readily written in the form of an interconnection,

which leads after normalization of the uncertainties to:

Ti(jω) = ∆i ⋆ MPLL, ∆i ∈ ∆

with ∆ of the form
{ [

δkiI2 0

0 δaiI2

]
, with δ =

[
δki
δai

]
∈ R

2 such that ‖δ‖∞ ≤ 1

}
.

It is a standard elementary uncertainty set (the leaves) of the form

{ bdiagi (δiIni
) , with δ = [δi] ∈ R

r such that ‖δ‖∞ ≤ 1 }

representing parametric uncertainties. The dissipativity property of the uncertainty set can

then be chosen of the form
[
Φ11 Φ12

Φ∗
12 Φ22

]
=

[
−D G

G∗ D

]

where D = bdiagi (Di), with Di = D∗
i > 0, and G = bdiagi (Gi), with Gi = −G∗

i . This

corresponds to the usual D-G scalings of the µ-analysis ([7]). The L scaling was introduced

in [24] to reduce the conservatism in the case of r ≥ 2. Indeed, it is possible to represent the

branches Ti with a non standard uncertainty set ∆ (and the appropriate interconnection

matrix M) of the form

{ δ ⊗ I , with δ = [δi] ∈ R
r such that ‖δ‖∞ ≤ 1 } .

The dissipativity property of the uncertainty set can then be chosen of the form

[
Φ11 Φ12

Φ∗
12 Φ22

]
=

[
−D + jL G

G∗
∑

Di

]
with L=




0 V1,2 . . . V1,r

−V1,2 0
. . .

...
...

. . .
. . . Vr−1,r

−V1,r . . . −Vr−1,r 0




(9)

where D = bdiagi (Di), with Di = D∗
i > 0, G = [. . . Gi . . .], with Gi = −G∗

i , and Vi,j = Vi,j

are real matrices. The elementary dissipativity properties of the uncertainty set are thus

chosen of the form (9).

As for the dissipativity properties of the PLL itself, we chose:
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• a conic sector alone (for comparison with the result obtained in [5]) or with;

• a conic sector and 4 bands (vertical, horizontal, and with a slope of +/-45 deg):

Y ∈ { 1, j, 1 + j, 1 − j }. This choice has been made a priori, without particular

knowledge on a PLL frequency response.

Network performance The network performance is measured by its frequency response.

The dissipativity property is thus chosen of the form (??).

4.3 Results

Individual PLL For illustration purpose, Figure 2 displays the obtained dissipativity

properies of a PLL viewed as system embeddings for different frequencies. The red circle

(the red star is its center) and lines represent the embeddings where as the green stars and

purple circles represents the systems for some values of the uncertainties.
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Figure 2: Dissipativity properties of a PLL viewed as embeddings
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Hierarchical analysis µ-analysis

Conic sector alone Conic sector and 4 bands

Maximum peak 13.5 dB (+7.4) 6.2 dB (+0.1) 6.1 dB

Computation time 72 sec (6 %) 767 sec (60 %) 1279 sec

Table 1: Characteristics of the analyses

Network performance We are now interested in the performance of the PLLs network

displayed in Figure 3 while Table 4.3 displays the charateristics of the different analyses

(the number in () for the hierarchical analysis columns is a comparison with the µ-analysis

results).
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µ−analysis: 1279 sec
Conic sector alone: 72 sec
Conic sector and 4 bands: 767 sec

Figure 3: Performance of the PLLs network

All analyses show that the PLL network is able to follow a ramp as the slope at low

frequencies is 40 dB/dec. Table 4.3 illustrates the trade-off between conservatism and com-

putation time that can be set by the user with the hierarchical analysis approach: when

using the conic sector alone, the result is conservative but is obtained really quickly; when

using the conic sector with the bands, the result is much less conservative but is obtained

in much more time. For this last hierarchical set up, the difference in the maximal peak

value with µ-analysis is +0.1 dB, that corresponds to 1.2 % of ratio, which is negligible; the

result was obtained in 60 % of the time needed for µ-analysis.

This difference is displayed in Figure 4 and shows that the peak is not attained at the

same frequency. For most frequencies, µ-analysis performs better in terms of conservatism.

Surprisingly, hierarchical analysis performs better in the frequency range (160,300) rad/s

with a less demanding computation load at the same time.
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Figure 4: Difference in achieved performance between hierarchical analysis and µ-analysis
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5 Conclusion

In this paper, a hierarchical analysis approach has been proposed for the performance of

uncertain large-scale systems. It relies on the propagation of dissipativity properties of sub-

systems through an interconnection; this propagation result is recursively applied leading

to a multi steps analysis. The aim is to propose a trade-off adapted to these large-scale

systems when a one-step approach as µ-analysis can lead to a large computation time. A

numerical example on a PLL network illustrated the new achieved trade-off.

Further work directions are:

• find other dissipative properties that can be used. We think to a cone as proposed in

[26] for instance;

• further assess the achieved trade-off for other examples, especially MIMO ones;

• assess the evolution of the achieved trade-off in function of the dissipativity properties

used.

Another direction is to use differently the propagation result. It is used here in a multi

steps approach; it could also be used to lead to a one step approach. This leads to a less

conservative approach but with more demanding computation. This trade-off can also be

assessed.

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in

Systems and Control Theory, volume 15 of Studies in Appllied Mathematics. SIAM,

Philadelphia, USA, June 1994.

[2] S. Boyd and L. El Ghaoui. Method of centers for minimizing generalized eigenvalues.

Linear Algebra and Applications, special issue on Numerical Linear Algebra Methods

in Control, 188:63–111, July 1993.

[3] R. D. Braatz, P. M. Young, J. C. Doyle, and M. Morari. Computational complexity of

µ calculation. IEEE Trans. Aut. Control, AC-39(5):1000–1002, May 1994.

[4] Y.-S. Chou, A.L. Tits, and V. Balakrishnan. Stability multipliers and µ upper bounds:

connections and implications for numerical verification of frequency domain conditions.

IEEE Trans. Aut. Control, 44(5):906–913, 1999.

21



[5] M. Dinh, A. Korniienko, and G. Scorletti. Embedding of uncertainty propagation:

Application to hierarchical performance analysis. In IFAC Joint Conference, 5th Sym-

posium on System Structure and Control, pages 190–195, Grenoble, France, February

2013.

[6] J.C. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proc.,

129-D(6):242–250, November 1982.

[7] M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed

parametric uncertainty and unmodeled dynamics. IEEE Trans. Aut. Control, 36(1):25–

38, January 1991.

[8] E. Feron, P. Apkarian, and P. Gahinet. Analysis and synthesis of robust control systems

via parameter-dependent lyapunov functions. IEEE Trans. Aut. Control, 41(7):1041–

1046, July 1996.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory

of NP-Completeness. W. H. Freeman, 1979.

[10] C.H. Houpis and S.J. Rasmussen. Quantitative feedback theory: fundamentals and

applications. Control engineering. Marcel Dekker, 1999.

[11] T. Iwasaki and S. Hara. Well-posedness of feedback systems: Insights into exact robust-

ness analysis and approximate computations. IEEE Trans. Aut. Control, 43:619–630,

1998.

[12] V.A. Jakubovic̆. The S-procedure in nonlinear control theory. Vestnik Leningrad Univ.

(russian) Vestnik Leningrad Univ. Math. (amer.), 4 (amer.)(1 (russian)), 1971 (russian)

1977 (amer.).

[13] A. Korniienko, G. Scorletti, E. Colinet, and E. Blanco. Control law design for dis-

tributed multi-agent systems. Technical report, Laboratoire Ampère, Ecole Centrale

de Lyon, 2011.

[14] A. Korniienko, G. Scorletti, E. Colinet, E. Blanco, J. Juillard, and D. Galayko. Control

law synthesis for distributed multi-agent systems: Application to active clock distribu-

tion networks. In IEEE American Control Conference, pages 4691– 4696, San Francisco,

June 2011.

[15] A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE

Trans. Aut. Control, pages 819–830, June 1997.

[16] Y.C. Paw and G.J. Balas. Development and application of an integrated framework

for small uav flight control development. Mechatronics, 21(5):789–802, August 2011.

22



[17] M. G. Safonov. Stability and Robustness of Multivariable Feedback Systems. MIT Press,

Cambridge, 1980.

[18] M. G. Safonov. Stability margin of diagonaly perturbed multivariable feedback systems.

IEE Proc., Part D, 129(6):251–256, 1982.

[19] M. G. Safonov. Propagation of conic model uncertainty in hierarchical systems. IEEE

Transactions on Circuits and Systems, pages 388–396, June 1983.

[20] C.W. Scherer. LPV control and full block multipliers. Automatica, 73:361–375, 2001.

[21] G. Scorletti. Approche Unifiée de l’analyse et la commande des systèmes par formulation
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A Proof of Theorem 2.1

It is a corollary of Lemma A.1 for stability and Lemma A.2 for dissipativity by noticing

that condition (13) implies condition (11).

Lemma A.1 The uncertain system ∆ ⋆ M is stable if and only if:
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1. there exists ∆0 ∈ ∆ such that the system ∆0 ⋆ M is stable;

2. there exists 3 transfer functions Φ11(jω), Φ12(jω) and Φ22(jω) ofRL∞, with Φ11(jω) =

Φ11(jω)
∗ and Φ22(jω) = Φ22(jω)

∗, such that:

the uncertainty set ∆ is {Φ11(jω),Φ12(jω),Φ22(jω)} dissipative (10)

and for any ω ∈ R

[
A(jω)

I

]∗ [
−Φ22(jω) −Φ12(jω)

∗

−Φ12(jω) −Φ11(jω)

] [
A(jω)

I

]
> 0. (11)

If the condition 1 does not hold then the uncertain system is non-causally stable.

Lemma A.2 The uncertain system ∆⋆M is {X(jω), Y (jω), Z(jω)} dissipative if and only

if there exists 3 transfer functions Φ11(jω), Φ12(jω) and Φ22(jω) of RL∞, with Φ11(jω) =

Φ11(jω)
∗ and Φ22(jω) = Φ22(jω)

∗, such that:

the uncertainty set ∆ is {Φ11(jω),Φ12(jω),Φ22(jω)} dissipative (12)

and for any ω ∈ R

[
M(jω)

I

]∗




−Φ22(jω) 0 −Φ12(jω)
∗ 0

0 X(jω) 0 Y (jω)

− Φ12(jω) 0 −Φ11(jω) 0

0 Y (jω)∗ 0 Z(jω)




[
M(jω)

I

]
> 0. (13)

B Proof of Lemma A.1

Non-causal stability We begin by proving that the non-causal stability of ∆ ⋆ M is

equivalent to condition 2. As M is stable, we only need to prove the non-causal stability of

the feedback ∆ ⋆ A. By definition, we have: for any ∆ and ω

det (I − A(jω)∆(jω)) 6= 0.

We prove it by contradiction. So let us assume that condition 2 is verified but there exists

∆c and ωc such that

det (I − A(jωc)∆c(jωc)) = 0.

Equivalently, there exists a non null qc(jωc) such that

(I − A(jωc)∆c(jωc)) qc(jωc) = 0.
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Let pc(jωc) = ∆c(jωc)qc(jωc), then qc(jωc) = A(jωc)pc(jωc). By definition of dissipativity

of ∆, we have:

[
pc(jωc)

qc(jωc)

]∗ [
Φ11(jωc) Φ12(jωc)

Φ12(jωc)
∗ Φ22(jωc)

] [
pc(jωc)

qc(jωc)

]
> 0.

Condition (13) implies

[
A(jωc)

I

]∗ [
−Φ22(jωc) −Φ12(jωc)

∗

−Φ12(jωc) −Φ11(jωc)

] [
A(jωc)

I

]
> 0.

Post et pre multiplying by qc(jωc) yields

[
qc(jωc)

pc(jωc)

]∗ [
−Φ22(jωc) −Φ12(jωc)

∗

−Φ12(jωc) −Φ11(jωc)

] [
qc(jωc)

pc(jωc)

]
> 0

which is a contradiction.

Necessity It is evident from the non-causal stability equivalence.

Sufficiency As M is stable, we only need to prove the stability of the feedback ∆ ⋆ A.

By contradiction, we show that this assumption with condition 1 leads to the existence of

∆c and ωc such that

det (I − A(jωc)∆c(jωc)) = 0.

Which is a contradiction from the non-causal stability proof. So let us assume that there

exists ∆u ∈ ∆ such that ∆u ⋆ A is unstable while conditions 1 and 2 are met.

As ∆u and A are stable, applying the Nyquist criterion, it shows that the Nyquist curve

defined by

det (I − A(jω)∆u(jω)) , ω ∈ R

encircles the origin in the complex plan. At the same time, as ∆0 ⋆ A is stable, the curve

det (I − A(jω)∆0(jω)) , ω ∈ R

does not encircle the origin. Now, as ∆ is a connected set, it is possible to find a contin-

uous path inside the set that link ∆0(jω) to ∆u(jω), that is, a continuous function Ψω:

[0, 1] 7−→ ∆(jω) such that Ψω(0) = ∆0(jω) and Ψω(1) = ∆u(jω). As the determinant is

a continuous function, the function which at ∆(jω) associates det (I −M(jω)∆(jω)) com-

posed with Ψω is a continuous function of λ ∈ [0, 1]. Thus there exists ∆c and ωc such

that

det (I − A(jωc)∆c(jωc)) = 0.
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C Proof of Lemma A.2

Necessity The necessity is proved by construction of

Φ(jω) =

[
Φ11(jω) Φ12(jω)

Φ12(jω)
∗ Φ22(jω)

]

satisfying constraints 12 and 13. For convenience of writing, we drop the dependency to jω

in this part of the proof.

By definition: for any ∆ ∈ ∆,
[

p

w

]∗ [
C D

0 I

]∗ [
X Y

Y ∗ Z

] [
C D

0 I

] [
p

w

]
> 0 (14)

such that
p = ∆ q

q =
[
A B

] [
p

w

]

This last equality can be rewritten as

[
I −∆

] [ I 0

A B

] [
p

w

]
= 0. (15)

From Finsler’s lemma [1], condition (14) holds for
[
p∗ w∗

]∗
defined by (15) if and only if

there exists τ such that2:
[
C D

0 I

]∗ [
X Y

Y ∗ Z

] [
C D

0 I

]
+ τ

[
I 0

A B

]∗ [
I

−∆∗

] [
I −∆

] [ I 0

A B

]
> 0.

That is: there exists τ such that for any ∆ ∈ ∆,



C D

0 I

I 0

A B




∗ 


X Y

Y ∗ Z
0

0 τ

[
I

−∆∗

] [
I −∆

]







C D

0 I

I 0

A B


 > 0.

Let
[
µ1 µ2

]
be such that

[
µ1 µ2

]
⊥
=




C D

0 I

I 0

A B


 ,

2In fact, τ should depend on ∆, that is τ∆. As shown in [4], it can be used a continuous function τ(∆)

on the closure of ∆. But as ∆ is bounded, it can be selected independent of ∆ (take the maximum on the

closure of ∆). This fact will be used several times.
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then, by applying Finsler’s lemma, we get the equivalent condition: there exists τ and η

such that for any ∆ ∈ ∆,



X Y

Y ∗ Z
0

0 τ

[
I

−∆∗

] [
I −∆

]


+ η

[
µ∗
1

µ∗
2

] [
µ1 µ2

]
> 0

It is equivalent by Schur’s lemma to: there exists τ and η such that for any ∆ ∈ ∆,




[
X Y

Y ∗ Z

]
+ ηµ∗

1µ1 > 0

τ

[
I

−∆∗

] [
I −∆

]
+ ηµ∗

2µ2 − ηµ∗
2µ1

([
X Y

Y ∗ Z

]
+ ηµ∗

1µ1

)−1

ηµ∗
1µ2 > 0

Thus there exists τ , η and ǫ > 0 such that for any ∆ ∈ ∆,

τ

[
I

−∆∗

] [
I −∆

]
+ ηµ∗

2µ2 − ηµ∗
2µ1

([
X Y

Y ∗ Z

]
+ ηµ∗

1µ1

)−1

ηµ∗
1µ2 − ǫI > 0

Let us define

Φ = ηµ∗
2µ2 − ηµ∗

2µ1

([
X Y

Y ∗ Z

]
+ ηµ∗

1µ1

)−1

ηµ∗
1µ2 − ǫI.

Then, using Finsler’s lemma, the condition there exists τ such that for any ∆ ∈ ∆,

τ

[
I

−∆∗

] [
I −∆

]
+ Φ > 0

is equivalent to for any ∆ ∈ ∆,
[
∆

I

]∗
Φ

[
∆

I

]
> 0.

That is ∆ is {Φ11,Φ12,Φ22} dissipative.

For the remaining part, let us notice that

−Φ + ηµ∗
2µ2 − ηµ∗

2µ1

([
X Y

Y ∗ Z

]
+ ηµ∗

1µ1

)−1

ηµ∗
1µ2 > 0.

Then by Schur’s lemma, it is equivalent to



X Y

Y ∗ Z
0

0 −Φ


+ η

[
µ∗
1

µ∗
2

] [
µ1 µ2

]
> 0.
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Applying Finsler’s lemma, it is equivalent to




C D

0 I

I 0

A B




∗ 


X Y

Y ∗ Z
0

0 −Φ







C D

0 I

I 0

A B


 > 0

which is exactly constraint (13) after rearrangement.

Sufficiency It follows from the interpretation of a dissipativity property in terms of in-

clusion of sets. The {Φ11(jω),Φ12(jω),Φ22(jω)} dissipativity of ∆(jω) is equivalent to

{[
p(jω)

q(jω)

]
6= 0

∣∣∣∣ ∃∆(jω), p(jω) = ∆(jω)q(jω)

}

⊆{[
p(jω)

q(jω)

]
6= 0

∣∣∣∣∣

[
p(jω)

q(jω)

]∗
Φ(jω)

[
p(jω)

q(jω)

]
> 0

}

which implies

Λ ⊆ Γ

with

Λ =

{[
p(jω)

w(jω)

]
6= 0

∣∣∣∣ ∃∆(jω), p(jω) = ∆(jω)q(jω), q(jω) = [ A(jω) B(jω) ]

[
p(jω)

w(jω)

]}

Γ =

{[
p(jω)

w(jω)

]
6= 0

∣∣∣∣
[

p(jω)

w(jω)

]∗ [
I 0

A(jω) B(jω)

]∗
Φ(jω)

[
I 0

A(jω) B(jω)

] [
p(jω)

w(jω)

]
> 0

}

Now, the uncertain system ∆ ⋆ M is {X(jω), Y (jω), Z(jω)} dissipative if and only if con-

dition (14) is verified for the set Λ. Due to the inclusion, this is implied by condition (14)

being verified for the set Γ. Using S-procedure [12, 1], it is the case if

[
C(jω) D(jω)

0 I

]∗ [
X(jω) Y (jω)

Y (jω)∗ Z(jω)

] [
C(jω) D(jω)

0 I

]
+ . . .

[
I 0

A(jω) B(jω)

]∗
(−Φ(jω))

[
I 0

A(jω) B(jω)

]
> 0.

This is exactly condition (13) after factorization.

D Direct Additive Uncertainty Embedding

There exist:
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• a matrix Gnom ∈ C
nz×nw ;

• invertible matrices Wo ∈ C
nz×nz and Wi ∈ C

nw×nw ;

such that the uncertain system ∆ ⋆ M is included in the set Gu defined

Gu = { Gnom +Wo∆uWi , σ̄(∆u) < 1 }

if and only if there exists a solution to one of the two following problems:

1. First: there exist

• a matrix Pnom ∈ C
nz×nw ;

• a positive definite matrix Po ∈ C
nz×nz ;

• a positive definite matrix Pi ∈ C
nw×nw ;

• a matrix Φ ∈ C
(no+ni)×(no+ni);

such that (16) and (17) are satisfied

∀∆ ∈ ∆,

[
∆

I

]∗
Φ

[
∆

I

]
≥ 0 (16)




I 0 0

0 C D

0 I 0

0 A B

0 0 I




∗ 


−Po I 0 Pnom

I 0 0 0

0 0 Φ 0

−P ∗
nom 0 0 −Pi







I 0 0

0 C D

0 I 0

0 A B

0 0 I



< 0 (17)

with Po = WoW
∗
o , Pi = W ∗

i Wi and Pnom = Gnom.

2. Second: there exist

• a matrix P̃nom ∈ C
nz×nw ;

• a positive definite matrix P̃o ∈ C
nz×nz ;

• a positive definite matrix Pi ∈ C
nw×nw ;

• a matrix Φ ∈ C
(no+ni)×(no+ni);

such that (16) and (18) are satisfied



I 0 0

0 C D

0 I 0

0 A B

0 0 I




∗ 


−P̃o P̃o 0 P̃nom

P̃o 0 0 0

0 0 Φ 0

−P̃ ∗
nom 0 0 −Pi







I 0 0

0 C D

0 I 0

0 A B

0 0 I



< 0 (18)

with P̃o = W−∗
o W−1

o , Pi = W ∗
i Wi and P̃nom = P̃oGnom.
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