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Continuum modeling of beamlike lattice trusses using
averaging methods

B. Burgardt, P. Cartraud

Department of Mechanics and Materials, Ecole Centrale de Nantes, B.P. 92101, 44321, Nantes, Cedex 3, France

A general procedure to determine the equivalent beam properties of beam-like lattice trusses is presented. The
method is based on the energy equivalence. Its main features are the use of piecewise linear functions to represent
the displacements, and the definition of the continuum stress and strain parameters by their average values over the
continuum cell. This allows a unifying approach to be obtained to derive methods for computing the effective beam
properties. It is shown that there is only one rigorous method, and this method takes the lattice periodicity into
account. Moreover, the classical method based on static condensation is found to be only approximate. The
procedure is applied to examples of planar lattice trusses in static analysis. The results prove the effectiveness and
the reliability of the present approach, and comparisons are made with results obtained from other classical

methods.
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1. Introduction

Lattice structures have been used for many years in
civil engineering, and they are candidates for future ap-
plications in space, due to their low cost, light weight
and high stiffness. A discrete finite element model of a
large repetitive structure can become computationally
expensive, and inappropriate to study the overall struc-
tural response and the vibration modes. This is why
simplified models have to be developed.

Several methods have been discussed in the litera-
ture, and they are reviewed in the survey paper [1].
Among them, the substitute continuum approach has
several advantages, and has proved to be suitable for
the analysis of large repetitive lattices [1]. In this field,

the approaches used can be grouped into two main
classes.

The first one includes methods in which the conti-
nuum behaviour is assumed a priori (e.g. a
Timoshenko-beam for a beam-like lattice). Then, the
problem amounts to finding the equivalent continuum
properties. The equivalence can be defined on the ener-
gies [1-5], or on the constitutive relations, by trans-
forming the force—displacement relationships in the
repetitive lattice into constitutive equations in the con-
tinuum model [6].

In the second class of methods, the governing laws
of the continuum are obtained from the discrete nodal
equations. Then, either an asymptotic expansion and a
double-scale writing [7], or a finite difference operator
relating the displacements of two consecutive lattice
sections [8] are used, or both [9].

In this paper, the general framework of the energy
equivalence between the lattice and the continuum



model is used to derive the equivalent properties.
Usually, the main steps of such an approach consist of
[1-4]:

1. Isolating a typical (repeating) cell.

2. Expanding the nodal displacements in a Taylor
series.

3. Identifying the strain parameters for the continuum.

4. Transforming the energies expressed in the nodal
quantities into continuum displacements and strains.

5. Computing the effective continuum properties.

The method presented herein follows this procedure,
but with changes in steps 2, 3 and 5. A new displace-
ment field expression is introduced based on piecewise
linear functions in order to describe the exact displace-
ment field in the trusses more accurately. Besides, in
connection with the homogenization theory of periodic
materials [10], the continuum strain and stress par-
ameters are defined by their average values over the
cell. The characterization of the continuum stresses
represents the most significant improvement to the
methods based on the energy equivalence proposed in
the literature [1-5]. Then, a rigorous partitioning of
the strain parameters is possible, so as to derive the
equivalent continuum properties, and take the lattice
periodicity into account. Moreover, from the matrix
formulation obtained, it will be shown that the static
condensation which is widely used [2—5] to obtain the
effective continuum properties, is an approximation.

In the present paper, the method is applied to plane
pin-jointed beam-like lattices in static analysis, but it
can also be used for three-dimensional lattices in
dynamic analysis.

The expressions for the displacement field and the
definition of the continuum strain and stress par-
ameters are presented in Section 2. From the matrix
formulation in Section 3, different methods to deter-
mine the constitutive relations for the Timoshenko-
beam model are proposed in Section 4, and compari-
sons between the methods are made in Section 5.
Finally, numerical examples are given in Section 6 and
prove the reliability of our approach.

2. Preliminary developments
2.1. Expressions of displacements

The starting point for the continuum modeling of
lattice trusses is usually the introduction of a displace-
ment field, which is herein based on the representation
of the deformed shape of the bay boundary. In order
to illustrate our approach, let us first consider a single-
bay lattice (only one bay on the cell length). The case
of the double-bay lattice will be treated afterwards.

Fig. 1. The single-bay lattice.

2.1.1. Single-bay lattice

A study is made of the planar rectangle of length /
and height /4 shown in Fig. 1, with the origin of the
coordinate system at the cell center.

All the truss members are pin-jointed, and the cell
can either be a single- or a double-laced lattice truss
(only the vertical and the horizontal trusses have been
represented). Then, a finite element model introduces 8
degrees of freedom.

It can be seen that the following displacement field
expressions ((x,y) are the coordinates of a truss point):

u(x,y) = ap + a1 x + ayy + azxy

v(x,y) = by + b1 x + byy + bsxy (1)

gives an exact representation of the deformed shape of
the bay boundary. Therefore, the number of par-
ameters introduced is equal to the total number of
degrees of freedom of the cell.

Moreover, in each truss, the displacement field is lin-
ear, and if we consider the two vertical (respectively
horizontal) trusses, the axial displacement v (respect-
ively u) varies linearly in y (respectively in x). As a
result, Eq. (1) gives an exact description of the displa-
cement field for these trusses parallel to the coordinate
axes. However, for the diagonal trusses, the axial dis-
placement is found from Eq. (1) to be an approxi-
mation in the form of a polynomial of second degree
in x’, the local abscissa of the truss.

If the continuum which completely covers the cell is
considered, the displacement field in it is also given by
Eq. (1), and is extended to the continuum domain,
with (x,y) e Sc=[—1/2,1/2] x [—h/2,h/2].

After differentiation, one can easily obtain (the sub-
script ,x indicates a partial derivative with respect to
x):

1
u(x,y) = up + xex + y(iyxy — r0> + Xy,

1
v(xX,y) = vo + X(§ Yy T "o) + yey + xpey (2)

where the rigid body displacement (ug,vo), the rotation
ro=(v—u,)/2 and the strains are evaluated at the cell
origin.
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Fig. 2. The double-bay lattice.

2.1.2. Double-bay lattice

Let us now add a second bay (of the same length
for the sake of simplicity) to the previous single-bay
lattice, as shown in Fig. 2, where O; is the origin and
(x',y) the coordinates of an ith bay point.

The length of the cell is again noted, /, with each
bay of length //2. The displacement field of this
double-bay lattice is simply written from the results of
the previous section, considering each bay separately,
hence Eq. (2), with eight parameters in each bay. The
number of parameters is easily reduced to 12 (the num-
ber of degrees of freedom of the cell) and the continu-
ity of the displacement field at the junction of the two
bays is taken into account. The following equations
are then obtained:

lll 2 12

”0+Zex:”0_zex
I(1 [(1
%+Z(y;+%>=%—z(yé+é)
1 1, 2 lz

6+ 56, =6 — 76 (3)

where the superscript i stands for the bay i.

The previous displacement field expression has the
main advantage of exactly representing the deformed
shape of the bay boundary and the displacement in the
trusses parallel to the coordinate axes, as is also the
case for the single-bay lattice. This displacement is ap-
proximate only for the other trusses.

2.1.3. Comparison with other methods

In the literature, the problem of finding the displace-
ment field is generally treated by means of Taylor
series expansion in the axial direction of the equivalent
beam. This expansion can be made directly on the dis-
placement field [3-4], or on the strain field [1-2]. In
both cases, the method consists of representing the dis-
placements by polynomials, the order of which is
dependent on the cell configuration.

For a single-bay lattice, such an approach leads to a
linear displacement field, equivalent to that given in

Eq. (1) (see Ref. [3], where the rigid body rotation is
expressed with a parameter different from ry).

In the case of a double-bay lattice, the Taylor series
expansion method leads to quadratic terms in x in the
displacement field expression [4]. It turns out that the
deformed shape of the bay boundary is approximated,
while it is exactly described by the piecewise linear
functions proposed in this paper.

Therefore, it can be concluded that, for a multiple-
bay lattice, our approach gives a more accurate ap-
proximation of the displacement field.

2.2. Macroscopic strains

The next step to building a substitutive continuum
model is to define the strains associated with the over-
all behaviour of the cell. As in the homogenization
methods of periodic materials [10], we choose to work
with the average values of the local strains over the
continuum cell.

2.2.1. Single-bay lattice

Since the origin of the coordinate system is at the
cell center, the average value of each component of
strains or strains gradient in Eq. (2) is equal to its
value at the cell origin. Then, if ( - ) stands for the
averaging operator defined over the continuum cell, we
have:

(o)

1
= ds, 4
IML“ )

where |S.| is the surface of the continuum cell, i.e.
|Se|=1h in our case (a unit thickness is assumed). Eq.
(2) is now written as follows:

1
”(xay) = uy + x(ex) + y(z(’/x);) - "0) + xy<€x,y>

1
vmw=m+x6ww+m)+mm+mmw> 5)

2.2.2. Double-bay lattice

The average value over the cell is calculated from
the intermediate results obtained for each bay. Let
( - ); denote the averaging operator over the ith bay;
then, for two bays of the same length //2 we have:

(o) = (o)1 + (2)2)/2 (6)
Defining o as:
o = (o) — (o) = (o) — (o) (7

Eq. (3) becomes:



1_ _ [

nyy —To Z(QV,}’)

_ /

€y = Z(@f,x) (8)

In each bay, Eq. (7) can be used to express the displa-
cement field as a function of («) and a, where o is one
of the following items: {ug, Vo, 70, €xs €3 Vs €Expn €y -
The number of parameters can be reduced from 16 to
12 by eliminating o, 79, 37,, — 7o and &, using Eq.

(8).

2.2.3. Comparison with other methods

For the methods based on a Taylor series expansion,
the strain and strain gradient parameters for the conti-
nuum are defined by their value at the cell center. In
the case of the single-bay lattice, our approach is
equivalent to the preceding ones, both for the displace-
ment field (see Subsection 2.1.3) and for the continuum
strain parameters.

For the multiple-bay lattice, the comparison is more
difficult because of the difference between the two dis-
placement fields. However, it can be noticed that the
macroscopic strains used in our approach are not
equal to their values at the cell center. Since we are
interested in the overall behaviour of the continuum,
the choice of averaging the macroscopic strain gradi-
ents seems to be better, as in the homogenization the-
ory [10].

2.3. Macroscopic stresses

The effective stiffness of the lattice relates the macro-
scopic strains (defined in the previous section) to the
macroscopic stresses. Two means can be used to calcu-
late these macroscopic stresses.

2.3.1. Beam analogy

Let us consider a typical cell of the (single- or mul-
tiple-bay) lattice, as an element of a repetitive lattice
subjected to external loads. The cell is in equilibrium
with concentrated loads applied to the nodes at
x= +1//2. The loads are assumed to be zero at the
other nodes of the boundary y= +//2, as shown in
Fig. 3.

For such a beam-like lattice, the continuum model is
a one-dimensional beam. Then, if the cell is considered
as a beam of length /, the extensional force N and the

Y, AY4

X>
Y] Y3

X4
»
X] X3

Fig. 3. The cell isolated from the repetitive lattice.

transverse shear force 7 are constant along the beam,
and the bending moment A is linear. Therefore, one
directly obtains the average value of the integrated
stresses over the beam length:

1
(N)=X3+Xs=—-(X1+Xr) = 7inXi

1
(1) = YZXI'YI'

1

(M) =

(30— x0+ hoe - x0)
= —% inini ©)

where the summation is made from 1 to 4.

It should be noticed that, after assuming the conti-
nuum to behave like a beam, the macroscopic inte-
grated stresses are averaged over the beam length.

2.3.2. Energy equivalence

Another means of obtaining the macroscopic stresses
is to equate the strain energy of the repeated discrete
lattice and that of the continuum element. The energy
equivalence is classically used in the substitute conti-
nuum approach, and also in the homogenization
methods. It will enable us to characterize the macro-
scopic stresses as the dual quantities of the macro-
scopic strains.

2.3.2.1. Single-bay lattice
The finite element analysis of the lattice cell shown
in Fig. 3 gives a system of the form:

[Kal{ua} = {Fq} (10)

where [Ky4] is the stiffness matrix, {uy} the vector of
nodal displacements and {F4} the vector of equivalent
nodal forces (X}, Y;) (the subscript ‘d’ refers to the dis-
crete lattice). Eq. (5) can be written at each node
i = 1,4 as follows:



{ i } = [T {ue) (11)

Vi

where {uc}" = {ug,vo,r0.{E} " {E1} " {E2}"} (the subscript
‘¢’ refers to the continuum) with

(ET = () () (=€)

E, = <€y>; E; = <6y,x> (12)

and where the matrix [I';] is defined as:

I 0 -y x; y/2 —xyi O 0 (13)
01 x; 0 x;/2 0 Vi XY

This matrix differs from the matrix [7;] given in Ref.
[4] where quadratic terms in x; and y; are added
because ¢, , and ¢, appear in the coeflicients of the
polynomials representing the displacement field re-
spectively in v . and u ,,. Since the origin of the coor-
dinate system is at the cell center, these terms are
constant, and it can be derived that transformation of
Egs. (11) and (13) is equivalent to that proposed in
Ref. [4].

Then, with [I]"=[[I]%[0]5 051504 ], we can
write:

{ua} = [I'fuc} (14)
and substituting Eq. (14) in Eq. (10) yields:
(I TKa Nuey = (11 {Fa) (15)

Denoting {F,} =[I']"{Fy4}, this vector is found to be:
{F}" = { ZXi,ZYi,Z(—)/iXi +x:Y;),
i i i
Zj:xiXhXi:(J}iXi+xiYi)/2_ inJ/iXi, (16)
Xi:iniainlei}

Next, the strain energy on the discrete cell expressed in
terms of the continuum parameters is given by:

1
Ud = E{uc}T{Fc} (17)

On the other hand, the strain energy on the continuum
(a unit thickness is assumed) is expressed as:

[ __
U, = —J 7 dS. (18)
S(.

where S. is the continuum cell surface.
Using Eq. (5), U, can be re-written as:

1
Ue. = i{uc}T{Fa} (19)
where the vector {F,} is found to be:

{FU}T = J {O,O,O,GXX,ny,
S (20)

— (Yo + XO'xy),O'yy,(XO'},vy + yaxy)} dsS.

In order to calculate the components of {F,}, given
that the continuum is a beam of axis x, we write:

12 { oh)2
J Oxx dSc = J J Oxx dy dx
Se 12 \J=np2

172
= J N(x) dx = I[{N)

—12

e2))

In the same way, it can easily be seen that the fifth
component of {F,} is equal to /(7). In order to show
that the sixth component of {F;} is equal to /(M), let
us prove that:

J X0y, dS. =0 (22)
Sc

Since the center of the cell is at x = 0, it is sufficient to
show that Vi/;zl/zoxy dy is independent of x. To this end,
the continuum is considered as a bidimensional domain
in plane stress state, subjected to external loads on its
boundary x= +//2 and with free edges at y= + /2.
Then, using the equilibrium equation, we have:

P h/2 h/2
I J I, oydy ) = —J e Oyyy dy (23)
- —h

and this last integral is zero because of the boundary con-
ditions.

From the energy equivalence Uyq= U, and using
Egs. (17) and (19), one can derive:

{Fe} = {F5) 24

As a result, it can be checked that the first three com-
ponents of {F.} are zero, which corresponds to the cell
equilibrium. The next three relationships show that the
energy equivalence enables us to defined the average inte-
grated stresses as the dual quantities of the average
strains. The last two components of {F,} will be ident-
ified later.
It follows that {F,} can be put in the form:



(F,AT = 1{0,0,0,{Z)" {F1)"(F>) ") (25)

with

{2} = {(N) (D), (M)}

IF) = s g,y dS. = Z)’i Y;

IF, = (xo'yy +)/‘7xy) ds. = inyi Y; (26)
J S, i

It can be seen that the results are in agreement with
those of Subsection 2.3.2.1 where the energy equival-
ence was not used: taking into account that

D (—yiXi+xiYi) =0
i
we have:
Y (X xiY)/2= ) X
i i
2.3.2.2. Double-bay lattice
The modifications to the previous development for the

case of a double-bay lattice are presented now. From the
results of Section 2.2.2, the vector {u.} can be noted:

{uc}" = {{u Y AEYAE Y AE Y (B (27)
with
. . 1_ _
W} = {(uo).(vo),(ro)}; {E'}' = {Exaiyxy + Vo}
{EYT = {(ex)s () (—€x))
{El }T = {<Ey>az,vc,yazy,x}; {EZ}T = {<€y,x>} (28)

Then, expressing Eq. (5) in the global coordinate sys-
tem (the origin of which is at the cell center), the
matrix [I'] defined in Eq. (14) can be found as follows:

e for the first-bay nodes (the superscript indicates
the bay number):

e for the second-bay nodes, similar expressions hold,
with the four terms including —(x;+//4) changed into
+(x;—1/4).

We obtain [FT'=[[I'1]". [F21", (3%, (3, (73],
[ {17], where the nodes 1-4 are shown in Fig. 3 and
the nodes 5 and 6 are located at the junction of the
two bays. Since there is no external load on these two
interior nodes, the calculation of {F.}=[I"1"{F4}
yields:

{Fe)T ={ D XY Yy (—yiXi+ XY,
ToT S
Zx,-Xi,% D (yiXi+x;Y),
-~ Zx,;y,-Xi,é ZX,% Z Y:, Zy,- Yi,é Zyixi,
SYEONI
; l

where the summation is made from 1 to 4.

The energy equivalence gives the eight relations in
Egs. (16), (20), (24), (26) and four new relationships
which are not reported here. The vector {F,} can then
be defined as:

{(F,)" = 1{0,0,0,{=)" {F }".{F}" (R} (32)
with
2 = {(NT).(M)}; (F7}T = 10,0}
HF)T = Z{ Y ! X, ! .YA}
1 - Vi 1,4% 1,4% i
IF> = inyi Y; (33)

2.3.3. Comments on the continuum stresses

In Section 2.3, it is shown that the energy equival-
ence makes it possible to calculate the macroscopic
integrated stresses. It must be noticed that in the litera-
ture, the developments are usually focused on the
strain and Kkinetic energies [1-6] and no special atten-

1
: :i } = [I'} Huc} (29) tion is paid to the integrated stresses. It will be seen in
! Section 4 that the knowledge of these efforts allows a
with better understanding of the assumptions used for the
computation of the equivalent continuum parameters.
'] = [1 0 —yi xi »i/2 —xiyi —(xi+1/4) 0 0 —(x;+1/Dyi 0 0 ] (30)
! 0 1 X 0 X,’/2 0 0 —(Xl+l/4) Vi 0 —(Xi+l/4)y,‘ XiVi



3. Matrix formulation

After suppressing the rows and columns correspond-
ing to the rigid body terms, Egs. (15), (24) and (25)
lead to:

Ky Kp K[} {2}
K) K K E, =11 £ (34)
K%l K%z K%3 E, F

for a single-bay lattice, and in the same way, the re-
lation:

Kl KL K Ky [ (E) (2
K%l K %2 K %3 K %4 {E } =/ {0} (35)
K%l K%z K§3 K§4 {£1} {F1)
K%l Kfu K4213 K}M {Ex} {F>}

is obtained for a double-bay lattice.

4. Computation of beam parameters
The problem is to find [D"°™] such that:
(Z}y=[D"" E) (36)

Three different methods are proposed herein, consist-
ing of eliminating the strain and stress terms in Egs.
(35) and (36) that are not involved in the Timoshenko-
beam theory.

4.1. The periodic solution

Due to the periodicity of the repetitive lattice, the
strains and internal efforts are locally periodic in the
lattice. This also holds for the strains and stresses in
the equivalent continuum which is periodic too. Then:

{(X1,X2,Y1, Y2} = —{X3,X4,Y3, Y4} (37)

and ¢, will take the same value on the opposite sides
of the cell. Thus, it turns out that {E,} ={F;}=0. As a
result:

1
Dfom — (K = Ki2K 5 Kap) (38)

where K,-j:K! i,j = 1,2 for the single-bay lattice, and

i

K2
K=K [Kol=[KLKL): [Ka]=| 3

K3

K3, K}

[Kzz]Z[ 7 23]
K3 K3

b

| I

(39)

for the double-bay lattice.

This method of computation of the beam parameters
is equivalent to that proposed in Ref. [2]. In the above
mentioned paper, the strain components corresponding
to {E,} are set to zero so as to ensure the compatibility
between the repeated elements, which is of course
equivalent to the strain periodicity. On the other hand,
{F} is set to zero according to the Timoshenko-beam
theory, because this force is associated with the strain
component ¢,.

Therefore, we have presented a rigorous way of
obtaining the effective coefficients of the beam, and the
lattice periodicity is taken into account. However, it is
interesting to show that approximate methods can be
derived from the matrix formulation of Section 3, and
compare them with other methods discussed in the lit-
erature.

4.2. A force method

Another way of obtaining the overall beam beha-
viour is to assume that {F} ={F,} ={0}, which gives:

m 1 * * * _ *
D;w = 7(K11 - KIZ(KZZ) 1K21) (40)

where K7, ij = 1,2 is given by a formula similar to
Eq. (39) for the single-bay lattice, and for the double
bay lattice:

K;I = K%ﬁ [Kiz] = [K%ZK%3K%4];

5

[Ky]= K%l ;
| K3 (41)

[Kzz]: K%z K§3 K§4

Such a method amounts to eliminating, through static
condensation, all the strain parameters which do not
appear in the macroscopic strains {E} of the conti-
nuum. This approach has already been applied in
Refs. [3-4].

Another means of determining the matrix D is to
submit the lattice (with the help of the matrix [I']

hom
F
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Fig. 4. The force method loading cases (single-bay lattice).

defined in Subsection 2.3.2.1 and 2.3.2.2) to three
different loading cases corresponding to a unit load, re-
spectively, in (N), (T) or (M) with {F}={F,}={0}.
Then, from the inverse of the matrix [I'] and the vec-
tor of the nodal displacements, {£} is calculated and
yields the inverse of D™, column by column. For the
single bay lattice, the three loading cases are shown in
Fig. 4.

These loading cases can be found in Ref. [6]. One of
the merits of the formulation used herein is to show
that, because of the regularity of [I'], there is only one
loading case for a given {X'} under the assumption
that {F;} ={F>} ={0}. For a double-bay lattice and for
the loading case correspond to a unit (7), there are
external loads exerted on the nodes at the junction of
the two bays.

Lastly, it must also be mentioned that such a
method based on the loading cases is cumbersome
compared to Eq. (40). However, it is very easy to use
with a standard finite element program and it gives a
physical interpretation to the hypothesis
{F1}={F>}={0}, which amounts to assuming the load
distribution on the lattice boundary for a given {X'}.

4.3. A displacement method

The dual standpoint of the previous force method is
to assume that {E;} ={E,} = {0}, which yields:

Dlem = —K 1, (42)

for the single-bay lattice and

1 _
Dgwm = 7([{%1 _K%z(ng) lKgl) (43)

for the double-bay lattice.

hom

Again,the matrix D" can be computed after sol-

ving a local problem on the lattice cell with displace-
ment boundary conditions corresponding to a unit
(€x)s (Pxy) Or (=€) with {E;} ={E,} ={0}. The vector
{2} is then calculated from the reactions (X,Y;) at
each node (using Eqgs. (16) and (24)).

For a single-bay lattice, the boundary conditions for
each loading case are easily derived from the matrix
[[']; they are shown in Fig. 5. For a single-bay lattice,
with {E1}={FE,} ={0}, we take six parameters to rep-
resent the displacement field. Moreover, the left and
right sections of the beam remain plane, with ¢, =0.
Then, the kinematical assumptions are equivalent to
the approach presented in Ref. [5]. However, the
method proposed in the paper mentioned above is
restricted to a one-bay lattice, and the equivalent beam
parameters are not obtained directly, but through the
comparison of finite element stiffness matrices of the
lattice and the extended Timoshenko beam models.

For the double-bay lattice, if {Ex} =0 was assumed,
the displacement boundary conditions shown in Fig. 5
would be determined, but this assumption is useless,
because {F*} =0 holds. We have therefore:

[E"} = —(K3) 'K {E)} (44)

from which boundary conditions for a given {E} can
be obtained. It can be checked that a zig-zag pattern
can occur for each loading case. The last remarks in
Section 4.2 are also valid for the displacement method.

4.4. Comments on the previous methods

First, one should bear in mind that in the case of
the multiple-bay lattice, the initial system of equations
given in Eqgs. (34) or (35) is different from that pro-
posed in Refs. [1-4]. With our approach, not only are
the displacements written differently, but also the
strains and integrated stresses which are averaged over
the cell (these differences vanish for a single-bay lattice,
see Section 2.2.3).

As mentioned previously, the periodic approach for
the computation of the effective beam properties is
equivalent to the method initially proposed in Ref. [2]
by Noor and his coworkers. The static condensation
was used later by Noor et al. [3], and Dow [4], and is
equivalent to the procedure of Sun et al. [6], and to
the force methods presented in this paper. Lastly, there
are similarities between the approach of Lee [5] and
the displacement method given herein, but the latter is
more general.

Moreover, it is worth noticing that the characteriz-
ation of the right-hand member of the system of
equations (i.e. the macroscopic integrated stresses)
enables us:
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Fig. 5. Boundary conditions of the displacement method
(single-bay lattice).

e to give an estimate of the internal truss forces in
terms of the resultant forces acting on the equivalent
beam section (from Egs. (34) or (35) and the matrix
[(I'D;

e to obtain a unifying approach for deriving different
methods for computing the effective beam proper-
ties;

e to gain insight into the assumptions of each method.

Thus, it can be concluded that the periodic approach
is the most accurate way of obtaining the effective stiff-
ness of the continuum, because it is the only method
which really takes the periodicity of the repetitive lat-
tice into account (in this way, it can be said that
{E>} ={F}=0 are not assumptions). Consequently, the
force and displacement methods are approximate, and
their drawback is to lead to equivalent beam properties
which depend on the cell choice.

Besides, the approaches used in the present work
can be compared with homogenization methods for
periodic materials. Indeed, the force method, the peri-
odic approach and the displacement method are equiv-
alent to the Ilocalization problems found in the
homogenization theory, with respectively uniform
stress, periodic, or uniform strain boundary conditions
[10]. Furthermore, as can be seen in Section 5 here-
after, the strain energies corresponding to each method
are classified in the same order as in homogenization.

5. Comparison between the three methods

In Section 4, three different methods for the compu-
tation of beam parameters have been proposed. The
aim of this section is to examine the possibility of com-
paring the results given by each method.

Let us first prove the following lemma:

Lemma 5.1. let Kj;, i,j = 1,2 be submatrices of a posi-
tive definite symmetric stiffness matrix K. Then the fol-
lowing inequality holds:

VIEVE Y (K — KoK 5 KaEY<{E}'K{E}  (45)

Proof. the result is a direct consequence of the sym-
metry and the definite positiveness of the matrix K.
One can write:

{EY'K1nK 5 Ko{E} = (Ka{E ) K 5, (Ko {E }) (46)

which proves the lemma, because the second term of
the equality is clearly positive.

Using the lemma, one can show that:

V{E}{EY Dpo™ (E}<{E}"D}°" {E}

V{EEY D™ (E)}<{E )" Dpo™ (E} (47)

For the second inequality, the lemma is used after the
static condensation of {E;} (and {Ex} for the double-
bay lattice). A system of equations is then obtained
with {E} and {E,} and the submatrix of indices 11 is
found to be /D o™,

As shown in Section 4.4, the periodic approach is
the most accurate method for calculating the equival-
ent continuum properties; it follows from Eq. (47) that
the force method underestimates the stiffnesses, while
the displacement method overestimates it.

6. Numerical examples

The methods presented previously are now illus-

Fig. 6. The single-laced single-bay lattice.



Table 1

Material properties and geometric dimensions of the single-laced single-bay lattice

Lattice members E (N/m?) L (m) S (m?) Designation
Long bar 71.7 x 10° 7.5 8§ x107° =

18 x 1073 —
Diagonal bar 71.7 x 10° 9.0 4%x107° —
Batten 71.7 x 10° 5.0 6x107° ==

trated through examples of single- or double-bay lat-
tices. The equivalent beam properties are denoted as
follows:

(N) ES C1 G || (&)
(ﬂ = Cl GS C3 (ny) (48)
<M> C2 C3 El <_€x,y>

6.1. Single-bay lattice

Let us first consider a single-laced single-bay lattice
shown in Fig. 6; its dimensions and material properties
are given in Table 1. This lattice is analyzed with the
three methods presented in Section 4, using a cell with
two vertical trusses of area S/2. The results are shown
in Table 2.

It can be checked that the force method results co-
incide with those given in Ref. [6] (the sign of C, is
different because of the rotation convention). We can
notice that the force method and the periodic approach
give the same results for this example. Examining the
stiffness matrix of Eq. (34) shows that Ki13=K},=0
and that the submatrix K33 is diagonal, hence this
equality. Besides, the results are in agreement with the
inequalities of Eq. (47).

If a cell with only one vertical truss of area S is
used, the periodic and displacement methods provide

Table 2
Equivalent beam properties

the same results as those of Table 2. On the other
hand, the force method gives very different results
from those obtained with the cell with two vertical
trusses of area S/2, especially for the second row of
the stiffness matrix, which is found to be zero, due to
the fact that the loading case corresponding to the unit
shear force leads to a vertical load applied at a node
which is only connected with a horizontal bar.

The latter result emphasizes the importance of the
approximations made in the force method to derive
the equivalent beam properties. However, from the
results of Table 2, it is not possible to judge which is
better between the periodic and the displacement
approaches. Therefore, a direct analysis of the actual
lattice structure with 11 bays is made, with loadings
corresponding to a unit extensional force, a transverse
shear force and a bending moment, through the
boundary conditions shown in Fig. 4. Then for each
loading case, the macroscopic strains and then a com-
pliance matrix are derived from the nodal displace-
ments of the central bay of the lattice; and the stiffness
matrix giving the effective beam properties is finally
computed. The results show that the non-zero stiffness
coefficients obtained with the periodic approach are
within 0.02% of those of the discrete models, which
confirms that this method is the most rigorous means
of deriving the equivalent beam properties. Moreover,

Methods Force Periodic Displacement
ES (107 N) 2.013 2.013 2.029
GS (10° N) 6.592 6.592 7.343
EI (10" Nm?) 11.651 11.651 11.651
Ci (10° N) 9.889 9.889 11.014
C, (10" Nm) 1.793 1.793 1.793
C; (107 Nm) 0.000 0.000 0.000

10



Fig. 7. A single-laced double-bay lattice.

for a cantilever repeated element loaded with an axial
load, a shear load, and a pure moment, the continuum
model based on the periodic solution is found to be
the most accurate.

6.2. Double-bay lattice

6.2.1. A test problem

The first step consists of showing the reliability and
the accuracy of the displacement field proposed herein
by studying a double-bay lattice made of two identical
one-bay lattices described in Section 6.1.

Then, with the expression of displacements given in
Section 2.2.2, the equivalent beam parameters are cal-
culated. It is possible to verify that for the three
methods, the results exactly match those of Table 2.

As a second step, the example is taken to illustrate a

Table 4
Equivalent beam properties

method in which a Taylor series expansion is used to
write the displacement field [4] given by:

1 x2
u(x,y) = up + xex + y(zyxy - ”0) + Xyexy + jéx,x
X2y

+ — €Ex,xy
2 V)

1
v(x,y) = vy + x(iyxy + ro> + ye, + xyey x

2 2
X X7y
+ T(ny,x - ex,y) + Tey,xx (49)

where all the rigid body displacements, strains and
strain gradients are taken at the cell center.

As mentioned in Section 4.4, one can easily check
that, for a single-bay lattice, the method based on the
Taylor series expansion is equivalent to that proposed
here. Then, this method also gives the results of Table
2.

For a double-bay Ilattice, from Eq. (49), we can de-
fine a transformation matrix between the discrete
nodal displacements and the vector of the rigid body

Methods Force Periodic Displacement Identification
ES (10" N) 1.864 1.864 1.864 1.864

GS (10° N) 6.325 6.651 6.745 6.509

EI (10’ Nm?) 11.651 11.651 11.651 11.651

C; (10° N) 0.000 0.000 0.000 0.000

C, (10" Nm) 1.793 1.793 1.793 1.792

C; (10" Nm) 0.000 0.000 0.000 0.000

Table 3

Equivalent beam properties

Methods Force Periodic Displacement
ES (107 N) 2.000 2.000 2.029

GS (10° N) 6.029 6.029 7.343

EI (10" Nm?) 11.651 11.651 11.651

Ci (10° N) 9.044 9.044 11.014

C, (10" Nm) 1.793 1.793 1.793

C; (107 Nm) 0.000 0.000 0.000

1"



displacements, strains and strain gradients at the cell
center. Then, the strain components are partitioned as
in Eq. (27) with:

*

W = {ug.vo.rod; {E )T = {eensVpr — €xp)
{E }T = {Exvyxy’ - Ex,y}

{E} }T = {e}faex,xyaéy,xx}; {EZ}T = {Cy,x} (50)

It is therefore possible to apply the methods proposed
in Section 4 to compute the equivalent beam par-
ameters.

The results obtained for the particular double-bay
lattice considered herein are shown in Table 3. As can
be seen, except for the displacement method, these
results deviate from the results of Table 2, with a
difference which reaches 10% on GS and C;.

This discrepancy is not very large, but illustrates
that the Taylor series expansion method gives results
which depend on the way this single-bay lattice is trea-
ted (with a method developed for a one- or a double-
bay lattice). The error results from the expression used
in Eq. (49) for the displacements, where terms in x?
and x?y appear.

The previous drawback (dependence of the results
on the cell choice) does not appear with the displace-
ment field proposed herein, based on piecewise linear
functions.

6.2.2. A single-laced double-bay lattice

A single-laced double-bay lattice as shown in Fig. 7
is now taken as an example. Following the procedure
presented in Section 2.2.2, the equivalent beam proper-
ties shown in Table 4 are obtained. It is noticed that
the only difference between the three methods is the
equivalent shear stiffness, which is classified as in Eq.
47).

We also present the results found with the method
based on the displacement given in Eq. (49). The
results are shown in Table 4, except for the equivalent
shear stiffness which is: 5.459 x 10° N, 5.701 x 10° N,
and 6.745 x 10> N, for the force, periodic and displace-
ment methods, respectively.

In order to evaluate the accuracy of the stiffness
coefficients obtained, the procedure described in
Section 6.1 to identify the effective beam parameters
was carried out. The results are given in the last col-
umn of Table 4, and show that the periodic method
gives the most accurate solution.
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7. Conclusions

A simple approach to the representation of repetitive
beam-like lattice trusses by an equivalent continuum
has been presented. The procedure is based on the
energy equivalence between lattice and continuum
models, and attempts are made to improve the accu-
racy of the displacements approximation in methods
using polynomials. A piecewise linear displacement
field is introduced.

Moreover, some features of the homogenization the-
ory for periodic materials are used, e.g. the averaged
strains and integrated stresses are taken as continuum
parameters, and the lattice periodicity is used to deter-
mine the equivalent beam properties. The general for-
mulation presented in this paper extends methods
which have already been given in the literature to cal-
culate the continuum properties. The assumptions
made in these methods are pointed out, especially for
the widely used method based on static condensation.

The numerical results given illustrate the reliability
of the present method. The method has only been
applied for the planar static analysis of beam-like lat-
tice trusses, but it also can be used for three-dimen-
sional beam- or plate-like lattice trusses in dynamic
analysis. A similar method can also be developed for
the study of rigid-joint lattices, with a displacement
field written with third-order polynomials.
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