
HAL Id: hal-01005996
https://hal.science/hal-01005996

Submitted on 28 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Continuum damage modelling and some computational
issues

Gilles Pijaudier-Cabot, Ludovic Jason

To cite this version:
Gilles Pijaudier-Cabot, Ludovic Jason. Continuum damage modelling and some computational issues.
Revue Française de Génie Civil , 2002, 6 (6), pp.991 - 1017. �10.1080/12795119.2002.9692728�. �hal-
01005996�

https://hal.science/hal-01005996
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Continuum damage modelling 
and some computational issues 

Gilles Pijaudier-Cabot* - Ludovic Jason** 

*R&DO 
Laboratoire de Genie Civil de Nantes - Saint Nazaire 
Ecole Centrale de Nantes and /nstitut Universitaire de France 
1 rue de la Noe 
BP 92101 
F-44321 Nantes cedex 3 

** R&DO,laboratoire de Genie Civil de Nantes- Saint Nazaire 
Ecole Centrale de Nantes and EDF- R&D 
1 rue de Ia Noe 
BP 92101 
F-44321 Nantes cedex 3, France 

ABSTRACT. Continuum damage mechanics is a framework for describing the variations of the 
elastic properties of a material due to microstructural degradations. This paper presents the 
application of this theory to the modelling of concrete. Several constitutive relations are 
devised, including incremental, explicit, and non local damage models. A general framework 
for damage induced anisotropy is also presented. In the second part of this contribution, 
computational issues in damage mechanics related to iterative schemes and solution control 
in non linear computations are considered. The paper concludes with an example of 3D 
finite element computation of a reinforced concrete beam, as part of a benchmark initiated 
by Electricite de France. 
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1. Introduction 

This paper is concerned with the presentation of continuum damage models and 
their implementation in non linear finite element analyses. Continuum damage 
means that the mechanical effects of progressive micro cracking, void nucleation and 
growth are represented by a set of state variables which act on the elastic and/or 
plastic behaviour of the material at the macroscopic level. First, we will deal with 
the scalar damage model and present several version of this type of constitutive 
relations. After having recalled how the local integration of the constitutive relation 
can be performed in the same spirit as for plasticity-based models, we will deal with 
with more specific applications: cases where the evolution of damage is specified in 
an integrated form, where damage induced inelastic strains are introduced, and 
finally where crack closure effects are modelled. 

The following section deals with damage induced anisotropy. A general framework 
for capturing directionality of damage is recalled. Coupling with plasticity and crack 
closure effects is discussed. The relation with smeared crack model is also 
presented. Non local damage is discussed in the fourth section. We present integral 
and gradient models. In particular, a general scheme for the implementation of the 
gradient model, implemented into the finite element code Code_ Aster, is described. 

The fifth section deals with several computational issues related to damage such as 
the implementation of the model within secant or tangent algorithms and 
convergence properties of the tangent implementation. Solution control techniques 
whenever bifurcation or snap-hack occurs are recalled. The paper concludes on an 
example of 3D computation of a reinforced concrete bending beam. 

2. Scalar Damage Model 

2.1./ncremental Damage Model 

When damage is assumed to be isotropic, it is considered that it produces a 
degradation of the elastic stiffness of the material through a variation of the 
Young's modulus: 

[1] 

where v0 , £ 0 and ~ij are the Poisson's ratio and Young's modulus of the 

undamaged isotropic material and the Kronecker symbol respectively. The elastic 
(i.e. free) energy per unit mass of material is: 

[2] 

2



where C0 is the stiffness tensor of the undamaged material. This energy is assumed 
to be the state potential. The damage energy release rate is defined as the variable 
associated to the damage state variable in the state potential: 

Y- -p aljJ ""'_!_ e··~ldeld 
ad 2 1111 

with the rate of dissipated energy: 

. ap'I/J . 
r/J=--d 

ad 

For an isotropic damage model, this equation reduces to: 

. . 
rp- Yd 

[3] 

[4] 

[5] 

The damage energy release rate is always positive and thus the rate of damage must 
be positive in order to comply with the second principle of thermodynamics. 

The rules governing the evolution of damage can be defined following the same 
principles as those in elasto-plasticity. In fact, the general formalism is that of 
generalised standard materials where the loading function is assumed to be a pseudo 
potential of dissipation (Lemaitre, 1992). The evolution of damage requires the 
definition of a loading function: 

f(Y,d) = Y- Yo- Z [6] 

where Yo is a parameter which defines the threshold of damage, and Z is the 
hardening-softening controlling variable. The evolution law is prescribed according 
to the normality rule: 

. . aj 
d-A­aY 

. . 

[7] 

with the Kuhn-Tucker conditions A ~ 0, f s 0, and )/ ... 0 . The evolutionary 
equations are completed by the definition of a hardening function: 

. . 
A=-HZ [8] 

where H can be regarded as the equivalent of a hardening-softening modulus in 
generalised plasticity. In most applications, this modulus is not constant. The 
major difference with plasticity is that the loading function and the evolution 
equation for damage are provided in an explicit form because these quantities are 
function of the total strain. For the integration of this constitutive relation, an Euler 
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forward integration technique may be used. This method consists m an elastic 
predictor/ damage corrector technique. The elastic predictor is: 

and the damage corrector is: 

if .!. ( £ + DE) : cO : ( £ + DE) - Z > 0 then 
2 

[9] 

afll!w =a+&1e -DadDm, Dadmra ={(H(Z)XC0 :t)®(C0 :c)}DE [10] 

else aMW =a+ Doe 

As opposed to plasticity, there is no risk for divergence when the loading point is 
mapped back onto the loading surface. The reason for this is that the loading surface 
is in fact a one-dimensional segment in the Y space. In fact, the finite element 
implementation of such a model is exactly the same as the finite element 
implementation of one dimensional plasticity because damage is a scalar, not a 
second order tensor like the plastic strains in the 3D case. 

2.2. Damage Model with Crack Closure 

Crack closure effects are of importance when the material is subjected to alternated 
loads, for instance reinforced concrete structures subjected to earthquakes. The 
fundamental property of the scalar damage model is that the time derivative of 
damage is constrained to be positive or zero (second principle of thermodynamics). 
During load reversals, however, micro cracks are closing progressively and the 
tangent stiffness of the material should increase while damage is constant (Fig. 1 ). 

Stiffness of the damag 
material 

\ 

A 

E 

Stiffness recovery 
due to crack closure 

Material damaged in tension (path OA) and unloaded up to point 8 

Figure 1. Schematic response of a material subjected to uniaxial compression after 
being damaged in tension 
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Within isotropic damage modelling, one solution is to introduce two damage 
scalars, instead of one, in order to separate the mechanical effect of micro cracking 
as a function of the type of loading. La Borderie ( 1991) developed the 
corresponding constitutive relations and applied it to concrete. The elastic energy is: 

[II] 

where (at is the positive part of the stress, i.e. the stress tensor expressed in its 

principal directions with the positive principal stresses only, and (ar -a- (at. 

Anelastic strains due to the growth of damage are also taken into account in this 
model with a function f(a) introduced in order to represent the progressive 
vanishing of anelastic strains due to damage in tension when the material is 
subjected to compression: 

f(a)- a JcJc when a /cJc E)O, oo ]/(a) 
a 

f( a) = (1 + ___!!_)a lcJc when a /cJc E) - a c, 0] 
2ac 

f(a)-- ac akk when akk E[-oo,-ac] 
2 

[12] 

where a c is the crack closure stress (material parameter). The stress-strain relation 

reads: 

[ 13] 

Since the model has two damage variables, the evolutionary equations include two 
yield functions. These functions are constructed on the same principles as the 
function used for the one scalar model, except that there are two energy release rates 
associated to the two damage variables respectively: 

[ 14] 

The two loading functions are: 

[ 15] 
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and an associated model can be constructed with two independent hardening 
functions similar to Eq. [8]. 

Note that this constitutive relation cannot be integrated explicitly. The stress 
decomposition into positive and negative parts is not known a priori. Therefore, the 
conditions of evolution of damage are not known for each integration step. Same as 
in classical plasticity, the integration of the constitutive relations is performed with 
an iterative scheme: the equations of the system are the state laws and the evolution 
laws recast as follows in order to obtain a well-conditioned algebraic system : 

1 + 1 -
EiJ - Eo(l- d,) <a >;J + EQ(l- de) <a >ij 

Vo [ ~ ] fJ1dt a.f(a) fJ2dc t5 
+Eo aii -aide iJ + (1- d,) aaiJ + (1- de) ii 

Y,- z,- 0 

Y -Z -0 c c 

[16] 

1 - F.(Y. z) 
(1- d,) t , t 

1 
-F. (Y Z) 

(1-dc) c c' c 

Here, F,, Fe are calculated from the integrated equation of evolution of damage 
instead of an incremental one. It does not change the general picture of the 
integration process, however. The system is written in a matrix form: 

[ iJi - 0 with iT - {a Y, Y, 
1 

1- d t 
[17] 

where matrix[ J], can be computed and programmed using formal calculus. A full 
Newton algorithm is implemented in order to solve this non-linear system. Note 
that there are two sorts of nonlinearities: the first one is due to the evolution of 
damage (i.e. whether damage grows or not), the second is due to crack closure 
effects. For constant values of the damage variables, the material is orthotropic in 
the coordinate system of the principal stresses. 

2.3. Integrated Damage Model 

In continuum damage mechanics, the evolution of damage is very often related to 
the state of strain. Moreover, it is defmed in an explicit, integrated way, which is 
easier to handle. The damage loading function in Eq. [6] can be redefined as: 
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f(E,K) = E -1( [ 18] 

where 'i is a positive equivalent measure of strain and K is a threshold value. The 
equation/= 0 represents a loading surface in strain space. For the uni-axial tensile 
case, the equivalent uniaxial strain in Eq. [18] is straightforward. It is the axial 
strain if the lateral strains are neglected. However, for general states of stress, 
damage evolution should be related to some scalar quantity, function of the state of 
strain. There are, to this regard, several proposals. For example, an appropriate 
definition for metals is rooted in the elastic stored energy (Peerlings et al. 1998): 

-E= 
1 

- E .. c .. lclelcl E I} 1) 
[ 19] 

which is depicted in Figure 2. It is the integrated version of the relation presented in 
section 2.1. For concrete, Mazars ( 1984) proposed the following form: 

[20] 

where E; are the principal strains. A third possibility, which is also mentioned by 
Peerlings, is the modified von Mises definition. It is written as follows 

- k -1 1 (k- 1)2 
/2 

E • /1 +- 1 
2k(1- 2v) 2k (1- 2v)2 

12k J 
(1+v)2 2 

[21] 

/1 and Jz are the first invariant of the strain tensor and the second invariant of the 
deviatoric strain tensor respectively. Only the modified von Mises criterion leads to 
a new material parameter, namely the factor k. The parameter k is the ratio between 
uni-axial compressive and uni-axial tensile strength. These criteria are plotted in 
figure 2 (with k = 1 0). The loading surfaces (Eqs. 19-21) are closed contours around 
the origin. The dashed lines represent the constant uniaxial compression and 
uniaxial tension stress paths. 

The evolution of damage has the same form as in the previous sections: 

. {d == h(K) . 
iff('i,K),... 0 and/('i,K)- 0 then _ where d ~ 0 

K- E 

[22] 

{
d=O 

otherwise . 
K=O 

The function h(K) is specific, depending on 
exponential softening can be used and 

different models. For tension only, 

h(K) -1- Ko (1- a+ ae-fJ(K-Ko)) 
I( 

[23] 
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where K 0 , a, TJ are model parameters. 

In order to capture the differences of mechanical responses of the material in tension 
and in compression, Mazars proposed to split the damage variable into two parts 
and used the equivalent strain defined in Eq. [20]: 

[24] 

where d, and de are the damage variables in tension and compression, respectively. 

, -
0 -- -~· 0 - ~ 

' -:• ' ~· ' - IU 10 ~ 

' L , 
- 20 - 1.0 

- 10 - 10 0 - lO - 10 I) 
F J c 

I 

0 

- 20 .....__ _______ ~ 
- 20 lO 0 

EJ 

Figure 2. Contour plots for £ for the elastic stored energy (top left), Mazars 
definition (top right), and the modified von Mises expression (bottom), after 
Peerlings et a/. (1998) 

They are combined with the weight coefficients a, and ac defined as function of 

the principal values of the strains Eij and Eij, due to positive and negative stresses 

(see Mazars, 1984). 

Eij • (1 - d)C;j~a~ , Eij • (1 - d)C;j~a: [25] 

[26] 
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In uniaxial tension a,=l and ac=O. In uniaxial compression ac=l and a,=O. 
Hence, d, and de can be obtained separately from uniaxial tests. The evolution of 
damage is provided in an integrated form, as a function of the variable K (Mazars, 
1984): 

d - 1- Ko(l- ~) - ~ 
1 

K exp(B1(K- K 0 )) 

d = 1- Ko(l- ~) - ~ 
c K exp(Bc(K-K0 )) 

[27] 

Stress (Mpa) 

Figure 3. Uniaxial response of the model by Mazars ( 1984) 

The purpose of exponent f3 is to reduce the effect of damage on the response of the 

material under shear compared to tension (Pijaudier-Cabot et al. 1991 ). Figure 3 
shows the uniaxial response of the model in tension and compression with the 
following parameters: E0 = 30000 MPa, v0 =0.2, K0=0.0001, Ar=l, B, -15000, 
~- 1.2, Bc=1500, {3= 1. 

3. Damage Induced Anisotropy 

Microcracking is usually geometrically oriented as a result of the loading history on 
the material. In tension, microcracks are perpendicular to the tensile stress direction, 
in compression microcracks open parallel to the compressive stress direction. 
Although a scalar damage model, which does not account for directionality of 
damage, might be a sufficient approximation in usual applications, i.e. when tensile 
failure is expected with a quasi-radial loading path, damage induced anisotropy is 
required for more complex loading histories. The influence of crack closure is 
needed in the case of alternated loads: microcracks may close and the effect of 
damage on the material stiffness disappears. Finally, plastic strains are observed 
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when the material unloads in compression. The following section describes a 
constitutive relation based of elasto-plastic damage which addresses these 1ssues 
(Fichant et al. 1999). 

3.1. Principle 

The model is based on the approximation of the relationship between the overall 
stress (latter simply denoted as stress) and the effective stress in the material defined 
by the equation: 

a!. • C~~.~Ee or a~- • ~~.~(Cdamagt!d )-l a 
IJ IJu 1c1 1J IJu klmn mn [28] 

where aij is the effective stress component, E~ is the elastic strain, and c~std is 

the stiffness of the damaged material. We defme the relationship between the stress 
and the effective stress along a finite set of directions of unit vectors ii at each 
material point: 

3 2 

a- (1- d(n))n;oijn1, T- (1- d(n)) ~ (aijnr (nko11n1 )n;) [29] 

a and T are the normal and tangential components of the stress vector respectively. 
d(n) is a scalar valued quantity which introduce the effect of damage in each 
direction ii . 

The basis of the model is the numerical interpolation of d(n} (called damage 
surface) which is approximated by its knowledge over a finite set of directions. 1be 
stress is solution of the virtual work equation: 

[30] 

Depending on the interpolation of the damage variable d(n), several forms of 
damage induced anisotropy can be obtained. Here, it is defmed by three scalars in 
three mutually orthogonal directions. It is the simplest approximation that yields 
anisotropy of the damaged stiffness ofthe material. The material is orthotropic with 
a possibility of rotation of the principal axes of orthotropy. 

The stiffness degradation occurs mainly for tensile loads. Hence, the evolution of 
damage will be indexed on tensile strains. The evolution of damage is controlled by 
a loading surface f, which is similar to Eq. [6]: 
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[31] 

x is an hardening softening variable which is interpolated in the same fashion as 
the damage surface. The initial threshold of damage is Ed. The evolution of the 
damage surface is defined by an evolution equation inspired from that of an 
isotropic model: 

if fi(n •) = 0 and n.* de~-n .• > 0 
I I} J 

then 

• • e • dv(n ) • n- dE··n · A I I} J 
[32] 

else dd(ii*)- 0, dx(n *>- 0 

The model parameters are Ed and a. Note that the vectors ii* are the three principal 
directions of the incremental strains whenever damage grows. After an incremental 
growth of damage, the new damage surface is the sum of two ellipsoidal surfaces: 
the one corresponding to the initial damage surface, and the ellipsoid corresponding 
to the incremental growth of damage. 

3.2. Coupling with plasticity 

We decompose the strain increment in an elastic and plastic one: 

de .. - d£~. + d£P. 
I) I) I) [33] 

The evolution of the plastic strain is controlled by a yield function which is 
expressed in term of the effective stress in the undamaged material. We have 
implemented the yield function due to Nadai ( 1950). It is the combination of two 
Drucker-Prager functions f) and F2 with the same hardening evolution: 

[34] 

where J~ and I{ are the second invariant of the deviatoric effective stress and the 
first invariant of the effective stress respectively. w is the hardening variable and 
( ~' B;) are four parameters ( i - 1, 2) which were originally related to the ratios of 
the tensile strength to the compressive strength denoted y and of the biaxial 
compressive strength to the uniaxial strength denoted f3: 
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These two ratios will be kept constant in the model: fJ = 1.16 and y = 0.4. The 

evolution of the plastic strains is associated to these surfaces. The hardening rule is 
given by: 

r w-qp +w0 [36) 

where q and r are model parameters, w0 defines the initial reversible domain 1n 

the stress space, and p is the effective plastic strain. 

3.3. Crack closure effects 

A decomposition of the stress tensor into a positive and negative part is introduced 
again: a- {a). +{a)-, where <a>., and <a>_ are the positive and negative 

parts of the stress tensor. The relationship between the stress and the effective stress 
defined in Eq. (29] of the model is modified: 

a;ini • (1- d(n)){a): ijni + (1- dc(n)){a)~ ijni. [37] 

5 . 

Stress 
o. MPa 

~ 

. 5 . v1 ~ 
/ 

· 10. 

· 15. 

· 2 0 . El £ 2 / 

/ 
-25. 

-3 0. 

. 6. · 4 . - 2 • D. 2. 4 . 6 . 

Strain (x1000)-

Figure 4. Uniaxial tension-compression response of the anisotropic model 
(longitudinal (1), transverse (2) and volumetric (v) strains as functions of the 
compressive stress) 
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dc(n) is a new damage surface which describes the influence of damage on the 
response of the material in compression. Since this new variable refers to the same 
physical state of degradation as in tension, dc(n) is directly deduced from d(n). It 

is defined by the same interpolation as d(n) and along each principal direction i, 
we have the relation: 

[38] 

a is a model parameter. The constitutive relations contain 6 parameters in addition 
to the Young's modulus of the material and the Poisson's ratio. Their determination 
benefits from the fact that in tension, plasticity is negligible. Once the evolution of 
damage in tension has been fitted, the remaining parameters are fitted from a 
compression test. Figure 4 shows a typical uniaxial compression-tension response 
of the model corresponding to a concrete with a tensile strength of 3 MPa and a 
compressive strength of 40 MPa. 

3.4. Damage and smeared crack models 

Historically, smeared crack models have been developed for modelling concrete 
fracture fifteen years before continuous damage models started to become popular. In 
smeared crack models the directionality of the material decohesion is a fundamental 
characteristic, which was not included into the first damage models. Therefore, it is 
natural to relate damage models to smeared crack models (de Borst and Gutierrez, 
1999). In the latter model, the material response is defined in a local coordinate 
system ( n, s ). Direction n is the normal to the plane in which the greatest positive 
normal strain denoted as EM is found. In the ( n, s) system, the secant stress-strain 
relation is: 

[39] 

with a,,s- [aM ass ans]T' En,s - [EM Ess Ens ]T, and the secant stiffuess 

Ds is 
ns 

(1- d1)E (1- d1 )vE 
0 

1- (1- d1 )v
2 1-(1- d1)v

2 

ns - (1- d1)vE E 
0 [40] ns 

1-(1- d1 )v
2 1-(1- d1)v

2 

0 0 (1- d2 )G 

where d1 and d2 are two damage parameters. (1 - d2 ) is the degradation of the 
shear stiffness G and can be related to the shear retention factor in traditional 
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smeared crack models. The evolution of these two damage parameters is defined 
with the help of a loading function in the ( n, s) coordinate system: 
f(enn,K)- EM- K and the appropriate Kuhn - Tucker conditions. d1 and d2 are 

functions of the history variable K , same as in the other damage models. If we 
introduce cp as the angle between the ( x, y) coordinate system and the ( n, s) 

coordinate system, the strain and stress components in the two systems can be 
related as follow: 

E n,s ..,. TE ( tP )E :;c,y and a n,s - Ta ( cp )a :;c,y [41] 

where ~(cp) and Ta(tP) are the appropriate transformation matrices. The secant 
relation in Eq. [42] becomes: 

(42] 

This equation, and the loading function f(enn,K), incorporate the fixed smeared 
crack model and the rotating crack model as well. The difference is that in the fixed 
crack model the angle t/J is constant whereas in the rotating crack model, the 
coaxiality requirement enforces that the n -direction is always the major principal 
strain direction. 

As we can see, smeared crack models are indeed damage models, with two damage 
coefficients and some rule upon which the principal directions of damage may 
change. In the fixed crack model, the principal directions of damage are fixed; in the 
rotating crack model, they rotate according to the condition of coaxiality. There is a 
similarity between the above formulation of the smeared crack model and the 
microplane-based damage model described in section 3. The integral which defines 
the overall stress in the microplane model, is the same as in the model by Fichant 
[Eq. 30]. This integral can be transformed in order to arrive to a format that is very 
similar to the multiple fixed crack model: 

[43] 

where w" is a weighting factor. 

4. Non Local Damage 

We tum now attention to the non local generalisation of damage models. It is now 
established that non locality, in a gradient or integral format, is mandatory for a 
proper, consistent, modelling of fracture (see e.g. de Borst et al. 1993, or the 
contribution by M. Jirasek in this volume). It avoids the difficulties encountered 
upon material softening and strain localisation. Within a single approach, it 
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encompasses both crack initiation (for which continuum models are very well fitted) 
and crack propagation (for which discrete fracture approaches have been developed). 

4.1./ntegral Model 

Consider for instance the scalar damage model in which evolution of damage is 
controlled by the equivalent strain E introduced by Mazars. The principle of 
nonlocal continuum models with local strains is to replace the equivalent strain E 
with its average (Pijaudier-Cabot and Bazant, 1987): 

E"(x)-
1 

Jtp(s)i(s + x)ds with V,.(x) =Jtp(s)ds 
V,.(x) 

Q Q 

[44] 

where Q is the volume of the structure, V,.(x) is the representative volume at point 
x, and tp (s) is the weight function, for instance: 

[45] 

lc is the internal length of the non local continuum. £ replaces the equivalent strain 
in the evolution of damage. In particular, the loading function becomes 
f(E",K)- E -K. As we will see in section 5, it should be noticed that this model is 
easy to implement in the context of explicit, total strain models. Its extension to 
plasticity and to implicit incremental relations is awkward. The local tangent 
stiffness operator relating incremental strains to incremental stresses becomes non 
symmetric, and more importantly its bandwidth can be very large due to non local 
interactions. This is one of the reasons why gradient damage models have become 
popular over the past few years. 

4.2. Gradient damage model 

A simple method to transform the above non local model to a gradient model is to 
expand the equivalent strain into Taylor series truncated for instance to the second 
order: 

- - ai(x) a2 i(x) s2 

E(x+s)-E(x)+ s+ 2 -+ ..... ax ax 2! 
[46] 

Substitution in Eq. [44] and integration with respect to variable s yields: 

[47] 
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where c is a parameter which depends on the type of weight function in Eq. [47]. 
Its dimension is m2 and it can be regarded as the square of an internal length. 
Substitution of the new expression of the non local equivalent strain in the non 
local damage model presented above yields a gradient damage model. 
Computationally, this model is still delicate to implement because it requires 
higher continuity in the interpolation of the displacement field. This difficulty can 
be solved if an implicit format of the gradient damage model is used. Eq. [47] is 
replaced with 

[48] 

Here, the definition of the non local equivalent strain is implicit. It is the solution 
of a Fredholm equation. As shown by Peerlings et al. ( 1996), the implicit form is 
in fact an exact representation of the integral relation devised by Pijaudier-Cabot and 
Bazant ( 1987), provided an exponential weight function is used. 

4.3. Extension of the Gradient Approach 

In the anisotropic damage models described in section 3, the evolution of damage is 
directional. The evolution of damage is also directional in the microplane-based 
models and in the smeared crack models. The extension of the gradient damage 
model to anisotropy, or to any strain-based damage model, can be performed in a 
very systematic way (Godard, 2001). The Fredholm equation is written for each 
strain component Enn: 

[49] 

Therefore, a non local (Gradient type) strain tensor is computed within each 
iteration. It is from this tensor that an equivalent strain can be computed, or that 
directional damage growth can be devised depending on the type of damage model 
that is implemented. This extended form of a gradient model has been implemented 
in the general purpose finite element code Code_ Aster at EDF. 

5. Some Computational Issues 

5.1. Secant Stiffness Algorithm 

Since the major effect of damage is a secant stiffness reduction when micro-cracking 
progresses, a non-linear computational procedure based on the secant material 
stiffuess seems quite appropriate. Total displacement v .s. total force relations can be 
used at each load increment: 

Kso;;u-1 [50] 
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Ksec is the secant stiffness matrix of the discrete solid which is analysed: 

Ksec = J (1 - d)BT C0 Bdv 

v [51] 

with c = Bu 

where u is the vector of nodal displacements. During each iteration, a new 
displacement field is computed. Convergence is obtained when the residual forces 
are less than a maximum tolerance. These residual forces at iteration n are: 

lfn = K::Cun -], with K::C-J(l- d")BT cfl Bdv [52] 

v 

In most applications, the norm of the local residual forces at each node and the 
norm of the residual forces vector over the entire structure should be less than the 
maximum tolerance. These residuals are non dimensionalised (e.g. by dividing by 
the applied load vector). 

This type of algorithm is also widely used when an integral non local damage 
model is implemented. The major reason is that the tangent stiffness operator (in 
the case of loading) is far from being straightforward because of non locality. It is 
possible to obtain an expression of the rate constitutive relations where we can see 
that the local tangent operator is non local, i.e. does not depend on the behaviour of 
a single material point: 

One central feature of this model is that the rate of damage and the rate of stress are 
explicit functions of the rate of strain. Compared to non local plasticity where the 
incremental strain is split into a plastic and an elastic part which are unknown in 
advance, the consistency condition is here an integral relation whose kernel is 
constant and known once for all in an integration step. This property makes the 
time integration of the constitutive relation more simple than in non local 
plasticity. It is also a reason why gradient plasticity (de Borst et al. 1993) is 
generally preferred to non local (integral) plasticity because the consistency 
condition in non local plasticity is an implicit integral relation which is complex to 
solve iteratively. 

The integral relation due to the non local tenn is discretised according to the finite 
element mesh used for the analysis and an usual quadrature rule is employed for its 
evaluation. In finite element calculations, the weight function is chopped off: the 
weights that are less than 0.001 are set to zero. The actual volume of integration 
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does not span over the entire volume of the solid and the calculation of the integrals 
requires less computer time and memory as the number of neighbouring integration 
points is reduced. Nevertheless, the bandwidth of the tangent stiffness matrix is 
much larger with the non local model than with the local model. Averaging expands 
the number of non zero tenns simply because non local tenns correspond to long 
range interactions. The tangent stiffness matrix of the finite element model 1s, 
however, non symmetric for two reasons sketched on figure 5: 

1. Non locality is an interaction that exists only when damage grows. 
Consider two points A and B sufficiently close to each other so that the 
non local interaction is strong. Damage grows at point A and remains 
constant at point B. The growth of damage in A is non local and depends 
on the incremental strain at point B. The behaviour of point B is local and 
does not depend on the incremental strain at point A. The influence 
functions between points A and B are not mutually equal. Therefore the 
corresponding terms placed symmetrically in the stiffness matrix are not 
equal. 

2. The volume V, (x) in Eq. [53] is not constant. In particular, this 
quantity which nonnalises the averaging decreases near free boundaries. 
The influence of a point A located near a free surface on a point B located 
farther from the free surface is not the same as the influence of B on A 
because the averages are different. 

different averagings due 
to normalisation 

No influence 
of A on B 

Figure S. Sources of non symmetry of the tangent stiffness matrix 

With the secant algorithm, the non local model is relatively easy to implement 
since the equilibrium equations remain standard. Their weak form is the same as for 
the classical, local, damage model. 

It should be kept in mind, however, that the secant stiffness algorithm presents 
serious difficulties, mainly there is no proof of convergence of such an algorithm. In 
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large scale finite element computations, a standard Newton - Raphson algorithm is 
highly preferable, as convergence is more robust. Such an algorithm relies on the 
derivation of the consistent tangent stiffness of the material response. 

5.2. Consistent Tangent Stiffness and Convergence 

In this section, we are going to focus on the scalar damage model, coupled to the 
gradient approach. The implementation of damage induced anisotropy following the 
same procedure remains to be performed still. 

Consider again the discrete equations of equilibrium in a total displacement format: 

I (1 - d)BT C0 BdvU =- F [54] 

v 

where u and F are the unknown nodal displacement and external forces respectively. 
The tangent stiffness is formally an unknown in this equation as it depends on the 
displacements (through the unknown distribution of damage). The fundamental 
principle of the Newton-Raphson method is the construction of a series of 
approximation of the residual R(u) 

R(u)-Jo- d)BT cO Bdvil- ft [55] 

v 

which converges to zero for a finite number of iterations, and for a fixed value of the 
external loads. For this purpose, the residual at iteration i+ 1 is computed from that 
at iteration i according to a first order Taylor expansion: 

( 
_ ) ( _ ) ( aR \ ~;: 

R ui+l - R U; +~au ) _uu; 

' 

[56] 

with 
u. 1 = u. + &4. 

I+ I I [57] 

The corrective term in the displacement field &l; is evaluated as the solution of the 
system: 

[58] 

In this equation, the matrix that is on the left hand-side term is the consistent 
tangent stiffness matrix. Its evaluation requires an exact derivation of the 
constitutive relation. The advantage is that with this matrix, quadratic convergence 
of the algorithm is observed. 
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In the modified Newton-Raphson scheme, the tangent matrix is substituted with the 
elastic matrix: 

I BT C0 Bdvlil; - - R( U;) [59] 
v 

The price to pay to this simplification is that convergence is not quadratic. It is 
linear. On the other side, the evaluation of this elastic matrix is less time 
consuming. Recall that the tangent stiffness matrix needs to be updated at each time 
step. 

In the gradient damage model, the equilibrium equations and the Fredholm 
equations are solved as a coupled problem. The non local strain tensor can be 
discretised according to the same finite element grid as the displacements, with the 
same interpolation fuction N. Eq. [58] becomes: 

[60] 

with the matrices K defined as 

Kt!a • J -NTBdv, Kt!t! • J(c2BTB+ NTN}tiv 

[61] 

v v 

In order to avoid stress oscillations, the non local strain tensor can be also 
discretised with interpolation functions that are linear while the interpolation of 
displacements is quadratic. This is what has been implemented in the FE software 
Code ASTER. The iterations are carried out until the relative residual forces are less 
than a given tolerance: 

~ IT s Tolerance [62] 

The difficulty in this algorithm is the proper calculation of the tangent stiffness at 
the material level. Very often, small errors, or approximations, in the derivation 
result in a loss of the quadratic convergence of the Newton-Raphson scheme. In 
particular cases such as the damage model proposed by Mazars and presented Eqs. 
[20, 22-27], the tangent operator is very difficult to derive properly. The reason is 
that the differenciation of the factors a 1 , a c is very uneasy. In the calculations 
presented in this paper, the variation of these coefficients is neglected. Hence 
quadratic convergence is expected for radial loading only (constant a,,ac). 
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Figure 6 shows the evolution of the relative residual during the iterations for several 
initial states of damage. The computation corresponds to uniaxial compression. The 
Newton-Raphson scheme [Eq. 58] and the modified scheme Eq. [59] have been 
compared on this plot. Quadratic convergence yields an evolution of the residual 
which follows a parabola approximately whereas linear convergence results into a 
straight line on this plot. It is clear that the modified scheme yields a slowest 
convergence, resulting into a larger number of iteration for the same tolerance. 
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Figure 6. Evolution of the relative residuals for the Newton-Raphson and modified 
Newton-Raphson schemes 

5.3. Solution Control 

Upon localisation of damage and strain, i.e. in the course of the failure process, 
uniqueness of the equilibrium equations can be lost. Bifurcation can occur in the 
continuum solution and should be expected for the discrete approximation as well, 
and stability might be lost too. Therefore, finite element codes must be equipped 
with solution checkings capable of detecting loss of uniqueness and loss of 
stability. If bifurcation occurs, the solution should be controlled so that it follows 
the stable path. If stability is lost, there should be the possibility for switching to 
indirect displacement control so that the finite element solution can be traced during 
instability. In the following we shall consider the rate equation of equilibrium of 
the discrete problem written generically as: 

B .Odv = Ku- F I 
T • -

[63] 
v 
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where K is the tangent stiffness matrix of the discrete solid. Uniqueness of the 
solution can be assessed by considering the equations of equilibrium, Eq. [63]. For 
the sake of simplicity, attention is restricted to the case where the loading is not 
stationary as bifurcation points and limit points rarely coincide. If the solution of 
the rate boundary value problem is non unique, the tangent stiffness matrix should 
be singular : 

det(K)- 0 [64] 

However, K is not a single valued matrix and depends on the loading conditions. 
Rigorously, all the possible (loading-unloading) combinations should be 
investigated. In most applications, K is calculated for the incrementally linear 
comparison solid only. It means that, locally, the tangent modulus computed at 
each material point correponds to loading if the consistency condition is met at the 
considered time step of the calculation. Our experience shows that the loss of 
uniqueness for the comparison solid occurs before it can be detected for any other 
loading-unloading configurations. 

At a state of equilibrium under dead load, the equilib_rium of a discrete system is 
critical if there exists a kinematically admissible field ii such that: 

iiKU- 0 [65] 

Again K is assumed to be single valued. This condition is equivalent to: 

{

det(K)- 0 

~ orthogonal to K~ 
[66] 

The loss of stability does not necessarily occur at a bifurcation point because the 
tangent stiffness operator is not symmetric, and theoretically it may be possible to 
find a velocity field such that the second condition in Eq. [66] is satisfied. However 
it is easy to show (Pijaudier-Cabot and Huerta, 1991) that Eq. [66] is equivalent to: 

det(S)- 0 [67] 

where S is the symmetric part of K. 

During the calculation and once the conditions for stability or uniqueness are not 
satisfied, it is necessary to investigate whether there exists a stable response of the 
structure and what are the different possible paths in the post-bifurcation regime. As 
the loading progresses, the loss of stability is encountered first. If the criterion for 
uniqueness is not met, i.e. if K is non singular, then the solution is unique and the 
equilibrium of the structure is critical if the vanishing eigenvector of S is collinear 
to the solution of the problem Eq. [63]. 

If this is the case, load control or displacement control techniques fail to trnce the 
snap-back portion of the response curve of the structure, and other algorithms 
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should be implemented to circumvent the singularities beyond critical points. ln 
fact, most of the continuation techniques are based on the introduction of another 
variable which governs the load factor and induces an extra-equation. Some of the 
available methods are indirect displacement control (de Borst, 1986) or the well 
known arc-length control method (Riks, 1979; Crisfield, 1981 ). 

Figure 7. Finite element mesh for three point bending beams. The load is applied 
at the top-right corner (axis of symmetry) and vertical displacements are fixed at 
the bottom left corner 

As an example, let us consider a notched bending beam. Figure 7 shows the finite 
element mesh (half of it due to the symmetry) that has been implemented. Figure 8 
shows a comparison of the responses computed for the non local gradient damage 
model and for the non local integral damage model. In both cases, an indirect 
control displacement procedure is needed. Indeed, a displacement controlled 
computation would yield an unstable response due to snap-back. 
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Figure 8. Non Local computations of notched three point bending beams with the 
gradient (lcgrad) and integral (feint) models for several internal lengths 

23



Finally, the case where the criterion for uniqueness is not met must ~e investigated. 
Again we know that there is at least one solution denoted as u * to the rate 
equilibrium problem. Let us call this solution the fundamental solution. The 
objective now is to perturb the fundamental solution adequately in order to obtain 
the solution over the stable path. This perturbation is realised by means of the right 
hand eigenvector v associated to the vanishing eigenvalue of the tangent stiffness 
matrix K because it can be demonstrated (de Borst, 1986 and 1988) that for any 
arbitrary scalar f3, the velocity field u * +f3v is also a solution of the problem: 

. -
K(u • +f3v>- F [67] 

For more details on this specific subject, see Pijaudier-Cabot and Huerta ( 1991) and 
de Borst ( 1988). 

6. Conclusion - Example of Computation 

As a conclusion, the 3D computation of a reinforced concrete bending beam is 
presented in this section. This test case belongs to the benchmark study that has 
been carried out by EDF (Ghavamian, 1999). 
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Figure 9. Three point bending beam 

Frame ' , 
IOOmm apan 

Hmm 

500mm 

24



The beam and the load system are shown in Fig. 9. The computation has been 
carried out with a scalar damage model which derives from the damage induced 
anisotropic model presented in section 3. The equations are the same, except that 
the interpolation of damage is carried out over a single direction instead of three 
mutually orhtogonal ones. The finite element mesh is made of brick elements for 
concrete and elasto-plastic bar elements for the longitudinal reinforcements and for 
the stirrups. Figure I 0 shows the load deflection curve. 
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Figure 10. Load deflection curve 
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Figures 11 and 12 show the distribution of damage in two cross sections of the 
beam. The first one is longitudinal and the second one is a transverse cross section 
at mid-span. 

Figure 11. Distribution of damage in a longitudinal cross section . . The load is 
applied at the top-right corner (axis of symmetry) and vertical displacements are 
fixed at the bottom left corner 
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On these figures, the dark grey colour corresponds to zero damage and the white 
colour corresponds to complete damage. Overall, the distribution of damage is very 
much in agreement with experiments, which show regularly spaced cracking. 

Figure 12. Distribution of damage in a transverse cross section at mid-span 

As seen on these figures, 3D effects are captured in addition to the map of regularly 
spaced vertical cracks and diagonal cracks. The computation has been stopped when 
the applied vertical displacement reached -1 em. 

It is on this type of 3D finite element computations, which correspond to major 
industrial applications, that several issues involving computational damage are 
faced. One can mention the pertinence of the constitutive relation, of course, but 
also with respect to "non mechanical" issues involved in safety analyses (occurrence 
of leaks, ageing, ... ). The robustness of the finite element implementation is 
another one, in which the simple question "is a solution expected from the finite 
element calculation?" is far from being trivial in large scale analyses. Finally, the 
quality "at large" of finite element simulation of failure still remains an outstanding 
issue which should be addressed if this type of modelling is intended to be more 
widely used in engineering practice. 
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