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Consistent closure schemes for statistical models of anisotropic fluids
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We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. 
or the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n − 2)/2 scalar functions Sn(S2) in terms of 
 scalar argument S2, with Sn(0) = 0 and Sn(1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the 
istribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can 
e characterized by a single S4(S2) function. We propose using the simple model dependent convex shaped equilibrium relationship between S4 
nd S2 to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new 
gainst earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess–Doi Fokker–Planck equation for nematic 
nd nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational 
ows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are 
alid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures 
n particular in the temperature regime T ∈ [0.6, ∞] × T with the nematic-isotropic transition temperature T (or alternatively, for mean-field 
NI NI 
trengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-
I are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.
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. Introduction

Anisotropic fluids consist of particles or molecules that can
e aligned by flow and external fields. One approach to model-
ng such fluids is to introduce a set of unit vectors fields, usually
alled directors, that represent the preferred directions of the
article orientations. If there are fluctuations in the particle ori-
ntations, however, the alignment of the particles is not perfect.
n this case, the directors represent the particle orientations in an
veraged, macroscopic sense. This director approach has been
uite successful in modeling low molecular weight liquid crys-

als where the degree of alignment is generally constant [1–4],
nd in modelling ferrofluids [5–8].
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Ferrofluids; Numerical solution of Fokker–Planck equation

For some anisotropic fluids, such as liquid crystal polymers,
article fluctuations play an important role in the overall proper-
ies. An alternative description that explicitly takes into account
uctuations in particle orientations and the resulting variable
egree of alignment is a statistical one with a distribution func-
ion providing the information for the particle orientations. The
rientation distribution function satisfies an evolution equation
for a review see, e.g., [9]). In general, however, this evolu-
ion equation can be solved only numerically. And for most

icrostructural models, such as the Hess–Doi model for rigid,
od-like liquid crystal polymers [10,11], the complete numeri-
al solution of the orientation distribution function at present is
uite prohibitive and impractical [12] for common applications,
f. [13] for solution methods. Approximative solutions are also

vailable [14–16] which allow to characterize the spatiotemporal
ehavior of liquid crystals [17,18].

Alternatively to solving directly for the distribution func-
ion, one can reformulate the statistical model in terms of a
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ierarchy of higher tensorial moments of the alignment (the so-
alled alignment tensors) and then solve the resulting evolution
quations for the alignment tensors. The alignment tensors are
seful since their principal directions are related to the macro-
copic directors and their principal values are related to the
calar order parameters that characterize the variable degree
f alignment. Since there is in general an infinite hierarchy
f coupled evolution equations for the alignment tensors, this
roblem is also computationally difficult, so that various clo-
ure schemes have been introduced to relate higher moments
f the alignment to lower moments. The most common closure
chemes relate the fourth-order alignment tensor to the second-
rder one. Such approximations simplify considerably the effort
o obtain the macroscopic alignment, and a large amount of
ork has been invested in studying them. The proposed schemes

nclude linear [19] and quadratic closure [10,20], interpolation
etween the limiting cases of weak alignment and perfect align-
ent [21], truncation of the evolution equations after a certain

rder [9,10,14–16,22,23], maximum entropy method [24], time-
tructure invariance criteria [25,26], and specification of an a
riori form of the orientation distribution function [27–31].

These closure schemes have been proposed often on an ad hoc
asis and are sometimes inconsistent with the exact equations
ased on the orientation distribution function [12,32,33]. For
xample, in the Doi and Edwards [20] model the quadratic clo-
ure gives an incorrect expression for the fourth-order alignment
ensor in the isotropic phase as well as an incorrect orientation
f the director in the uniaxial phase, while being still compat-
ble with time-structure invariance criteria [25]. Some closure
chemes also commonly lead to pathological results for cer-
ain parameter ranges [12,34]. One reason for this inconsistency
s that the various schemes yield an overdetermined system of
quations for the principal directions and principal values of
he alignment tensors. In particular, any scheme that approxi-

ates both principal values and principal directions can lead to
n overdetermined system.

The purpose of this paper is to show how this overdetermi-
acy arises and, most importantly, how to formulate consistent
losure schemes so that it does not arise. This leads us to propose
ew and simple closure schemes independent of the particular
icrostructural model. Our procedure is based on the represen-

ation of the alignment tensors in terms of their principal values
nd principal directions. These representations show that only
he independent principal values of the alignment tensors need
o be approximated in a closure scheme. For example, speci-
ying the principal values of the fourth-order alignment tensor
n terms of the principal values of the second-order alignment
ensor leads to a consistent second-order closure scheme. By
voiding any assumptions on the principal directions, our proce-
ure maintains the correct symmetry and preferred orientations,
hus leading to consistent, non-pathological results. Although
ur procedure is quite general, for simplicity we treat in detail
nly the second to fourth-order alignment tensors.
We begin with a review of measures of alignment for
nisotropic fluids. The symmetry is conveniently divided into
hree cases according to the number of distinct principal values:
sotropic, uniaxial and biaxial. We examine all three cases and
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iscuss consistent closure schemes for each case. In particular,
or the uniaxial case, a consistent closure scheme requires spec-
fying only a single scalar parameter. For the biaxial case, three
calar parameters must be specified. Furthermore, the choice of
hese three relations is strongly restricted by the requirement
hat the fourth-order alignment tensor be expressible in terms of
he second-order alignment tensor. We also show that a modified
uadratic closure relation can hold for all three types of sym-
etry, which is important for materials that can exhibit all three

ypes of symmetry, such as liquid crystal polymers in complex
ows. Our results demonstrate, however, that most commonly
sed closure schemes are inconsistent and, hence, lead to incor-
ect results. An exception, although, is the scheme that postulates
n a priori form for the orientation distribution function.

As an illustration of our procedure, we apply it to the
ess–Doi model for rigid, rod-like polymers and to ferroflu-

ds. The results can be useful for simulating complex flows such
s those arising in the injection molding of liquid crystalline
olymers into high strength parts.

. Orientational distribution function

For uniaxial-shaped particles with symmetry axis u, the
rientational (part of a eventually space and time-dependent) dis-
ribution function f (u) with u2 = 1 can be expanded in terms of
artesian symmetric traceless (anisotropic, irreducible) tensors

[n] ≡ u(l) of rank n, with u(n) ≡ uu . . . u the n-fold tensorial
roduct of vector u, the symbol . . . denoting the anisotropic part,
nd the tensorial coefficients in front of the u[n]’s are determined
y multiplying f with u[n] and subsequent integration over the
nit sphere, to yield

(u) = 1

4π

(
1+

∞∑
n=1

〈ζnu[n]〉�n(ζnu[n])

)

= 1

4π

∞∑
n=0

ζ2
na(n)�nu[n], (1)

here �l denotes an n-fold contraction and a[l] ≡ 〈u[l]〉 the n
h rank alignment tensor. The constant (4π)−1 ensures proper
ormalization 〈1〉 = 1, and the average 〈. . .〉 is defined through
. . .〉 ≡ ∫ . . . f (u) d2u. The prefactor

n =
√

(2n+ 1)!!

n!
, (2)

ith k!! = k(k − 2)(k − 4) . . . is immediately derived using the
dentity [9]

1

4π

∫
u[k]u[n] d2u = n!

(2n+ 1)!!
δkn�

(n), (3)

here �(n) is the isotropic tensor [9,35]– and projector – of
ank n with the feature �(n)�na(n) = a[n] and just �(0) = 1 is

eeded here to prove (2). Within the statistical approach to the
ynamics of anisotropic fluids, the distribution function obeys
Fokker–Planck (FP) equation from which coupled equations
f moments (including anisotropic moments—the alignment
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ensors) are obtained by integration, cf. [9,14,36] for an intro-
uction.

. Alignment tensors

A (symmetric traceless) alignment tensor a[l] of rank l is
lways uniquely expressed in terms of symmetric orientation
ensors a(k) ≡ 〈u(k)〉 with k ≤ l and unity tensor I which is
bvious from the existence of the above-mentioned isotropic
ensor �(l). There is a closed formula available for the projec-
or �(l), cf. Eq. (10.14) of [9], but since we do not need the
igher-order tensors in this manuscript, we mention, that the
nisotropic tensors can be constructed manually by writing down
n ansatz like a[2] = c1a(2) + c2I, a[3] = a(3) + {a(1)I}sym, or
[4] = c1a(4) + c2{a(2)I}sym + c3{II}sym with unknown coeffi-
ients c and taking the (more precisely, an arbitrary) trace on
oth sides, because tr(a[...]) vanishes by definition. Here, I is the
dentity tensor. With {·}sym we denote the symmetric, normalized
art, as {X}sym and for clarity, now in component notation,

Xμν}sym ≡
1

2
(Xμν +Xνμ), (4a)

xμYνκ}sym ≡
1

3
(xμYνκ + xνYμκ + xκYμν), (4b)

XμνYκλ}sym ≡
1

6
(XμνYκλ +XμκYνλ +XμλYκλ +XνκYμλ

+XνλYμκ +XκλYμν), (4c)

or any symmetric 2nd rank tensors X, Y and vector x, the
enominator equals the number of distinct terms. Accordingly,
e obtain the following identities

[2] = a(2) − 1

3
I, (5)

[3] = a(3) − 3

5
{a(1)I}sym, (6)

[4] = a(4) − 6

7
{a(2)I}sym +

3

35
{II}sym. (7)

Odd moments are of relevance for polar materials such as
ipolar fluids. For materials characterized through a director (in
he presence of head–tail symmetry of molecules) only the even

oments do not vanish. For example, the Eq. (7) shows that
relation for either a(4) or a[4] in terms of the second-order
oment yields a corresponding relation for the other fourth-

rder alignment tensor. Obviously, tr(a(1)) = a(1−2) is consistent
ith (7) since tr(a[...]) = 0. Notice, that (5)–(7) are also valid if
ne formally replaces a by u or a by an arbitrary unit vector n.

Importantly, there are orthogonal unit vectors n, m and l such
hat
a(2) = λ1n(2) + λ2m(2) + λ3l(2),

a[2] =
(

λ1 − 1

3

)
n(2) +

(
λ2 − 1

3

)
m(2) +

(
λ3 − 1

3

)
l(2).

,

(8)

S

o

3

here n(2) = nn and a(2) = 〈uu〉, etc. by carrying over the nota-
ion introduced above. The λi are the principal values of a(2),
nd the unit vectors n, m and l are the principal directions. The
i are also constrained by the requirement that tr(a(2)) = 1 or,
quivalently, tr(a[2]) = 0, thus

∑
iλi = 1. Further, the identity

(2) +m(2) + l(2) = 0 can be used to eliminate, say, l(2) from
8). Similar relations hold for alignment tensors of all orders, but
or simplicity, we do not write them. The symmetry is directly
elated to the number of distinct principal values of the align-
ent tensors. For example, for the second-order moment a(2), we

ave isotropic—1 distinct principal value, uniaxial—2 distinct
rincipal values biaxial —3 distinct principal values.

In the case of isotropy, the three principal values are all equal,
1 = λ2 = λ3 = 1

3 , so that the second-order alignment tensors
ecome

(2) = 1

3
(n(2) +m(2) + l(2)) = 1

3
I, a[2] = 0. (9)

Additionally, the third-order and fourth-order ones are a(3) =
[3] = 0, and

(4) = 1

5
{II}sym, a[4] = 0. (10)

It follows trivially from (9) and (10) that, in the isotropic
hase,

(4) = 9

5
{a(2)a(2)}sym, a[4] = a[2]a[2]. (11)

Thus, any closure relation for a(4) must reduce to (11) in
he isotropic phase. Importantly, this result shows that a(4) 
=
(2)a(2) in the isotropic case. The isotropic phase is a special
ase of the more general uniaxial and biaxial phases. We consider
ach case separately. Readers interested in the application of the
ew closures can skip the following Section 4; the more general
xpressions will be presented in Section 5.

. Uniaxial phase

Scalar order parameters Sn for the uniaxial phase are
ommonly defined through Sn ≡ 〈Pn(u · n)〉 with Legendre
olynomial Pn, or equivalently, through a[n] = Snn[n]. Inserting
[n] into (1), one recovers the uniaxial orientational distribution
unction parameterized by order parameters and director n. The
sotropic phase is recovered for ∀nSn = 0, the totally aligned
niaxial phase has ∀nSn = 1. The squared order parameter Sn

an be calculated from the n th rank alignment tensors,

2
n =

(2n− 1)!!

n!
a[n]�na[n], (12)

hich can be also written as Sn = (2n−1)!!
n! a[n]�nn[n]. Special

ases of interest in the following discussion are S1 = 〈u〉2, and
2
2 =

3

2
a[2] : a[2] = 1

2
(3a(2) : a(2) − 1), (13)

In the case of uniaxial symmetry, two of the principal values
f the second-order alignment tensor are equal (say λ2 = λ3).
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used in their pure form (16) but in connection with a matrix
contraction to lower rank. In particular, let M be an arbitrary,
not necessarily symmetric, 2nd rank tensor. Inserting (21) into

Fig. 1. Absolute quality of simple closure relationships S4(S2) = S2(1−
(1− S2)ν) with ν = 3/5 and S6(S2) = S6

2 . Shown are absolute differences
n this case, the representation (8) has the simple form

(2) = S2n(2) + 1

3
(1− S2) I, a[2] = S2n[2], (14)

here S2 ≡ (3λ1 − 1)/2. By making use of (6) and (7), the third-
nd fourth-order moments are given by

a(3) = S3n(3) + 3

5
(S1 − S3){In}sym,

a[3] = S3n[3],

a(4) = S4n(4) + 6

7
(S2 − S4){In(2)}sym +

1

35
(7− 10S2 + 3S4){II}sym,

a[4] = S4n[4].

(15)

The scalar order parameters S2, S3, and S4 range in value by
≤ S2 ≤ 1, −1 ≤ S3 ≤ 1, − 3

7 ≤ S4 ≤ 1 which follows from

2(x) = 1
2 (3x2 − 1), P3(x) = 1

2 (5x3 − 3x), and P4(x) = 1
8 (3−

0x2 + 35x4), respectively. The principal direction n is the uni-
xial director. As in the isotropic case, the traceless moments
[...] have simpler forms than a(...). Notice that, due to (14), for
he uniaxial case it is possible to solve explicitly for n(2) in terms
f a(2) or a[2].

.1. Closure for uniaxial phase

Combining (14) with (15) yields a consistent closure rela-
ionship between 4th and 2nd moment in terms of a single scalar
unction S4(S2) subject to the (important) constraints S4(0) = 0,
4(1) = 1, and − 3

7 ≤ S4 ≤ 1 for all 0 ≤ S2 ≤ 1. It reads:

(4) = α{a(2)a(2)}sym − 2β{a(2)I}sym − 2γ{II}sym, (16)

here

α ≡ S4

S2
2

,

β ≡ α

3
+ 2S4

21 S2
− 3

7
,

γ ≡ 3

70
+ 2S4

45
− α

18
− 2S4

63 S2
.

(17)

r equivalently, in terms of anisotropic moments,

[4] = S4

S2
2

a[2]a[2]. (18)

The extension for higher order moments reads

n,mSnSma[n+m] = Sn+m a[n]a[m], (19)

nd we should also mention the equation of change for order
arameters [9]:

nṠn = 1

2

d

dt
(S2

n) = (2n− 1)!!

n!
a[n]�n ∂

∂t
a[n]. (20)

The order parameter S2 in terms of a(2), cf. (13), supple-
ents the closure (16), (17). No assumption has been made other
han uniaxial symmetry, so that these results are exact for uni-
xial symmetry. Any valid closure should be characterized by
correctly bounded, scalar function S4(S2). Eq. (17) or (18)

educes to (11)– the isotropic phase – for S4 = 0, and to the

b
S

e
h
c

4

otally aligned phase, a(4) = n(4), for S4 = S2 = 1, and it obeys
r(a(4)) = a(2).

First of all for convenience, let us write the scalar function in
he following form

4 = S4(S2) = S2[1− (1− S2)ν] (21)

ith an unspecified, positive exponent ν > 0, which may weakly
epend on S2. Experiments and simulation studies show, that ν

ies in the range ν∈ [0.3, 0.8] [9,22]. Let us further motivate the
epresentation (21) by stating a few examples. (i) The potential
or a magnetic moment with orientation u in a dimensionless
agnetic field h [14] and strength h ≡ |h| (Langevin parameter

) is given by V = −kBTh · u. The corresponding equilibrium
istribution function reads f (u) = h

4π sinh(h) eh·u and the order
arameters obey S0(h) = 1, S1(h) = coth(h)− 1/h, and for
≥ 1:

i+1(h) = −(2i+ 1)h−1Si(h)+ Si−1(h), (22)

rom which follows, that ν ≈ 1
2 for a ferrofluid close to equi-

ibrium, for all h. (ii) More generally, a maximum entropy
rgument for a Maier-Saupe type potential yields ν ≈ 3/5 as
an be seen as follows. For an orientational distribution function
(u) = Z−1 expaP2(u·n) (a uniaxial Bingham-type distribution)

he scalar order parameters S2 and S4 are parameterized through

as follows: S2 = Z−1 dZ/da and S4 = 35
18 (Z−1 d2Z

da2 − 1
5 )−

5
9S2, where the partition function Z is Z = ∫ f (u)d2u. Here,
he resulting S4 is always non-negative, and ν is well approx-
mated by 3/5, cf. Fig. 1. We may call the closure (18) with
4(S2) from (21) and ν = 3/5 the uniaxial K-I closure which is
special case of the more general biaxial K-I closure.

Since closure relationships are needed to approximate a
igher-order tensor in terms of lower-order ones, they are not
etween exact Sex
4 (S2) and Sex

6 (S2) and these approximate relationships,�Sn ≡
ex
n − Sn(S2) based on the uniaxial orientational distribution function f (u) ∝
xp(∝ P2(u · n)) of Maier-Saupe type [22](a special case of the so called ‘Bing-
am distribution’, cf. [28]). In that representation, the quadratic I and Doi
losures, for example, have a |�S4| as large as 0.15 at S2 = 0.6.
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(A

(B
16) yields the closure, parameterized by ν > 0,

: a[4] = 1− (1− S2)ν

S2
M : a[2]a[2]. (23)

Using (4) we obtain the identities

: {a(2)a(2)}sym =
1

3
M : a(2)a(2) + 2

3
a(2) ·M · a(2), (24a)

M : {a(2)I}sym

= 1

6
[M : a(2)I + 2a(2) ·M + 2M · a(2) + tr(M)a(2)],

(24b)

: {II}sym =
1

3
[tr(M)I +M +MT ]. (24c)

To facilitate comparison with the literature, and implemen-
ation in a computer code, we apply (23) to an anisotropic 2nd

ank tensor A =M, with tr(A) = 0 and A = AT and rewrite
23) with the help of (24) as

: a(4) = 1− (1− S2)ν

3S2
[A : a(2)a(2) + 2 a(2) ·A · a(2)]+ (1−

− ((2/27)− (2/35)S2
2)[(1− S2)ν − 1]+ (2/27)[(1/5

S2

ith S2 also expressed in terms of a(2) according to (13). We
ropose using (25) with constant ν > 0 in the uniaxial phase. It
s correct in the isotropic and totally aligned limits and fulfills
ll constraints, nothing else can be concluded about the interre-
ation between A : a(4) and A and a(2) without using a particular

odel or assumption. Notice, the three prefactors in (25) reduce
o (i) 1

3α = ν
3 − 1

6ν(ν − 1)S2 + o[S2
2], − 1

3β = 1
7 − ν

9 + o[S2
2]

nd − 4
3γ = −( 2

35 − 2
27ν)+ o[S2

2], respectively, in the limit of
mall order parameter S2, i.e., weak anisotropy and (ii) 1

3α = 1
3 ,

1
3β = 2

63 (1− S2), and − 4
3γ = 8

945 (2+ 5S2 − 7S2
2) for the so

alled quadratic III closure (ν = 1). See Table 1 for special
hoices of M or A. It is trivial to check that (25) yields, for
ny ν, the correct limiting cases: A : a(4) = 2

15I and A : a(4) =
: n(4) in the isotropic (S2 = 0), and totally aligned (S2 = 1),

hase, respectively. For the special choice M = a(2), Eq. (5)

an be used to replace a(2) : a(2) by (2S2

2 + 1)/3, and (25) can
e also viewed as an expansion using the Caley–Hamilton the-
rem, where the coefficients are actually given in terms of the
nvariants of a(2), cf. [9]. To this end notice the recursive rela-

able 1
ome identities valid in the uniaxial phase, where a[2] = S2n[2]

[2] : {a(2)a(2)}sym = 2
27 (1+ 2S2 + 6S2

2 ) a[2] + 2
81 S2

2 (7+ 2S2) I

[2] : {a(2)I}sym = 2
9 (1+ S2) a[2] + 7

27 S2
2 I

[2] : {II}sym = 2
3 a[2]

(2) : {a(2)a(2)}sym = 1
9 (3+ 2S2 + 4S2

2 ) a[2] + 1
81 (5+ 18S2

2 + 4S3
2 ) I

(2) : {a(2)I}sym = 1
18 (11+ 4S2) a[2] + 1

27 (5+ 7S2
2 ) I

(2) : {II}sym = 2
3 a[2] + 5

9 I
(C

5

ν(1+ (2/7)S2)+ S2 − 1

9S2
[A : a(2)I + 4 a(2) ·A]

(4/7)(1− S2)ν]S2
A, (25)

ionship [9] between tensorial products a3
[2] = a[2] · a[2] · a[2],

tc.

i
[2] = I2a

i−1
[2] + I3a

i−3
[2] (26)

or i ≥ 3 and with a[0] ≡ I, where I2 = 1
2a[2] : a[2] and I3 =

et(a[2]) = tr(a3
[2])− I2a[2] [9]. Using (26) we can, for example,

rite a(2) · a(2) · a(2), which appears if M = a(2) is required, in
erms of I, a(2), and a(2) · a(2), where the prefactors contain the
nvariants of a[2].

.2. Comparison to closure relationships used in the
iterature

) The so-called linear closure had been suggested by Hand
[19], which is equivalent with (7) upon simply setting a[4] =
0, i.e.,

a(4) = 6

7
{a(2)I}sym −

3

35
{I I}sym (27)

coincides with (16) for S4(S2) = 0 which is however incon-
sistent with the required boundary condition S4(1) = 1.
Hand’s closure simply corresponds to ν = 0 in (21). For
symmetric traceless A it predicts

A : a(4) = 1

7
[A : a(2)I + 4a(2) ·A]− 2

35
A, (28)

which is a valid relationship in the isotropic phase, where it
correctly reduces to A : a(4) = 2

15A.
) The more general, so-called natural closure [32] reads:

a(4) = β1{II}sym + β2{a(2)I}sym + β3{a(2)a(2)}sym

+β4{a(2) · a(2)I}sym + β5{a(2)a(2) · a(2)}sym

+β6{a(2) · a(2)a(2) · a(2)}sym (29)

where the β’s are functions of the second and third invari-
ants of a(2) and must be chosen to satisfy the normalization
condition tr(a(4)) = a(2). By comparing (29) with (16) we
see, that the functions β1,2,3 are interrelated by our Eq.
(17), and that functions β4,5,6 vanish in the uniaxial phase.
While the natural closure is somewhat general, our closure
imposes constraints to its coefficients. The most general
closure consistent with the Caley–Hamilton theorem and
motivated by time-structure invariance criteria had been pre-
sented by Edwards and Öttinger [25]. It contains the natural

closure as a special case. Their closure contains 27 scalar
functions, cf. Section 5.1.

) The so-called quadratic I closure, a(4) = a(2) a(2), is not com-
patible with the closure (16), except in the case of perfect
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alignment, S4 = S2 = 1, and had been rarely used for the
reason that it does produce very inconsistent results in the
vicinity of the isotropic phase.

) The so called quadratic II closures, a[4] = a[2]a[2] is incon-
sistent with our closure, though correct in the limit either for
total alignment or random alignment.

E) The ‘quadratic III closure’ which we introduce as a[4] =
a[2]a[2], is a special parameter-free case of our closure for

ν = 1. Replacing S4 by S2
2 in (17), (16) yields a[4] = a[2]a[2],

or

a(4) = {a(2)a(2)}sym −
4

21
(S2 − 1){a(2)I}sym

+ 4

315
(2+ 5S2 − 7S2

2){I I}sym, (30)

which is, as a member of the set of allowed closures for
S2 ≥ 0, certainly valid both in the isotropic a(4) = 1

5 {II}sym
and totally aligned phases a(4) = n(4). The corresponding
closure relationship for A : a(4) results from either (16) with
ν = 1, or (30) with (24):

A : a(4) = 1

3

[
2a(2) ·A · a(2) +A : a(2)a(2)

+ 8

315
(2+ 5S2−7S2

2)A− 2

21
(S2−1)(A : a(2)I

+2a(2) ·A+ 2A · a(2))

]
. (31)

It also seems reasonable to expect that relations (30) and
(31) are good approximations in the case of weak biaxiality.

Two more commonly cited closures, motivated by Hinch
and Leal [21] for an arbitrary symmetric and traceless tensor
A are the HL-I and HL-II closures. These are based on inter-
polation between weak and strong flow limits in a Brownian
suspension of rods.
F) HL-I closure:

A : a(4) = 1

5
[6a(2) ·A · a(2) −A : a(2)a(2)

+2I (a(2) − a(2) · a(2)) : A], (32)

a

c
p
F

able 2
omparison of closure relationships for the uniaxial phase (director n)

niaxial closure Equation X ≡ a(2) · a(2)

xact (25) 1
35 (7+ 5S2 −

xact, S4 via (21) (25) 1
35 [7(1− S2)+

inear (Hand) [19] (28) 1
35 (7+ 5S2) a[

oi [20], p. 359 (34) 1
3 (1+ S2 − 2S

uadratic I: a(4) = a(2)a(2)
1
3 (1+ S2 − 2S

uadratic II: a[4] = a[2]a[2]

(
19
35 + 1

7 S2 −
uadratic III: a[4] = a[2]a[2] (31) 1

35 (7+ 5S2 −
L I closure (32) (32) 1

15 (3+ S2 − 4

L II closure (33) (33)
[

4(7+20S2)
315 e(6S

ll except the quadratic III and HL closures are, for this simple but important example, n
olumns, which contain the prefactors in the following relationships: limS2→0X = iso
ee Fig. 2 for a graphical representation.

6

G HL-II closure:

A : a(4) = a(2)a(2) : A+ 2a(2) ·A · a(2)

−2(a(2) · a(2)) : A

a(2) : a(2)
a(2) · a(2)

+ exp

{
2−6a(2) : a(2)

1−a(2) : a(2)

}[
52

315
A− 8

21
(A · a(2)

+a(2) ·A− 2

3
a(2) : AI)

]
. (33)

Both the HL-I and HL-II closures are correct in the
isotropic (A : a(4) = 2

15A) and totally aligned (A : a(4) =
An(4)) phases, and both are inconsistent with our closure
(25) valid in the uniaxial phase.

) Hybrid closure: it has also been proposed [34,37] to use
different closures for different terms in the same equa-
tion. For example, quadratic closure has been proposed for
terms such as a(2) : a(4) and the HL-I for D : a(4) where
D is the symmetric part of the velocity gradient. This
purely empirical approach is clearly inconsistent with our
results.

I) Doi [20] used the following closure relationship a[2] : a(4) =
a[2] : a(2)a(2), which is equivalent with

a(4) : a(2) = a(2) : a(2)a(2). (34)

It is correct in the totally aligned phase, but not in the
isotropic phase and thus incompatible with (25).

In the special case of isotropy and perfect uniaxial alignment
ny closure with correct tensorial symmetry must reduce to 2

15A,
nd A : n(4), respectively (for any anisotropic A). Further, tr(A :

(4)) = A : a(2) must hold. Together with the test of limiting
ases, the latter constraint serves as an independent test of a
ossible useful closure relationship, cf. Table 2 for details and
ig. 2 for a graphical representation.

− a(4) : a(2) iso total

12S4) a[2]
1
5 0

12S2(1− S2)ν] a[2]
1
5 0

2]
1
5

12
35

2
2 ) a[2]

1
3 0

2
2 ) a[2]

1
3 0

2
3 S2

2

)
a[2] + 2

7 I – –

12S2
2 ) a[2]

1
5 0

S2
2 ) a[2]

1
5 0

2
2 /(S2

2−1)) + (1−S2+6S2
2+14S3

2−20S4
2 )

9(1+2S2
2 )

]
a[2]

1
5 0

ot correct in the isotropic and totally aligned phases, as is visible from the last two
× a[2] and limS2→1X = total× n[2]. We recall a[2] = S2n[2] ≡ S2(nn− 1

3 I).
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This formula exactly reduces to (38) for ν = 1 and U ≥ UNI and
allows to estimate ν from a measured Seq. Generally, Seq tends
to increase with decreasing ν. For ν = 0, i.e. S4 = 0, UNI = 5
and Uc does not exist, cf. Fig. 3 and Table 3, which contains
Fig. 2. Comparison of decoupling approximations, cf. Tables 2 and 3.

.3. Potential applications

.3.1. Liquid crystals
Let us consider the Hess–Doi theory [10,20] for rigid, rod-

ike liquid crystal polymers. Consider a flow with macroscopic
elocity v. The symmetric D and antisymmetric parts W of
he velocity gradient are given by D = 1

2 [∇v+ (∇v)T ], W =
1
2 [∇v− (∇v)T ]. The interaction of the rods is modeled by
mean field contribution ∇uVmf where Vmf = − 3

2UkBT u(2) :
(2), with U the strength of the mean field. Here the mean field
mposes uniaxial symmetry in equilibrium. The flow can how-
ver induce biaxiality, but for small shear rates this biaxiality is
eak. The evolution equation for the second moment a(2) is

∂a(2)

∂t
+ v · ∇a(2) = W · a(2)−a(2) ·W + R(D · a(2) + a(2) ·D)

−2RD : a(4) − 6Dra[2] + 6UDr(a(2)

·a(2) − a(4) : a(2)) (35)

here Dr is the rotary diffusion coefficient and R a shape coef-
cient characterizing rods (λ = 1), spheres (λ = 0) and disks
λ = −1). We can substitute expression (25) for D : a(2) and
(4) : a(2) to obtain a closed evolution equation for a(2), parame-
erized by ν. For ν = 1 one can use (31) instead of (25). The same
quations are commonly used for dilute suspensions of rigid par-
icles, polymers, etc. but where now U = 0 [14,36,38,39]. For
xplicit expressions of a(2) · a(2) − a(4) : a(2) in terms of order
arameters see Table 2, D : a(4) is given by (25) upon replacing

by D because D is symmetric and traceless (incompressible
ow). For the case of compressible flows, one has to use the
ore general equations containing tr(M) of this manuscript.
Doi [20] considered the flow-free relaxation behavior (D =
= 0) of a liquid crystal, assumed to be uniaxially pre-
riented (in direction n) by an external field (at time t = 0).
ence, we can insert the ansatz a[2](t) = S2(t)n[2] into (35)

o obtain an equation of change for the scalar order parame-
er S2(t): dS2

dt
= −6DrS2 + 6UDrX, where X defined as X =

7

n[2] depends on the closure relationship and is tabulated in
able 2 for various models. Accordingly, the closure (16) yields
S2/dt = −6Dr∂A(S2, U)/∂S2 with an associated free energy

(S2, U) = 1

2

(
1− U

5

)
S2

2 +
U

15
S3

2

+12(1− S2)1+ν{2+(1+ ν)(2+ [2+ ν]S2)S2}U
35(1+ ν)(2+ ν)(3+ ν)

(36)

= 1

2

(
1− U

5

)
S2

2 −
U

21
S3

2 +
3νU

35
S4

2 −
6ν(ν − 1)U

175
S5

2

+ ν(ν − 1) o[S6
2], (37)

o be compared with A(S2, U) = 1
2 (1− U/3)S2

2 − (U/9)S3
2 +

U/6)S4
2 of [20]. For an amended potential (37) that not only

equires, but ensures the constraint S2 ≤ 1 in strong flows, for
xample, we refer the reader to [40]. Notice that the term pro-
ortional to S5

2 in (37) vanishes only for ν = 1. For this choice,
nd U < UNI ≡ 1680/361 ≈ 4.653 ([20] predicts UNI = 2.667
nstead, UNI = 4.898, 4.457 for the HL-I and HL-II closure,
espectively, and UNI = 4.55 for the unapproximated theory),

has only one minimum at S2 = 0, so that the system finally
ecomes isotropic, whereever its initial state. For UNI < U <

c ≡ 5 ([20] predicts Uc = 3), there are two local minima, one
t S2 = 0 and the other at

eq = 5

24
+ 19

24
[1− (UNI/U)]1/2, (38)

o be compared with Seq = 1
4 + 3

4 [1− 8/(3U)]1/2 of [20]. The
bove relationships can be also worked out for arbitrary ν, or
n terms of S4. For completeness, we mention the equilibrium
rder parameter which results from the approximate expression
37): Seq = [21/3H2 − 4HνU + 22/3ν(5+ 3ν)U2]/[6Hν(1−
)U] with H ≡ U2/3(ν3/2

√
G+ ν2F )

1/3
, and G ≡ νF2 −

(5+ 3ν)3U2, and F ≡ [33− ν(128− 63ν)]U − 315(1− ν)2.
Fig. 3. Definition of UNI, SNI and Uc, listed in Table 3.



Table 3
Comparison of closure relationships

Closure scheme Equation UNI Uc SNI

Quadratic I and Doi (34) 8
3 ≈ 2.67 3 1

4 = 0.25

Linear (Hand) (28) 35
12 ≈ 2.92 5 1.00

Consistent (ν = 3/5) (25) ≈ 4.48 5 ≈ 0.31

Consistent (ν = 7/10) (25) ≈ 4.54 5 ≈ 0.28

Quadratic III (ν = 1) (25) 1680
361 ≈ 4.65 5 5

24 ≈ 0.21

HL I (32) 240
49 ≈ 4.90 5 1

8 ≈ 0.13

HL II (33) ≈ 4.38 5 ≈ 0.30

Characteristic parameters UNI, Uc, and SNI introduced in Fig. 3. UNI, and SNI

are the values at the nematic-isotropic phase transition, and Uc, is the value
above which the isotropic phase is no longer stable. The numerical solution
[27,46,48] gives UNI ≈ 4.49, Uc = 5, and SNI ≈ 0.3 in nice agreement with
the recommended consistent closure with ν = 3/5 (called ‘consistent’ in table);
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NI = 4.898, 4.457 for the HL-I and HL-II closure, respectively, andUNI = 4.55
or the unapproximated theory [12].

eference results for various closure schemes, and values from
exact” (numerical) solution.

.3.2. Ferrofluids and magnetorheological fluids
As discussed in [5–7,20,41,42], the equation of change for

he first moment a(1) = 〈u〉 = S1n of the orientational distri-
ution function of dipolar units in a ferrofluid subjected to a
dimensionless) magnetic field hreads

d

dt
a(1) = W · a(1) + RD · a(1) − RD : a(3) − 2Dra(1)

+Dr(I − a(2)) · h (39)

The closure relationships corresponding to (16) and (25) for
he second and third moments read

(2) = S2

S2
1

a(1)a(1) + 1

3
(1− S2)I, (40)

: a(2) = S2

S2
1

A : a(1)a(1), (41)

(3) = S3

S3
1

a(1) · a(1) · a(1) + 3

5
{Ia(1)}sym

(
1− S3

S1

)
, (42)

: a(3) = S3

S3
1

A : a(1)a(1)a(1) + 2

5
A · a(1)

(
1− S3

S1

)
. (43)

In the absence of flow, S2 and S3 can be expressed in terms of
ither h or S1 via (22) and this relationship should be kept in a
rst approximation when solving the equations in the presence
f both flow and magnetic fields. It is known from simulation
tudies that biaxiality is weak in wide range of field strengths.
n the absence of flow, of course, the ferrofluid is strictly in the
niaxial phase with h = hn, and (39) reduces to[ ]

d

dt
S1 = −2Dr S1 − h

3
(1− S2) , (44)

hich is in agreement with (22), i.e., reduces to dS1/dt = 0
n equilibrium as it should. At the same time, we have hereby

w
ν

t

8

emonstrated how to actually derive the recursive relationship
22) in an alternate fashion, via closure relationships with correct
ensorial symmetry.

.3.3. Landau–de Gennes potential
The often quoted Landau–de Gennes potential �, a scalar

unction in terms of the two nonvanishing invariants of a[2],
eads [9,10,15,16,43,44]

= �(S2, I
(3)) = A

3
ζ2S

2
2 −

B

3
ζ2

2I(3) + C

9
ζ3

2S3
2 , (45)

ith I(3) ≡ √6 tr a3
[2] = 3

√
6 det a[2] [9] and orientation-

ndependent coefficients A, B, and C, such that

(a[2]) = ∂�

∂a[2]

= Aζ2a[2] −
√

6Bζ2
2a[2] · a[2] + Cζ3

2a[2]a[2] : a[2],

(46)

here ζ2 =
√

15/2 according to (2), and the related equation of
hange for a[2] is usually written in the form [16]

∂

∂t
a[2] = 2 ω × a[2] + 2σD · a[2] − τ−1

a ζ−1
2 �(a[2])

−
√

2ζ−1
2

τap

τa
D, (47)

ith vorticity ω = 1
2∇ × v. For incompressible flow, D = D.

y comparing (47) with (35) we see that σ = R. Matching
he isotropic phase where a(4) = 1

5 {II}sym, we obtain τap/τa =
R/
√

15. The two equations, however, do not match in the case
f perfect alignment (a[2] = n[2]), since the last term in (47) has
o analogue in (35), and because the coefficients A, B, and C in
47) are assumed to be orientation-independent. For weak flows,
owever, we can equate (35) with (47), to obtain

X = a[2] − 1

6Drτa

×
(
Aa[2] −

√
6Bζ2a[2] · a[2] + Cζ2

2a[2]a[2] : a[2]

)
,

(48)

here we know from Table 2 that X→ 1
5a[2] in the vicinity of

he isotropic phase. In the uniaxial phase, where I(3) = ( 2S2
3 )

3

olds, and � = �(S2), Eq. (48) reduces, without approxima-
ions, to the scalar equation

U
1

35
(7+ 5S2 − 12S4)

= 1− 1
(

A−
√

6Bζ2S2
1 + Cζ2

2
2
S2

2

)
, (49)
6Drτa 3 3

hich allows, depending on the closure relationship, i.e. for any
, to identify the parameters of the Landau–de Gennes poten-
ial in terms of the Hess–Doi parameters. For the quadratic
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II closure (ν = 1), for example, we have, with the constants
≡ 6

5Drτa, and Uc = 5 (cf. Table 3),

= χ(Uc − U), B =
√

5

7
χ, C = 12

35
χ. (50)

We have thus illustrated how to determine the free parameters
f the Landau–de Gennes potential from a ‘microscopic’ FP
pproach. An alternate approach has been discussed in [16].

. Biaxial phase

Two scalar order parameters S2 and B2 are required to
niquely characterize the second rank tensor a(2) = 〈uu〉 in the
most general) biaxial phase; these can be extracted from the
orted eigenvalues λ1 ≥ λ2 ≥ λ3 and corresponding orthonor-
al eigenvectors e1, e2, and e3 = e1 × e2 of a(2) =

∑
iλieiei as

ollows:

S2 ≡ 1

2
(3λ1 − 1), n ≡ e1,

B2 ≡ λ2 − λ3, m ≡ e2,

(51)

here n and m are the ‘directors’, B2 characterizes depar-
ures from the uniaxial phase. The order parameters S2 and

2 (both semipositive), the directors n and m are uniquely
btained from a given 2nd rank alignment tensor. Further λ3 =
− λ1 − λ2 holds since tr(a(2)) = 1. The (symmetric trace-

ess) 2nd rank alignment tensor a[2] = a(2) − 1
3I appearing in

8) can be written in terms of order parameters and directors
and m via anisotropic dyadic products n[2] ≡ nn− 1

3I and

[2] ≡ mm− 1
3I as

[2] =
(

S2 + B2

2

)
n[2] + B2m[2]. (52)

Similarly, the (symmetric traceless) 4th rank alignment tensor

[4] = 〈uuuu〉 reads, with anisotropic tensorial products n[4],

[4], and nnmm

[4] =
(

S4 − 3B4

8
+ M4

2

)
n[4] + B4m[4] +M4nnmm, (53)

ith three order parameters S4, B4, M4, and the directors n and
available from the second moment, characterizing the fourth

oment. Explicit expressions for the quantities appearing in
53) are given in Appendix A, and not needed to simply use any
f the closure relationships to be derived and presented in this
ection. It is however, important to notice, that a[4] is written
n terms of the eigenvectors characterizing the second moment.
s for the order parameters of the 2nd rank tensor a[2], the
rder parameters for the fourth rank tensor can be calculated
or given a[4] directly from (53) by suitable projection, or more
onveniently, from Legendre polynomials.

A closure relationship (which expresses a[4] in terms of a[2])
ith correct tensorial symmetry must therefore express S4, B4,

4 in terms of S2 and B2. Moreover, these functional depen-

encies must reduce to (i) S4 = B4 = M4 = 0 for S2 = B2 = 0
isotropic phase), to (ii) S4 = 1, B2 = B4 = M4 = 0 for S2 = 1
totally aligned phase), and the order parameters are subject

5

l

9

o inequalities and bounds as discussed in Appendix A. Inso-
ar, (53) constitutes the most general closure relationship, but
s not very useful in its present form because the irreducible
ensors have still to be calculated, and usually contracted, cf.
35), with a symmetric traceless matrix D. By replacing D

n the resulting expression by a(2) we have immediate access
o X ≡ a(2) · a(2) − a(4) : a(2), also appearing in (35). Gener-
lly valid identities for these quantities needed to implement a
onsistent biaxial closure are summarized in Appendix B. The
igenvector e3 does not appear in (52) and (53) because we
liminated it using the identity I =∑3

i=1eiei.

.1. Simple closures for biaxial symmetry

In the biaxial case there are three independent scalar order
arameters that must be determined. Thus, we obtain a consistent
losure by postulating relations for S4, B4, and M4 in terms of
he second-order ones S2 and B2:

4=S4(S2, B2), B4=B4(S2, B2), M4=M4(S2, B2). (54)

Note, however, that in general such relations do not provide
n expression for the fourth-order alignment tensor in terms of
he second-order alignment tensor. Only special choices of (54)
ill yield such expressions.
The three functions S4, B4, and M4 are subject to several

oundary conditions summarized after Eq. (A.7) which gives
ise to these conditions. Rather than just fitting the biaxial order
arameters to polynomials in S2 and B2 which do not necessarily
espect the boundary conditions, one can start from a distri-
ution function to derive consistent relationships, much in the
ame spirit as demonstrated for the uniaxial case where we intro-
uced a parameterized relationship between S4 and S2. As we
ave seen above, closure relationships are in use which do not
bey tensorial symmetries. Such inconsistent relationships can
e recognized to eventually work fine in certain flow geometries,
hile failing in others. Closures expressed in the form (54) do
ot possess these problem.

.2. Quadratic-III closure for biaxial symmetry

The only consistent, and parameter-free quadratic closure

eads a[4] = a[2]a[2] (quadratic-III) which corresponds to

4 = S2
2 +

1

8
B2

2, B4 = B2
2, M4 = 2S2B2 + B2

2, (55)

nd certainly reduces to S4 = S2
2 in the uniaxial phase. Substi-

ution of (55) into (53) leads to an expression for a[4] in terms

f directors and order parameters satisfying a[4] = a[2]a[2].
These special relations (55) are always consistent and yield

he correct limits for perfect alignment (uniaxial) and random
lignment (isotropic).
.3. K-I closure

As the relationship S4 = S2
2 is usually not valid even in equi-

ibrium, we propose the following K-I closure for the biaxial
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[4] = ζa[2]a[2], (56)

ith a scalar prefactor ζ which is introduced to represent the ratio
etween S4 and S2

2 obtained from the (usually known) equilib-
ium distribution function. This closure relationship (56) with
ny scalar ζ = ζ(S2) obeying S2

2ζ = S2 for S2 = 0 (isotropic)
nd S2 = 1 (totally aligned), as well as S2

2ζ < 1, has correct ten-
orial symmetry and is again a special case of the general closure
54). More precisely, closure K-I (56) is equally represented by

4 =
(

S2
2 +

1

8
B2

2

)
ζ, (57a)

4 = B2
2 ζ, (57b)

4 = (2S2B2 + B2
2)ζ. (57c)

his K-I closure can be applied (and will be applied in Section 6
o flowing nematics) by using the basic identities summarized in
ppendix B. Further identities, if needed, can be derived using

he expressions of Appendix A, or by evaluating the irreducible

ensor a[2]a[2] explicitly [9].
As discussed already for the uniaxial phase, for the case

f a Maier-Saupe potential, we have access to the equilib-
ium relationship between S4 and S2 which allows to calculate
= ζ(S2) self-consistently from the orientational distribution

unction f (u) of the (Maier-Saupe) form f (u) = Z−1 eαP2(u·n)
ith normalization constant Z, yielding

≡ 1− (1− S2)ν

S2
, ν ≈ 3

5
. (58)

c
v
(
a

able 4
eries expansion coefficients ci, i = 1, . . . , 9 in the (conventional) third order expres

9S2B
2
2 + o(S...

2 B...
2 ) for the Bingham (BH) closure (obtained numerically using pure

he K-I (arbitrary ν), K-I (ν = 3/5) and K-II (ν = 3/5) closures [obtained analyticall

losure c0 c1 c2 c3 c4

1 S2 S2
2 S3

2 B2

4

H −0.0104 0.4897 −1.0465 1.5346 −0.2973
-I 0 0 ν

ν(1−ν)
2 0

-I 0 0 3
5

3
25 0

-II 0 0 3
5

3
25 0

4

H −0.0008 −0.0206 0.0728 −0.0567 0.1925
-I 0 0 0 0 0
-I 0 0 0 0 0
-II 0 0 0 0 0

4

H −0.0083 0.1693 −0.5248 0.3997 0.5911
-I 0 0 0 0 0

-I 0 0 0 0 0

-II 0 0 0 0 0

he remaining closures mentioned in this manuscript cannot be cast into this form beca
btain higher-order coefficients for the Bingham closure, but there is no closed form
he limit of total alignment, S2 = 1 (hence, B2 = 0), is not covered for the Bingham c
t low degree of alignment where both |S2| and |B2| are very small. Notice, that the
nd S2 may become much larger at lower temperatures, and in nonequilibrium situati

10
The weighting factor ζ of (58) possesses the properties ζ = ν

or ν = 0 and ν = 1, more generally,

= 1+ (ν − 1)
[
1− ν

2
S2 + ν

6
(ν − 2)S2

2

]
+O[S3

2]. (59)

hat is, a maximum entropy argument has been used to relate
P2(u · n)〉 ≡ ∫ f (u)P2(u · n) d2u and 〈P4(u · n)〉 – with Leg-
ndre polynomials P2 and P4 – not only qualitatively, but
ccurately near equilibrium, more precisely, in the uniaxial
hase. The biaxial K-I closure is therefore accurately valid both
lose to equilibrium, as well as in the aligned state, and offers
orrect tensorial symmetry, by construction.

.4. K-II closure

Another simple closure, K-II, fullfilling all the criteria of
losure K-I, is

4 =
(

S2
2 +

1

8
B2

2

)
ζ, (60a)

4 = B2
2, (60b)

4 = 2S2B2 + B2
2, (60c)

ith ζ = S4/S
2
2 to be (again) either approximated via (58) or to

e – more generally – obtained from the equilibrium distribution
unction.

One can test the decoupling approximation by (i) solving a

losed dynamical equation for the alignment tensor, or by (ii)
erifying the relationships between order parameters such as
60), if a numerical solution to the underlying FP equation is
vailable. To facilitate approach (ii), the order parameters are

sion c0 + c1S2 + c2S
2
2 + c3S

3
2 + c4B2 + c5B

2
2 + c6B

3
2 + c7S2B2 + c8S

2
2B2 +

ly algebraic methods and 10,000 randomly chosen eigenvalues), as well as for
y from Eqs. (57) and (60)]

c5 c6 c7 c8 c9 c...

B2
2 B3

2 S2B2 S2
2B2 S2B

2
2 S...

2 B...
2

0.6320 −0.6086 0.0477 0.5106 0.7812 0
ν
8 0 0 0 ν(1−ν)

16 . . .

3
40 0 0 0 3

200 . . .

3
40 0 0 0 3

200 . . .

−0.3881 0.6402 −0.6585 0.5542 1.8555 0
ν 0 0 0 ν(1−ν)

2 . . .
3
5 0 0 0 3

25 . . .

1 0 0 0 0 0

−1.2406 1.7894 −2.283 5.1783 3.3413 0
ν 0 2ν ν(1− ν) ν(1−ν)

2 . . .

3
5 0 6

5
6

25
6
25 . . .

1 0 2 0 0 0

use they do not offer the correct tensorial symmetry. Further, we can numerically
expression in terms of S2 and B2 as for the K-I and K-II closures. Therefore,

losure by using the numbers of this table. Table essentially offers a comparison
isotropic-nematic phase transition takes place at finite S2 ≈ 0.2 (and B2 = 0),
ons, where the Taylor expansion is certainly not a useful approach.



Fig. 4. Diagonal elements of the orientation tensor 〈uu〉 obtained using a closure approximation when solving the simple dynamical Eq. (35) vs. the “exact”
(numerical) solution of the corresponding FP Eq. (61) for a very broad range of parameter values (2300 independent simulation runs) which cover biaxial, uniaxial,
stationary, time-dependent states for randomly chosen particle geometries, flow geometries and flow strengths. The figures report errors for all the tested closure
approximations: (a) Doi, (b) HL-I, (c) HL-II, (d) Bingham, (e) K-I, and (f) K-II, where the two latter ones have been proposed in this manuscript. Using a closure,
the computational effort had been reduced by three orders of magnitude.

Fig. 5. Same as Fig. 4 for the nondiagonal components of the orientation tensor 〈uu〉.
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Fig. 6. Sample time series for alignment tensor component a(2) = 〈uu〉11,
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11
ith initial condition a(2)(t = 0) = e1e1, strength U = 8, flow field ∇v =
e[e1e2 + αe2e1], α = 0.05. Comparison between closure approximations and
umerical solution of the Hess–Doi FP equation.

efined in terms of Legendre polynomials and directors in (A.3)
nd (A.7) of Appendix A.

. Testing the biaxial closures

As for Section 4.3.1, we consider the Hess–Doi FP equation
or nematic and nematic-discotic liquid crystals [10,20]

∂

∂t
f = −ω · Lf − 1

2
RL · fLu[2] : D+ Dr

kBT
L · fL δV

δf

+DrL2f, (61)

ith vorticity ω = 1
2∇ × v, D = ∇v, rotational operator L ≡

2 2
× ∂/∂u, shape factor R = (Q − 1)/(Q + 1) of an ellipsoid
f revolution with axis ratio Q = a/b [9], rotational diffu-
ion coefficient Dr, and a mean-field functional V of the form
[f ] = − 3

2UkBTa[2] : a[2]. The FP equation has been extended

ig. 7. Same as Fig. 6 for a nondiagonal component of the alignment tensor.
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12
o non-uniform nematics in [45]. The equation of change for the
lignment tensor derived from (61) was already stated above,
f. Eq. (35). The closed version of it is immediately obtained by
sing the identities (B.2) and (B.4) together with a consistent
losure (K-I, K-II, Bingham, etc., cf. Table 4). It can be con-
eniently solved using a basic solver for ordinary differential
quations. On the other hand, we solve the FP equation using
reduction method as described in Appendix C. By largely

arying the parameters of the FP equation this approach sets
s in the position to rigorously test the closure approximation.
pecifically, we performed simulations for dimensionless model
arameters equally and randomly distributed within the follow-
ng bounds: −1 ≤ R ≤ 1, 0.2 ≤ Dr ≤ 5, 0 ≤ U ≤ 20, −1 ≤
∇v)μν ≤ 1 where the latter holds for all components except
or the constrained component (∇v)33 = −(∇v)11 − (∇v)22 in
rder to study incompressible flows. The results are collected
n Figs. 4–7 . They remain qualitatively unaltered if we add a
otential V corresponding to an orienting magnetic field. For this
eason, there is no need to report about these additional results
ere.

. Summary

We propose the ‘quadratic’ closure scheme (K-I)

n,m a[n+m] = ζa[n]a[m], (62)

here . . . denotes the symmetric traceless (irreducible) part, as
more rational approach to approximating the various (sym-
etric traceless) alignment tensors a[n] of rank n. Eq. (62) with
= 1 (quadratic III), or ζ = Sn+m/(SnSm) (K-I) obtained with

he equilibrium distribution function are the simplest closures
ith correct tensorial symmetry, they are correct in both the

sotropic and totally aligned phases. Of uppermost relevance for
pplications is the case n = m = 2 in (62), while for the imple-
entation of the higher-order decoupling approximations the

epresentation theorems in Section 10.4.1 of [9] can be used.
n order to easily apply the new closures, summarized in Sec-
ion 5 of this manuscript, we introduced order parameters and
stablished identities to be used when writing down the decou-
led equation of change for the alignment tensor. Worked out
xplicit closure relationships for the uniaxial phase, parame-
erized by a coefficient ν > 0 have been given for the fourth

oment in terms of the second one in (16) with (21) and (25),
nd compared to ‘inconsistent’ closures in Tables 2 and 3.
xact closures for the second and third moments in terms of

he first moment are given in (43). The closure (62) has been
orked out for the biaxial case (and n = m = 2) in Section 5

nd tested for the case of the Hess–Doi FP equation for liq-
id crystals in Section 6. In [12,28], several closure schemes
ad been compared for the dynamics of liquid crystals in an
xhaustive fashion. It remains to be seen, how these comparisons
lter if the closures K-I (57), (B.1), K-II (60), (B.1) with correct

ensorial symmetry are used. It is known that the Bingham dis-
ribution f (u) ∝ exp(∝ A : u(2)), which is the biaxial analogue
o the Maier-Saupe distribution f (u) ∝ exp{∝ P2(u · n)}, per-
orms very well when considering the flow behavior [28] and
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onequilibrium phase diagram [15,16,46] of liquid crystalline
olymers, certainly, because assuming a distribution function of
his type leads to closure relationships which are special cases of
nes presented here, and thus, in opposite to alternate closures,
ake into account tensorial symmetries. This manuscript aimed
t illustrating these ideas from a different perspective, proposes
ew and simple closures shown to be useful in the uniaxial and
iaxial phases, and also extends the arguments to tensors of
rbitrary rank.
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ppendix A. Biaxial phase

In the biaxial phase, the three principal values of (8) are
istinct. The methods described in Section 4 for the uniax-
al phase can be immediately taken over to the biaxial phase.
nstead of a single scalar order parameter S2 for the sec-
nd moment, and a single scalar order parameter S4 for the
ourth moment, we have to deal with two scalar order param-
ters S2, B2 for the second moment, and three scalar order
arameters S4, B4, M4 (which depend on S2, B2) for the fourth
oment, because these tensors share the same eigenvectors.
ll rules needed for handling the biaxial case are most easily
btained by introducing orthogonal unit vectors e1 = n and e2 =

with ei = (cos φi sin θi, sin φi sin θi, cos θi) and the coupling
1 = −arccot[cos(φ1 − φ2) tan θ2] ensuring |n| = |m| = 1 and
·m = 0 by construction. The set of orthonormal eigenvectors

s completed by a third unit vector l via n(2) +m(2) + l(2) = I.
aking into account the constraint on the λi, we obtain

(2) =
∑

i

λieiei = 1

3
(2S2 + 1)n(2) + 1

3

(
3

2
B2 − S2+1

)
m(2)

− 1

3

(
3

2
B2 + S2 − 1

)
l(2), (A.1)

r equivalently, in a more compact fashion, illuminating the role
f B2,

[2] = a(2) − 1

3
I = (S2 + B2/2)n[2] + B2m[2], (A.2)

here n[2] = n(2) = n(2) − 1
3I, B2 is the second-order scalar

iaxial order parameter

2 = 2

3
(〈P2(u · n)〉 + 2〈P2(u ·m)〉) = 〈(u ·m)2 − (u · l)2〉,

(A.3)

3 2 3 2
nd we have, for example, 2a[2] : a[2] = S2 + 4B2 or tr(a[2] ·
[2] · a[2]) = S3

2 + 3
2S2B2(S2 + B2

2 )+ 9
8B3

2. If we again iden-
ify n = e1, m = e2, and l = e3, then S2 = 3

2 〈x2〉 − 1
2 and

2 = 〈y2 − z2〉. Upon applying λn > λm > λl to define n, m,

c
t
c
(

13
nd l, S2 is semipositive, and B2 ranges in value by 0 ≤ B2 ≤
S2 ≤ 1

2 and 0 ≤ B2 ≤ 2
3 (1− S2) ≤ 1

2 for S2 ≤ 1
4 and S2 ≥ 1

4 ,
espectively. For perfect uniaxial alignment in the n direction,
2 = 1 and B2 = 0. For random alignment (hence, isotropic)
2 = B2 = 0. Similarly, we obtain for the fourth-order align-
ent tensors

(4) =
(

S4−3

8
B4+1

2
M4

)
n(4)+B4m(4)+M4{n(2)m(2)}sym

+α1{n(2)I}sym+α2{m(2)I}sym+α3{I I}sym, (A.4)

[4] =
(

S4−3

8
B4+1

2
M4

)
n[4] + B4m(4) +M4n(2)m(2),

(A.5)

ith

α1 = 1

28
[24(S2 − S4)+ 12B2 + 9B4 − 16M4],

α2 = 1

7
[6(B2 − B4)−M4],

α3 = 1

280
[4(14+5M4−20S2+6S4)−120B2 + 15B4],

(A.6)

here

S4 = 〈P4(n · u)〉,
B4 = 8

35
[4〈P4(m · u)〉 + 4〈P4(l · u)〉 − 3〈P4(n · u)〉],

M4 = 8

35
[11〈P4(l · u)〉 − 3〈P4(n · u)〉 − 3〈P4(m · u)〉].

(A.7)

Note that there are three distinct fourth-order scalar measures
f alignment: S4, B4, and M4. In the uniaxial case with director
, we have B4 = M4 = 0, so that these two can be interpreted
s fourth-order measures of the deviation from uniaxiality.

Any closure relationship for the biaxial phase with correct
ensorial symmetry is therefore equivalent with a set of three
unctions S4, B4, and M4 in terms of the order parameters
S2, B2). The three functions are subject to several bound-
ry conditions such as S4(1, 0) = 1, S4(0, 0) = 0, M4(·, 0) = 0,
4(·, 0) = 0 and their domain is restricted according to 0 ≤
2 ≤ 2

3 (1− S2) ≤ 1
2 for S2 ≤ 1

4 and S2 ≥ 1
4 , respectively. At

st glance, it does not seem possible to express the fourth-order
oments a(4) and a[4] directly in terms of the second-order
oments a(2) and a[2] without some type of approximation (e.g.,
4 = 0), as was possible in the uniaxial and isotropic cases.
owever, the orthonormal directors n and m as well as the eigen-
alues of a[2], or equivalently, order parameters S2 and B2 can be
alculated using straightforward calculus. With these quantities
t hand, we can directly insert into (A.5) to obtain the desired
elationship between a[4] and a[2] (which will be of the form
resented in [25], where we have imposed restrictions to the

oefficients), and also an expressions for the biaxial generaliza-
ion of (25). Moreover, concerning applications, we usually need
losure relationships for second rank tensors like X or a[4] : a[2]
actually, both tensors being symmetric traceless), which must
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e, due to the Caley–Hamilton theorem, expressable as linear
ombination of a[2] and a[2] · a[2] [9].

ppendix B. Identities valid for the biaxial phase

In order to present more useful expressions for the most
eneral closure (53) for biaxial liquid crystals, including all con-
istent closures in a unifying fashion, let us write down explicit
xpressions for the quantities D : a(4) and X appearing in (35).
he former term with symmetric traceless 2nd rank tensor D

nd a(4) = 〈uuuu〉reads, using (52) and (53)

: a(4) = D1D+D2D : nn+D3D : mm

+D4(nn ·D+D · nn)+D5(mm ·D+D ·mm)

+D6(m ·D · n)(nm+mn), (B.1)

ith

1 = 2

15
− 4S2

21
+ 2S4

35
− 2B2

7
+ B4

28
+ M4

21
,

2 = 1

7

(
S2 + 4S4

3
+ B2

2
− B4

2
+ 8M4

9

)
I

+
(

S4 − 3B4

8
+ M4

2

)
n[2] + M4

6
m[2],

3 = 1

7

(
B2 + 4B4

3
+ 2M4

9

)
I + M4

6
n[2] + B4m[2],

4 = 2

7

(
S2 − S4 + B2

2
+ 3B4

8
− 2M4

3

)
,

5 = 2

7

(
B2 − B4 − M4

6

)
, D6 = M4

3
, (B.2)

here n[2] and m[2] are defined above. We have therefore
xpressed D : a(2) in terms of a(2) and three unspecified order
arameters S4, B4, and M4. The identify is of course still valid
n the uniaxial phase, where B2 = B4 = M4 = 0.

Using identity (B.2) for the special case D = a[2], the trace-
ess quantity X ≡ a(2) · a(2) − a(4) : a(2) with a(2) ≡ 〈uu〉 and
(4) ≡ 〈uuuu〉 becomes

= Xnn[2] +Xmm[2], (B.3)

ith

n = S2

(
1

5
+ S2

7
− B2

7
− 12S4

35
+ B4

14
− M4

14

)

+B2

(
1

10
− 3B2

28
− S4

35
− B4

56
− 3M4

28

)
, (B.4a)

m = S2

(
−2B2

7
+ B4

7
− M4

7

)
+ B2

(
1

5
− B4

4
− 2S4

35

)
.

(B.4b)
e have therefore expressed X in terms of a(2) and three unspec-
fied order parameters S4, B4, and M4.

Upon inserting (B.3), (B.1) with (B.4), (B.2) into an equation
f change such as (35) we are left with a parameter-free closed

l

(

14
ynamical equation for the orientation tensor a(2), once we have
uitable expressions for the order parameters S4, B4, M4 in terms
f S2 and B2. The term (B.1) considerably simplifies if one is
nterested in a particular flow geometry only such as shear flow
ith shear rate γ̇ for which (∇v)μν = γ̇δ1,μδ2,ν and therefore

D)μν = 1
2 γ̇(δ2,μδ1,ν + δ1,μδ2,ν) and W equals D upon replac-

ng ‘+’ by ‘−’. If a magnetic field H is present, the equation of
hange (35) has to be modified in such a way that D is replaced

y D̃ with (symmetric traceless) D̃ ≡ D+DrR
−1χaHH/kBT ,

nisotropic magnetic susceptibility χa = χ‖ − χ⊥, and HH =
H− 1

3H2I [9,20].

ppendix C. Reduced order modelling

A large variety of kinetic theory models related to complex
uids can be described from a parabolic partial differential equa-

ion, such as the FP Eq. (61), governing the evolution in time
f the fluid microstructure conformation. When one is solving
non-linear parabolic partial differential equation using some

tandard technique, as for example, the finite element method, at
east a linear system must be solved at each time step. The size
f this system coincides with the number of degrees of freedom
sed to describe the space evolution of the considered field. In
inetic theory models the space coordinates group the physical
nd the conformational ones.

It has been widely noticed in a large variety of models involv-
ng linear and non-linear parabolic partial differential equations
hat the field evolution in the whole time interval can be accu-
ately represented from the linear combination of a reduced
umber of functions that are defined in the whole spatial domain.
n that follows we are illustrating the consequences of this behav-
or.

We assume that the evolution of a certain field �(x, t) is
nown. In practical applications, this field is expressed in a dis-
rete form, that is, it is known at the Nn nodes of a spatial mesh
nd for some times �n(x) = �(x, t = n �t), ∀n∈ [1, . . . , P].
he main idea of the Karhunen-Love (KL) decomposition is how

o obtain the most typical or characteristic structure φ(x) among
hese �n(x), ∀n. This is equivalent of obtaining a function φ(x)
hat maximizes λ defined by

=

n=P∑
n=1

[
i=Nn∑
i=1

φ(xi)�n(xi)

]2

i=N∑
i=1

(φ(xi))2

. (C.1)

The maximization (δλ = 0) leads to the following eigenprob-

em

Q ·QT ) ·� = λ �, (C.2)
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here � represents the vector containing the nodal values of
unction φ and the matrix Q contains the discrete field history:

=

⎛
⎜⎜⎜⎜⎜⎝

�1
1 �2

1 · · · �P
1

�1
2 �2

2 · · · �P
2

...
...

. . .
...

�1
Nn

�2
Nn
· · · �P

Nn

.

⎞
⎟⎟⎟⎟⎟⎠ . (C.3)

The solution of the eigenproblem (C.2) results in Nn

igenvalue–eigenvector pairs: (�k, λk), k ∈ [1, . . . , Nn]. As just
rgued, in numerous problems whose solutions are character-
zed by a regularity in their time evolutions, the most part of
he eigenvalues are small compared with large ones. In fact, the
roper orthogonal KL decomposition establishes that the mag-
itude of the eigenvalues represents the intensity with which the
orresponding eigenvector is present in the solution represen-
ation. Crudely speaking, one can neglect in the approximation
f the field the eigenvectors related to the eigenvalues verify-
ng the relation λk < ελ1, where ε is a small enough parameter
ε = 10−8 in our simulations) and λ1 denotes the highest eigen-
alue. Thus, if only r eigenvalues are retained, one can expect
hat the evolution of the field � can be expressed from the
ssociated eigenvectors �k, k ∈ [1, . . . , r]:

(t) =
k=r∑
k=1

ak(t)�k, (C.4)

here vector �(t) contains the nodal values of function � at
ime t. Thus, we define the matrix allowing the transformation
etween the usual finite element approximation basis and the
educed one:

=

⎛
⎜⎜⎜⎜⎝

φ1(x1) φ2(x1) · · · φr(x1)

φ1(x2) φ2(x2) · · · φr(x2)
...

...
. . .

...

φ1(xNn ) φ2(xNn ) · · · φr(xNn )

⎞
⎟⎟⎟⎟⎠ . (C.5)

Now, we consider the linear system of equations resulting
rom the discretisation of the FP equation when an explicit time
iscretization scheme is used:

·�n = Fn−1, (C.6)

here Fn−1 contains the contribution of the solution at the pre-
ious time step.

Then, the unknown vector containing the nodal degrees of
reedom can be expressed as

n =
i=r∑
i=1

�ia
n
i = B · an, (C.7)

hich implies

n n−1 n n−1
·� = F ⇒ K · B · a = F , (C.8)

nd multiplying both terms by BT it results

T ·K · B · an = BT · Fn−1, (C.9)
[
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hich proves that the final linear system is of small size, i.e.
he dimensions of BT ·K · B are r × r, with r � Nn, and the
imensions of both a and BT · F are r × 1. Eq. (C.9) can be
lso derived introducing the approximation (C.7) into the PDE
alerkin form.
In the previous paragraphs we have illustrated the procedure

o extract the significant functions representing the evolution
f the field of interest in the whole time interval when this
volution is known, as a simple application of the proper orthog-
nal decomposition. These characteristic functions are then used
o solve accurately the evolution problem, which in this case
nly implies a reduced number of degrees of freedom, and
onsequently a significant reduction of the computing time is
xpected. However, the procedure is not operative because in
rder to define the reduced basis the solution must be previously
omputed.

In [47], we have proposed an adaptive procedure in order
o define the reduced approximation basis during the solution
nd without any knowledge a priori. We are summarizing the
ain ideas of the solution procedure. For more details the reader

an refer the just referred paper. The solution procedure start
y assuming that matrix B contains a single arbitrary function
hat could consist in the initial condition. Now, the solution is
omputed in the entire time interval, from which the residual R
s computed at time t = P�t:

= K · B · aP − FP−1. (C.10)

If the residual norm is greater than a threshold value, the
educed basis is enriched using the residual B← (B, R) and the
olution reevaluated in the entire time interval. This iteration
rocedure continues until convergence. We have proved that this
lgorithm is robust, efficient (it converges in few iterations) and
hat it allows a significant CPU time reduction. It has been used
o solve the FP equation in Section 6.
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