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Introduction

Anisotropic fluids consist of particles or molecules that can be aligned by flow and external fields. One approach to modeling such fluids is to introduce a set of unit vectors fields, usually called directors, that represent the preferred directions of the particle orientations. If there are fluctuations in the particle orientations, however, the alignment of the particles is not perfect. In this case, the directors represent the particle orientations in an averaged, macroscopic sense. This director approach has been quite successful in modeling low molecular weight liquid crystals where the degree of alignment is generally constant [START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF][START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF][START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF][START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF], and in modelling ferrofluids [START_REF] Ilg | Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension[END_REF][START_REF] Kröger | Magnetoviscous model fluids[END_REF][START_REF] Wang | Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids[END_REF][START_REF] Parsheh | Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number[END_REF].

For some anisotropic fluids, such as liquid crystal polymers, particle fluctuations play an important role in the overall properties. An alternative description that explicitly takes into account fluctuations in particle orientations and the resulting variable degree of alignment is a statistical one with a distribution function providing the information for the particle orientations. The orientation distribution function satisfies an evolution equation (for a review see, e.g., [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF]). In general, however, this evolution equation can be solved only numerically. And for most microstructural models, such as the Hess-Doi model for rigid, rod-like liquid crystal polymers [START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Doi | Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases[END_REF], the complete numerical solution of the orientation distribution function at present is quite prohibitive and impractical [START_REF] Chaubal | A comparison of closure approximations for the Doi theory of LCPs[END_REF] for common applications, cf. [START_REF] Larson | Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers[END_REF] for solution methods. Approximative solutions are also available [START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF][START_REF] Rienäcker | Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow[END_REF][START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] which allow to characterize the spatiotemporal behavior of liquid crystals [START_REF] Fielding | Spatiotemporal oscillations and rheochaos in a simple model of shear banding[END_REF]18].

Alternatively to solving directly for the distribution function, one can reformulate the statistical model in terms of a hierarchy of higher tensorial moments of the alignment (the socalled alignment tensors) and then solve the resulting evolution equations for the alignment tensors. The alignment tensors are useful since their principal directions are related to the macroscopic directors and their principal values are related to the scalar order parameters that characterize the variable degree of alignment. Since there is in general an infinite hierarchy of coupled evolution equations for the alignment tensors, this problem is also computationally difficult, so that various closure schemes have been introduced to relate higher moments of the alignment to lower moments. The most common closure schemes relate the fourth-order alignment tensor to the secondorder one. Such approximations simplify considerably the effort to obtain the macroscopic alignment, and a large amount of work has been invested in studying them. The proposed schemes include linear [START_REF] Hand | A theory of anisotropic fluids[END_REF] and quadratic closure [START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF], interpolation between the limiting cases of weak alignment and perfect alignment [START_REF] Hinch | Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations[END_REF], truncation of the evolution equations after a certain order [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF][START_REF] Rienäcker | Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow[END_REF][START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF][START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF][START_REF] Kröger | Viscoelasticity of polymeric melts and concentrated solutions. The effect of flow-induced alignment of chain ends[END_REF], maximum entropy method [START_REF] Van Gurp | Letter to the Editor: on the use of spherical tensors and the maximum entropy method to obtain closure for anisotropic liquids[END_REF], timestructure invariance criteria [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF][START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF], and specification of an a priori form of the orientation distribution function [START_REF] Chaubal | A closure approximation for liquid-crystalline polymer models based on parametric density estimation[END_REF][START_REF] Feng | Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?[END_REF][START_REF] Zhou | Kinetic structure simulations of nematic polymers in plane Couette cells. I: the algorithm and benchmarks[END_REF][START_REF] Fang | New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers[END_REF][START_REF] Yu | From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids[END_REF].

These closure schemes have been proposed often on an ad hoc basis and are sometimes inconsistent with the exact equations based on the orientation distribution function [START_REF] Chaubal | A comparison of closure approximations for the Doi theory of LCPs[END_REF][START_REF] Cintra | Orthotropic closure approximations for flowinduced fiber orientation[END_REF][START_REF] Bhave | A constitutive equation for liquid-crystalline polymer solutions[END_REF]. For example, in the Doi and Edwards [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] model the quadratic closure gives an incorrect expression for the fourth-order alignment tensor in the isotropic phase as well as an incorrect orientation of the director in the uniaxial phase, while being still compatible with time-structure invariance criteria [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF]. Some closure schemes also commonly lead to pathological results for certain parameter ranges [START_REF] Chaubal | A comparison of closure approximations for the Doi theory of LCPs[END_REF][START_REF] Advani | Closure approximations for three-dimensional structure tensors[END_REF]. One reason for this inconsistency is that the various schemes yield an overdetermined system of equations for the principal directions and principal values of the alignment tensors. In particular, any scheme that approximates both principal values and principal directions can lead to an overdetermined system.

The purpose of this paper is to show how this overdeterminacy arises and, most importantly, how to formulate consistent closure schemes so that it does not arise. This leads us to propose new and simple closure schemes independent of the particular microstructural model. Our procedure is based on the representation of the alignment tensors in terms of their principal values and principal directions. These representations show that only the independent principal values of the alignment tensors need to be approximated in a closure scheme. For example, specifying the principal values of the fourth-order alignment tensor in terms of the principal values of the second-order alignment tensor leads to a consistent second-order closure scheme. By avoiding any assumptions on the principal directions, our procedure maintains the correct symmetry and preferred orientations, thus leading to consistent, non-pathological results. Although our procedure is quite general, for simplicity we treat in detail only the second to fourth-order alignment tensors.

We begin with a review of measures of alignment for anisotropic fluids. The symmetry is conveniently divided into three cases according to the number of distinct principal values: isotropic, uniaxial and biaxial. We examine all three cases and discuss consistent closure schemes for each case. In particular, for the uniaxial case, a consistent closure scheme requires specifying only a single scalar parameter. For the biaxial case, three scalar parameters must be specified. Furthermore, the choice of these three relations is strongly restricted by the requirement that the fourth-order alignment tensor be expressible in terms of the second-order alignment tensor. We also show that a modified quadratic closure relation can hold for all three types of symmetry, which is important for materials that can exhibit all three types of symmetry, such as liquid crystal polymers in complex flows. Our results demonstrate, however, that most commonly used closure schemes are inconsistent and, hence, lead to incorrect results. An exception, although, is the scheme that postulates an a priori form for the orientation distribution function.

As an illustration of our procedure, we apply it to the Hess-Doi model for rigid, rod-like polymers and to ferrofluids. The results can be useful for simulating complex flows such as those arising in the injection molding of liquid crystalline polymers into high strength parts.

Orientational distribution function

For uniaxial-shaped particles with symmetry axis u, the orientational (part of a eventually space and time-dependent) distribution function f (u) with u 2 = 1 can be expanded in terms of Cartesian symmetric traceless (anisotropic, irreducible) tensors u [n] ≡ u (l) of rank n, with u (n) ≡ uu . . . u the n-fold tensorial product of vector u, the symbol . . . denoting the anisotropic part, and the tensorial coefficients in front of the u [n] 's are determined by multiplying f with u [n] and subsequent integration over the unit sphere, to yield

f (u) = 1 4π 1 + ∞ n=1 ζ n u [n] n (ζ n u [n] ) = 1 4π ∞ n=0 ζ 2 n a (n) n u [n] , (1) 
where l denotes an n-fold contraction and a [l] ≡ u [l] the n th rank alignment tensor. The constant (4π) -1 ensures proper normalization 1 = 1, and the average . . . is defined through . . . ≡ . . . f (u) d 2 u. The prefactor

ζ n = (2n + 1)!! n! , ( 2 
)
with k!! = k(k -2)(k -4) . . . is immediately derived using the identity [9] 1 4π u [k] u [n] d 2 u = n! (2n + 1)!! δ kn (n) , (3) 
where (n) is the isotropic tensor [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Hess | Formeln der Tensorrechnung[END_REF]-and projector -of rank n with the feature (n) n a (n) = a [n] and just (0) = 1 is needed here to prove [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF]. Within the statistical approach to the dynamics of anisotropic fluids, the distribution function obeys a Fokker-Planck (FP) equation from which coupled equations of moments (including anisotropic moments-the alignment tensors) are obtained by integration, cf. [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF][START_REF] Bird | Dynamics of Polymeric Liquids[END_REF] for an introduction.

Alignment tensors

A (symmetric traceless) alignment tensor a [l] of rank l is always uniquely expressed in terms of symmetric orientation tensors a (k) ≡ u (k) with k ≤ l and unity tensor I which is obvious from the existence of the above-mentioned isotropic tensor (l) . There is a closed formula available for the projector (l) , cf. Eq. (10.14) of [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF], but since we do not need the higher-order tensors in this manuscript, we mention, that the anisotropic tensors can be constructed manually by writing down an ansatz like a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = c 1 a (2) + c 2 I, a [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] = a (3) + {a (1) I} sym , or a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = c 1 a (4) + c 2 {a (2) I} sym + c 3 {II} sym with unknown coefficients c and taking the (more precisely, an arbitrary) trace on both sides, because tr(a [...] ) vanishes by definition. Here, I is the identity tensor. With {•} sym we denote the symmetric, normalized part, as {X} sym and for clarity, now in component notation,

{X μν } sym ≡ 1 2 (X μν + X νμ ), ( 4a 
)
{x μ Y νκ } sym ≡ 1 3 (x μ Y νκ + x ν Y μκ + x κ Y μν ), (4b) 
{X μν Y κλ } sym ≡ 1 6 (X μν Y κλ + X μκ Y νλ + X μλ Y κλ + X νκ Y μλ +X νλ Y μκ + X κλ Y μν ), (4c) 
for any symmetric 2nd rank tensors X, Y and vector x, the denominator equals the number of distinct terms. Accordingly, we obtain the following identities

a [2] = a (2) - 1 3 I, ( 5 
)
a [3] = a (3) - 3 5 {a (1) I} sym , (6) 
a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a (4) -

6 7 {a (2) I} sym + 3 35 {II} sym . ( 7 
)
Odd moments are of relevance for polar materials such as dipolar fluids. For materials characterized through a director (in the presence of head-tail symmetry of molecules) only the even moments do not vanish. For example, the Eq. [START_REF] Wang | Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids[END_REF] shows that a relation for either a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] or a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] in terms of the second-order moment yields a corresponding relation for the other fourthorder alignment tensor. Obviously, tr(a (1) ) = a (1-2) is consistent with [START_REF] Wang | Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids[END_REF] since tr(a [...] ) = 0. Notice, that (5)- [START_REF] Wang | Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids[END_REF] are also valid if one formally replaces a by u or a by an arbitrary unit vector n.

Importantly, there are orthogonal unit vectors n, m and l such that

a (2) = λ 1 n (2) + λ 2 m (2) + λ 3 l (2) , a [2] = λ 1 - 1 3 n (2) + λ 2 - 1 3 m (2) + λ 3 - 1 3 l (2)
. , [START_REF] Parsheh | Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number[END_REF] where n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = nn and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = uu , etc. by carrying over the notation introduced above. The λ i are the principal values of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , and the unit vectors n, m and l are the principal directions. The λ i are also constrained by the requirement that tr(a (2) ) = 1 or, equivalently, tr(a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ) = 0, thus i λ i = 1. Further, the identity n (2) + m (2) + l (2) = 0 can be used to eliminate, say, l (2) from [START_REF] Parsheh | Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number[END_REF]. Similar relations hold for alignment tensors of all orders, but for simplicity, we do not write them. The symmetry is directly related to the number of distinct principal values of the alignment tensors. For example, for the second-order moment a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , we have isotropic-1 distinct principal value, uniaxial-2 distinct principal values biaxial -3 distinct principal values.

In the case of isotropy, the three principal values are all equal,

λ 1 = λ 2 = λ 3 = 1
3 , so that the second-order alignment tensors become

a (2) = 1 3 (n (2) + m (2) + l (2) ) = 1 3 I, a [2] = 0. (9) 
Additionally, the third-order and fourth-order ones are a (3) = a [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] = 0, and

a (4) = 1 5 {II} sym , a [4] = 0. ( 10 
)
It follows trivially from ( 9) and ( 10) that, in the isotropic phase,

a (4) = 9 5 {a (2) a (2) } sym , a [4] = a [2] a [2] . (11) 
Thus, any closure relation for a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] must reduce to [START_REF] Doi | Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases[END_REF] in the isotropic phase. Importantly, this result shows that a (4) = a (2) a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] in the isotropic case. The isotropic phase is a special case of the more general uniaxial and biaxial phases. We consider each case separately. Readers interested in the application of the new closures can skip the following Section 4; the more general expressions will be presented in Section 5.

Uniaxial phase

Scalar order parameters S n for the uniaxial phase are commonly defined through S n ≡ P n (u • n) with Legendre polynomial P n , or equivalently, through a [START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF], one recovers the uniaxial orientational distribution function parameterized by order parameters and director n. The isotropic phase is recovered for ∀ n S n = 0, the totally aligned uniaxial phase has ∀ n S n = 1. The squared order parameter S n can be calculated from the n th rank alignment tensors,

[n] = S n n [n] . Inserting a [n] into
S 2 n = (2n -1)!! n! a [n] n a [n] , (12) 
which can be also written as

S n = (2n-1)!! n! a [n]
n n [n] . Special cases of interest in the following discussion are S 1 = u 2 , and

S 2 2 = 3 2 a [2] : a [2] = 1 2 (3a (2) : a (2) -1), (13) 
In the case of uniaxial symmetry, two of the principal values of the second-order alignment tensor are equal (say λ 2 = λ 3 ).

In this case, the representation (8) has the simple form

a (2) = S 2 n (2) + 1 3 (1 -S 2 ) I, a [2] = S 2 n [2] , (14) 
where S 2 ≡ (3λ 1 -1)/2. By making use of ( 6) and ( 7), the thirdand fourth-order moments are given by

a (3) = S 3 n (3) + 3 5
(S 1 -S 3 ){In} sym , a [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] = S 3 n [START_REF] Leslie | Continuum theory for nematic liquid crystals[END_REF] ,

a (4) = S 4 n (4) + 6 7 (S 2 -S 4 ){In (2) } sym + 1 35 (7 -10S 2 + 3S 4 ){II} sym ,
a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = S 4 n [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] .

(

) 15 
The scalar order parameters S 2 , S 3 , and S 4 range in value by 0 ≤ S 2 ≤ 1, -1 ≤ S 3 ≤ 1, - 3 7 ≤ S 4 ≤ 1 which follows from P 2 (x) = 1 2 (3x 2 -1), P 3 (x) = 1 2 (5x 3 -3x), and P 4 (x) = 1 8 (3 -30x 2 + 35x 4 ), respectively. The principal direction n is the uniaxial director. As in the isotropic case, the traceless moments a [...] have simpler forms than a (...) . Notice that, due to [START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF], for the uniaxial case it is possible to solve explicitly for n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] in terms of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] or a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] .

Closure for uniaxial phase

Combining ( 14) with (15) yields a consistent closure relationship between 4th and 2nd moment in terms of a single scalar function S 4 (S 2 ) subject to the (important) constraints S 4 (0) = 0, S 4 (1) = 1, and -3 7 ≤ S 4 ≤ 1 for all 0 ≤ S 2 ≤ 1. It reads:

a (4) = α{a (2) a (2) } sym -2β{a (2) I} sym -2γ{II} sym , ( 16 
)
where

α ≡ S 4 S 2 2 , β ≡ α 3 + 2S 4 21 S 2 - 3 7 , γ ≡ 3 70 + 2S 4 45 - α 18 - 2S 4 63 S 2 . ( 17 
)
or equivalently, in terms of anisotropic moments,

a [4] = S 4 S 2 2 a [2] a [2] . ( 18 
)
The extension for higher order moments reads

∀ n,m S n S m a [n+m] = S n+m a [n] a [m] , ( 19 
)
and we should also mention the equation of change for order parameters [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF]:

S n Ṡn = 1 2 d dt (S 2 n ) = (2n -1)!! n! a [n] n ∂ ∂t a [n] . ( 20 
)
The order parameter S 2 in terms of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , cf. ( 13), supplements the closure ( 16), [START_REF] Fielding | Spatiotemporal oscillations and rheochaos in a simple model of shear banding[END_REF]. No assumption has been made other than uniaxial symmetry, so that these results are exact for uniaxial symmetry. Any valid closure should be characterized by a correctly bounded, scalar function S 4 (S 2 ). Eq. ( 17) or (18) reduces to (11)-the isotropic phase -for S 4 = 0, and to the totally aligned phase, a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = n (4) , for S 4 = S 2 = 1, and it obeys tr(a (4) ) = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] .

First of all for convenience, let us write the scalar function in the following form

S 4 = S 4 (S 2 ) = S 2 [1 -(1 -S 2 ) ν ] (21) 
with an unspecified, positive exponent ν > 0, which may weakly depend on S 2 . Experiments and simulation studies show, that ν lies in the range ν ∈ [0.3, 0.8] [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF]. Let us further motivate the representation ( 21) by stating a few examples. (i) The potential for a magnetic moment with orientation u in a dimensionless magnetic field h [START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF] and

strength h ≡ |h| (Langevin parameter h) is given by V = -k B T h • u. The corresponding equilibrium distribution function reads f (u) = h 4π sinh(h) e h•u
and the order parameters obey S 0 (h) = 1, S 1 (h) = coth(h) -1/h, and for i ≥ 1:

S i+1 (h) = -(2i + 1)h -1 S i (h) + S i-1 (h), (22) 
from which follows, that ν ≈ 1 2 for a ferrofluid close to equilibrium, for all h. (ii) More generally, a maximum entropy argument for a Maier-Saupe type potential yields ν ≈ 3/5 as can be seen as follows. For an orientational distribution function

f (u) = Z -1 exp aP 2 (u•n) (a uniaxial Bingham-type distribution)
the scalar order parameters S 2 and S 4 are parameterized through a as follows:

S 2 = Z -1 dZ/da and S 4 = 35 18 (Z -1 d 2 Z da 2 -1 5 ) - 5 9 S 2 , where the partition function Z is Z = f (u)d 2 u.
Here, the resulting S 4 is always non-negative, and ν is well approximated by 3/5, cf. Fig. 1. We may call the closure (18) with S 4 (S 2 ) from ( 21) and ν = 3/5 the uniaxial K-I closure which is a special case of the more general biaxial K-I closure.

Since closure relationships are needed to approximate a higher-order tensor in terms of lower-order ones, they are not used in their pure form [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] but in connection with a matrix contraction to lower rank. In particular, let M be an arbitrary, not necessarily symmetric, 2nd rank tensor. Inserting (21) into 2 . Shown are absolute differences between exact S ex 4 (S 2 ) and S ex 6 (S 2 ) and these approximate relationships, S n ≡ S ex n -S n (S 2 ) based on the uniaxial orientational distribution function f (u) ∝ exp(∝ P 2 (u • n)) of Maier-Saupe type [START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF](a special case of the so called 'Bingham distribution', cf. [START_REF] Feng | Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?[END_REF]). In that representation, the quadratic I and Doi closures, for example, have a | S 4 | as large as 0.15 at S 2 = 0.6. [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] yields the closure, parameterized by ν > 0,

M : a [4] = 1 -(1 -S 2 ) ν S 2 M : a [2] a [2] . (23) 
Using ( 4) we obtain the identities

M : {a (2) a (2) } sym = 1 3 M : a (2) a (2) + 2 3 a (2) • M • a (2) , ( 24a 
)
M : {a (2) I} sym = 1 6 [M : a (2) I + 2a (2) • M + 2M • a (2) + tr(M)a (2) ], (24b) 
M : {II} sym = 1 3 [tr(M)I + M + M T ]. ( 24c 
)
To facilitate comparison with the literature, and implementation in a computer code, we apply [START_REF] Kröger | Viscoelasticity of polymeric melts and concentrated solutions. The effect of flow-induced alignment of chain ends[END_REF] to an anisotropic 2nd rank tensor A = M, with tr(A) = 0 and A = A T and rewrite [START_REF] Kröger | Viscoelasticity of polymeric melts and concentrated solutions. The effect of flow-induced alignment of chain ends[END_REF] with the help of (24) as

A : a (4) = 1 -(1 -S 2 ) ν 3S 2 [A : a (2) a (2) + 2 a (2) • A • a (2) ] + (1 -S 2 ) ν (1 + (2/7)S 2 ) + S 2 -1 9S 2 [A : a (2) I + 4 a (2) • A] - ((2/27) -(2/35)S 2 2 )[(1 -S 2 ) ν -1] + (2/27)[(1/5) + (4/7)(1 -S 2 ) ν ]S 2 S 2 A, (25) 
with S 2 also expressed in terms of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] according to [START_REF] Larson | Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers[END_REF]. We propose using [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF] with constant ν > 0 in the uniaxial phase. It is correct in the isotropic and totally aligned limits and fulfills all constraints, nothing else can be concluded about the interrelation between A : a (4) and A and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] without using a particular model or assumption. Notice, the three prefactors in [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF] reduce

to (i) 1 3 α = ν 3 -1 6 ν(ν -1)S 2 + o[S 2 2 ], -1 3 β = 1 7 -ν 9 + o[S 2 2 ] and -4 3 γ = -( 2 35 -2 27 ν) + o[S 2 2 ]
, respectively, in the limit of small order parameter S 2 , i.e., weak anisotropy and (ii) 1 3

α = 1 3 , -1 3 β = 2 63 (1 -S 2 ), and -4 3 γ = 8 945 (2 + 5S 2 -7S 2 
2 ) for the so called quadratic III closure (ν = 1). See Table 1 for special choices of M or A. It is trivial to check that (25) yields, for any ν, the correct limiting cases: A : a (4) = 2 15 I and A : a (4) = A : n (4) in the isotropic (S 2 = 0), and totally aligned (S 2 = 1), phase, respectively. For the special choice M = a (2) , Eq. ( 5) can be used to replace a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a (2) by (2S 2 2 + 1)/3, and ( 25) can be also viewed as an expansion using the Caley-Hamilton theorem, where the coefficients are actually given in terms of the invariants of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , cf. [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF]. To this end notice the recursive rela-Table 1 Some identities valid in the uniaxial phase, where a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = S 2 n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] :

{a (2) a (2) } sym = 2 27 (1 + 2S 2 + 6S 2 2 ) a [2] + 2 81 S 2 2 (7 + 2S 2 ) I a [2] : {a (2) I} sym = 2 9 (1 + S 2 ) a [2] + 7 27 S 2 2 I a
{II} sym = 2 3 a [2] a (2) : {a (2) a (2) } sym = 1 9 (3 + 2S 2 + 4S 2 2 ) a [2] + 1 81 (5 + 18S 2 2 + 4S 3 2 ) I a (2) : {a (2) I} sym = 1 18 (11 + 4S 2 ) a [2] + 1 27 (5 + 7S 2 2 ) I a (2) : {II} sym = 2 3 a [2] + 5 9 I
tionship [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF] between tensorial products a 3 [2] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , etc.

a i [2] = I 2 a i-1 [2] + I 3 a i-3 [2] ( 26 
)
for i ≥ 3 and with a [0] ≡ I, where I 2 = 1 2 a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF]. Using (26) we can, for example, write a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , which appears if M = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] is required, in terms of I, a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , where the prefactors contain the invariants of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] .

I 3 = det(a [2] ) = tr(a 3 [2] ) -I 2 a [2]

Comparison to closure relationships used in the literature

(A) The so-called linear closure had been suggested by Hand [START_REF] Hand | A theory of anisotropic fluids[END_REF], which is equivalent with (7) upon simply setting a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = 0, i.e.,

a (4) = 6 7 {a (2) I} sym - 3 35 {I I} sym ( 27 
)
coincides with [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] for S 4 (S 2 ) = 0 which is however inconsistent with the required boundary condition S 4 (1) = 1.

Hand's closure simply corresponds to ν = 0 in [START_REF] Hinch | Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations[END_REF]. For symmetric traceless A it predicts

A : a (4) = 1 7 [A : a (2) I + 4a (2) • A] - 2 35 A, ( 28 
)
which is a valid relationship in the isotropic phase, where it correctly reduces to A : a (4) = 2 15 A. (B) The more general, so-called natural closure [START_REF] Cintra | Orthotropic closure approximations for flowinduced fiber orientation[END_REF] reads:

a (4) = β 1 {II} sym + β 2 {a (2) I} sym + β 3 {a (2) a (2) } sym + β 4 {a (2) • a (2) I} sym + β 5 {a (2) a (2) • a (2) } sym + β 6 {a (2) • a (2) a (2) • a (2) } sym ( 29 
)
where the β's are functions of the second and third invariants of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and must be chosen to satisfy the normalization condition tr(a (4) ) = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] . By comparing [START_REF] Zhou | Kinetic structure simulations of nematic polymers in plane Couette cells. I: the algorithm and benchmarks[END_REF] with [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] we see, that the functions β 1,2,3 are interrelated by our Eq. ( 17), and that functions β 4,5,6 vanish in the uniaxial phase.

While the natural closure is somewhat general, our closure imposes constraints to its coefficients. The most general closure consistent with the Caley-Hamilton theorem and motivated by time-structure invariance criteria had been presented by Edwards and Öttinger [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF]. It contains the natural closure as a special case. Their closure contains 27 scalar functions, cf. Section 5.1. (C) The so-called quadratic I closure, a (4) = a (2) a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , is not compatible with the closure [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF], except in the case of perfect alignment, S 4 = S 2 = 1, and had been rarely used for the reason that it does produce very inconsistent results in the vicinity of the isotropic phase. (D) The so called quadratic II closures, a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] is inconsistent with our closure, though correct in the limit either for total alignment or random alignment. (E) The 'quadratic III closure' which we introduce as a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , is a special parameter-free case of our closure for ν = 1. Replacing S 4 by S 2 2 in ( 17), ( 16) yields a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , or

a (4) = {a (2) a (2) } sym - 4 21 (S 2 -1){a (2) I} sym + 4 315 (2 + 5S 2 -7S 2 2 ){I I} sym , ( 30 
)
which is, as a member of the set of allowed closures for S 2 ≥ 0, certainly valid both in the isotropic a (4) = 1 5 {II} sym and totally aligned phases a (4) = n [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] . The corresponding closure relationship for A : a (4) results from either ( 16) with ν = 1, or [START_REF] Fang | New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers[END_REF] with [START_REF] Van Gurp | Letter to the Editor: on the use of spherical tensors and the maximum entropy method to obtain closure for anisotropic liquids[END_REF]:

A : a (4) = 1 3 2a (2) • A • a (2) + A : a (2) a (2) + 8 315 (2 + 5S 2 -7S 2 2 )A- 2 21 (S 2 -1)(A : a (2) I +2a (2) • A + 2A • a (2) ) . ( 31 
)
It also seems reasonable to expect that relations [START_REF] Fang | New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers[END_REF] and [START_REF] Yu | From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids[END_REF] are good approximations in the case of weak biaxiality. Two more commonly cited closures, motivated by Hinch and Leal [START_REF] Hinch | Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations[END_REF] for an arbitrary symmetric and traceless tensor A are the HL-I and HL-II closures. These are based on interpolation between weak and strong flow limits in a Brownian suspension of rods. (F) HL-I closure:

A : a (4) = 1 5 [6a (2) • A • a (2) -A : a (2) a (2) +2I (a (2) -a (2) • a (2) ) : A], (32) 
G HL-II closure:

A : a (4) = a (2) a (2) : A + 2a (2) • A • a (2) - 2(a (2) • a (2) ) : A a (2) : a (2) a (2) • a (2) + exp 2-6a (2) : a (2) 1-a (2) : a (2) 52 315 A- 8 21 (A • a (2) +a (2) • A - 2 3 a (2) : AI) . ( 33 
)
Both the HL-I and HL-II closures are correct in the isotropic (A : a (4) = 2 15 A) and totally aligned (A : a (4) = An (4) ) phases, and both are inconsistent with our closure [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF] valid in the uniaxial phase. (H) Hybrid closure: it has also been proposed [START_REF] Advani | Closure approximations for three-dimensional structure tensors[END_REF][START_REF] Kyeong | Modified hybrid closure approximation for prediction of flow-induced fiber orientation[END_REF] to use different closures for different terms in the same equation. For example, quadratic closure has been proposed for terms such as a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a (4) and the HL-I for D : a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] where D is the symmetric part of the velocity gradient. This purely empirical approach is clearly inconsistent with our results. (I) Doi [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] used the following closure relationship a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a (4) = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a (2) a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , which is equivalent with

a (4) : a (2) = a (2) : a (2) a (2) . ( 34 
)
It is correct in the totally aligned phase, but not in the isotropic phase and thus incompatible with [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF].

In the special case of isotropy and perfect uniaxial alignment any closure with correct tensorial symmetry must reduce to 2 15 A, and A : n [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] , respectively (for any anisotropic A). Further, tr(A : a (4) ) = A : a (2) must hold. Together with the test of limiting cases, the latter constraint serves as an independent test of a possible useful closure relationship, cf. Table 2 for details and Fig. 2 for a graphical representation. Doi [START_REF] Doi | The Theory of Polymer Dynamics[END_REF], p. 359 (34)

1 3 (1 + S 2 -2S 2 2 ) a [2] 1 3 0 Quadratic I: a (4) = a (2) a (2) 1 3 (1 + S 2 -2S 2 2 ) a [2] 1 3 0 Quadratic II: a [4] = a [2] a [2] 19 35 + 1 7 S 2 -2 3 S 2 2 a [2] + 2 7 I - -
Quadratic III: a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] (31) a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] 1 5 0 All except the quadratic III and HL closures are, for this simple but important example, not correct in the isotropic and totally aligned phases, as is visible from the last two columns, which contain the prefactors in the following relationships: lim S 2 →0 X = iso × a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and lim S 2 →1 X = total × n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] . We recall a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = S 2 n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ≡ S 2 (nn -1 3 I). See Fig. 2 for a graphical representation. 2 and3.

Potential applications 4.3.1. Liquid crystals

Let us consider the Hess-Doi theory [START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF] for rigid, rodlike liquid crystal polymers. Consider a flow with macroscopic velocity v. The symmetric D and antisymmetric parts W of the velocity gradient are given by D

= 1 2 [∇v + (∇v) T ], W = -1 2 [∇v -(∇v) T ].
The interaction of the rods is modeled by a mean field contribution ∇uV mf where V mf = - 3 2 Uk B T u (2) : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , with U the strength of the mean field. Here the mean field imposes uniaxial symmetry in equilibrium. The flow can however induce biaxiality, but for small shear rates this biaxiality is weak. The evolution equation for the second moment a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] is

∂a (2) ∂t + v • ∇a (2) = W • a (2) -a (2) • W + R(D • a (2) + a (2) • D) -2RD : a (4) -6D r a [2] + 6UD r (a (2)
•a (2) -a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] :

a (2) ) (35) 
where D r is the rotary diffusion coefficient and R a shape coefficient characterizing rods (λ = 1), spheres (λ = 0) and disks (λ = -1). We can substitute expression [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF] for D : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] : a (2) to obtain a closed evolution equation for a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , parameterized by ν. For ν = 1 one can use (31) instead of [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF]. The same equations are commonly used for dilute suspensions of rigid particles, polymers, etc. but where now U = 0 [START_REF] Kröger | Simple models for complex nonequilibrium fluids[END_REF][START_REF] Bird | Dynamics of Polymeric Liquids[END_REF][START_REF] Kröger | Viscosity coefficients for anisotropic, nematic fluids based on structural theories of suspensions[END_REF][START_REF] Kröger | Structural changes and rheology of polymer melts via nonequilibrium molecular dynamics[END_REF]. For explicit expressions of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a (2) -a (4) : a (2) in terms of order parameters see Table 2, D : a (4) is given by (25) upon replacing A by D because is symmetric and traceless (incompressible flow). For the case of compressible flows, one has to use the more general equations containing tr(M) of this manuscript. Doi [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] considered the flow-free relaxation behavior (D = W = 0) of a liquid crystal, assumed to be uniaxially preoriented (in direction n) by an external field (at time t = 0). Hence, we can insert the ansatz a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] (t) = S 2 (t)n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] into [START_REF] Hess | Formeln der Tensorrechnung[END_REF] to obtain an equation of change for the scalar order parameter S 2 (t): dS 2 dt = -6D r S 2 + 6UD r X, where X defined as X =

Xn [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] depends on the closure relationship and is tabulated in Table 2 for various models. Accordingly, the closure ( 16) yields dS 2 /dt = -6D r ∂A(S 2 , U)/∂S 2 with an associated free energy

A(S 2 , U) = 1 2 1 - U 5 S 2 2 + U 15 S 3 2 + 12(1 -S 2 ) 1+ν {2+(1 + ν)(2 + [2 + ν]S 2 )S 2 }U 35(1 + ν)(2 + ν)(3 + ν) (36) = 1 2 1 - U 5 S 2 2 - U 21 S 3 2 + 3νU 35 S 4 2 - 6ν(ν -1)U 175 S 5 2 + ν(ν -1) o[S 6 2 ], (37) 
to be compared with 4 2 of [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. For an amended potential (37) that not only requires, but ensures the constraint S 2 ≤ 1 in strong flows, for example, we refer the reader to [START_REF] Heidenreich | Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals[END_REF]. Notice that the term proportional to S 5 2 in (37) vanishes only for ν = 1. For this choice, and U < U NI ≡ 1680/361 ≈ 4.653 ([20] predicts U NI = 2.667 instead, U NI = 4.898, 4.457 for the HL-I and HL-II closure, respectively, and U NI = 4.55 for the unapproximated theory), A has only one minimum at S 2 = 0, so that the system finally becomes isotropic, whereever its initial state. For U NI < U < U c ≡ 5 ( [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] predicts U c = 3), there are two local minima, one at S 2 = 0 and the other at

A(S 2 , U) = 1 2 (1 -U/3)S 2 2 -(U/9)S 3 2 + (U/6)S
S eq = 5 24 + 19 24 [1 -(U NI /U)] 1/2 , ( 38 
)
to be compared with S eq = 1 4 + 3 4 [1 -8/(3U)] 1/2 of [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. The above relationships can be also worked out for arbitrary ν, or in terms of S 4 . For completeness, we mention the equilibrium order parameter which results from the approximate expression [START_REF] Kyeong | Modified hybrid closure approximation for prediction of flow-induced fiber orientation[END_REF]:

S eq = [2 1/3 H 2 -4HνU + 2 2/3 ν(5 + 3ν)U 2 ]/[6Hν(1 - ν)U] with H ≡ U 2/3 (ν 3/2 √ G + ν 2 F ) 1/3
, and G ≡ νF 2 -2(5 + 3ν) 3 U 2 , and F ≡ [33ν(128 -63ν)]U -315(1ν) 2 . This formula exactly reduces to [START_REF] Kröger | Viscosity coefficients for anisotropic, nematic fluids based on structural theories of suspensions[END_REF] for ν = 1 and U ≥ U NI and allows to estimate ν from a measured S eq . Generally, S eq tends to increase with decreasing ν. For ν = 0, i.e. S 4 = 0, U NI = 5 and U c does not exist, cf. Fig. 3 and Table 3, which contains Fig. 3. Definition of U NI , S NI and U c , listed in Table 3. reference results for various closure schemes, and values from "exact" (numerical) solution.

Ferrofluids and magnetorheological fluids

As discussed in [START_REF] Ilg | Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension[END_REF][START_REF] Kröger | Magnetoviscous model fluids[END_REF][START_REF] Wang | Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Ilg | Generating moment equations in the Doi model of liquid-crystalline polymers[END_REF][START_REF] Ilg | Magnetoviscosity and orientational order parameters of dilute ferrofluids[END_REF], the equation of change for the first moment a (1) = u = S 1 n of the orientational distribution function of dipolar units in a ferrofluid subjected to a (dimensionless) magnetic field hreads

d dt a (1) = W • a (1) + RD • a (1) -RD : a (3) -2D r a (1)
+D r (I -a (2) ) • h [START_REF] Kröger | Structural changes and rheology of polymer melts via nonequilibrium molecular dynamics[END_REF] The closure relationships corresponding to ( 16) and ( 25) for the second and third moments read

a (2) = S 2 S 2 1 a (1) a (1) + 1 3 (1 -S 2 )I, (40) 
A : a (2) = S 2 S 2 1 A : a (1) a (1) , ( 41 
)
a (3) = S 3 S 3 1 a (1) • a (1) • a (1) + 3 5 {Ia (1) } sym 1 - S 3 S 1 , ( 42 
)
A : a (3) = S 3 S 3 1 A : a (1) a (1) a (1) + 2 5 A • a (1) 1 - S 3 S 1 . ( 43 
)
In the absence of flow, S 2 and S 3 can be expressed in terms of either h or S 1 via [START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF] and this relationship should be kept in a first approximation when solving the equations in the presence of both flow and magnetic fields. It is known from simulation studies that biaxiality is weak in wide range of field strengths. In the absence of flow, of course, the ferrofluid is strictly in the uniaxial phase with h = hn, and (39) reduces to

d dt S 1 = -2D r S 1 - h 3 (1 -S 2 ) , ( 44 
)
which is in agreement with [START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF], i.e., reduces to dS 1 /dt = 0 in equilibrium as it should. At the same time, we have hereby demonstrated how to actually derive the recursive relationship [START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF] in an alternate fashion, via closure relationships with correct tensorial symmetry.

Landau-de Gennes potential

The often quoted Landau-de Gennes potential , a scalar function in terms of the two nonvanishing invariants of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , reads [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Rienäcker | Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow[END_REF][START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF][START_REF] De Gennes | The Physics of Liquid Crystals[END_REF][START_REF] Erdmann | Phase behavior and structure of Janus fluids[END_REF] = (S 2 , I (3) 

) = A 3 ζ 2 S 2 2 - B 3 ζ 2 2 I (3) + C 9 ζ 3 2 S 3 2 , ( 45 
)
with [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] [9] and orientationindependent coefficients A, B, and C, such that

I (3) ≡ √ 6 tr a 3 [2] = 3 √ 6 det a
(a [2] ) = ∂ ∂a [2] = Aζ 2 a [2] - √ 6Bζ 2 2 a [2] • a [2] + Cζ 3 2 a [2] a [2] : a [2] , ( 46 
)
where ζ 2 = √ 15/2 according to (2), and the related equation of change for a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] is usually written in the form [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF] 

∂ ∂t a [2] = 2 ω × a [2] + 2σD • a [2] -τ -1 a ζ -1 2 (a [2] ) - √ 2ζ -1 2 τ ap τ a D, (47) 
with vorticity ω = 1 2 ∇ × v. For incompressible flow, D = D. By comparing [START_REF] Ammar | On the reduction of kinetic theory models related to finitely extensible dumbbells[END_REF] with [START_REF] Hess | Formeln der Tensorrechnung[END_REF] we see that σ = R. Matching the isotropic phase where a (4) = 1 5 {II} sym , we obtain τ ap /τ a = 2R/ √ 15. The two equations, however, do not match in the case of perfect alignment (a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ), since the last term in [START_REF] Ammar | On the reduction of kinetic theory models related to finitely extensible dumbbells[END_REF] has no analogue in [START_REF] Hess | Formeln der Tensorrechnung[END_REF], and because the coefficients A, B, and C in (47) are assumed to be orientation-independent. For weak flows, however, we can equate [START_REF] Hess | Formeln der Tensorrechnung[END_REF] with [START_REF] Ammar | On the reduction of kinetic theory models related to finitely extensible dumbbells[END_REF], to obtain

UX = a [2] - 1 6D r τ a × Aa [2] - √ 6Bζ 2 a [2] • a [2] + Cζ 2 2 a [2] a [2] : a [2] , (48) 
where we know from Table 2 that X → 1 5 a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] in the vicinity of the isotropic phase. In the uniaxial phase, where

I (3) = ( 2S 2
3 )

3 holds, and = (S 2 ), Eq. ( 48) reduces, without approximations, to the scalar equation

U 1 35 (7 + 5S 2 -12S 4 ) = 1 - 1 6D r τ a A - √ 6Bζ 2 S 2 1 3 + Cζ 2 2 2 3 S 2 2 , ( 49 
)
which allows, depending on the closure relationship, i.e. for any ν, to identify the parameters of the Landau-de Gennes potential in terms of the Hess-Doi parameters. For the quadratic III closure (ν = 1), for example, we have, with the constants χ ≡ 6 5 D r τ a , and U c = 5 (cf. Table 3),

A = χ(U c -U), B = √ 5 7 χ, C = 12 35 χ. ( 50 
)
We have thus illustrated how to determine the free parameters of the Landau-de Gennes potential from a 'microscopic' FP approach. An alternate approach has been discussed in [START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF].

Biaxial phase

Two scalar order parameters S 2 and B 2 are required to uniquely characterize the second rank tensor a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = uu in the (most general) biaxial phase; these can be extracted from the sorted eigenvalues λ 1 ≥ λ 2 ≥ λ 3 and corresponding orthonormal eigenvectors e 1 , e 2 , and e 3 = e 1 × e 2 of a (2) = i λ i e i e i as follows:

S 2 ≡ 1 2 (3λ 1 -1), n ≡ e 1 , B 2 ≡ λ 2 -λ 3 , m ≡ e 2 , ( 51 
)
where n and m are the 'directors', B 2 characterizes departures from the uniaxial phase. The order parameters S 2 and B 2 (both semipositive), the directors n and m are uniquely obtained from a given 2nd rank alignment tensor. Further λ 3 = 1λ 1λ 2 holds since tr(a ( 2) ) = 1. The (symmetric traceless) 2nd rank alignment tensor a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = a (2) -1 3 I appearing in ( 8) can be written in terms of order parameters and directors n and m via anisotropic dyadic products n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ≡ nn - 1 3 I and m [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ≡ mm - 1 3 I as

a [2] = S 2 + B 2 2 n [2] + B 2 m [2] . ( 52 
)
Similarly, the (symmetric traceless) 4th rank alignment tensor a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = uuuu reads, with anisotropic tensorial products n [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] , m [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] , and nnmm a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] 

= S 4 - 8 4 2 n [4] B 4 m [4] + M 4 nnmm, ( 53 
)
with three order parameters S 4 , B 4 , M 4 , and the directors n and m available from the second moment, characterizing the fourth moment. Explicit expressions for the quantities appearing in (53) are given in Appendix A, and not needed to simply use any of the closure relationships to be derived and presented in this section. It is however, important to notice, that a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] is written in terms of the eigenvectors characterizing the second moment.

As for the order parameters of the 2nd rank tensor a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , the order parameters for the fourth rank tensor can be calculated for given a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] directly from (53) by suitable projection, or more conveniently, from Legendre polynomials. A closure relationship (which expresses a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] in terms of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ) with correct tensorial symmetry must therefore express S 4 , B 4 , M 4 in terms of S 2 and B 2 . Moreover, these functional dependencies must reduce to (i) S 4 = B 4 = M 4 = 0 for S 2 = B 2 = 0 (isotropic phase), to (ii) S 4 = 1, B 2 = B 4 = M 4 = 0 for S 2 = 1 (totally aligned phase), and the order parameters are subject to inequalities and bounds as discussed in Appendix A. Insofar, (53) constitutes the most general closure relationship, but is not very useful in its present form because the irreducible tensors have still to be calculated, and usually contracted, cf. [START_REF] Hess | Formeln der Tensorrechnung[END_REF], with a symmetric traceless matrix D. By replacing D in the resulting expression by a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] we have immediate access to X ≡ a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a (2) -a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , also appearing in [START_REF] Hess | Formeln der Tensorrechnung[END_REF]. Generally valid identities for these quantities needed to implement a consistent biaxial closure are summarized in Appendix B. The eigenvector e 3 does not appear in ( 52) and ( 53) because we eliminated it using the identity I = 3 i=1 e i e i .

Simple closures for biaxial symmetry

In the biaxial case there are three independent scalar order parameters that must be determined. Thus, we obtain a consistent closure by postulating relations for S 4 , B 4 , and M 4 in terms of the second-order ones S 2 and B 2 :

S 4 =S 4 (S 2 , B 2 ), B 4 =B 4 (S 2 , B 2 ), M 4 =M 4 (S 2 , B 2 ). (54)
Note, however, that in general such relations do not provide an expression for the fourth-order alignment tensor in terms of the second-order alignment tensor. Only special choices of (54) will yield such expressions.

The three functions S 4 , B 4 , and M 4 are subject to several boundary conditions summarized after Eq. (A.7) which gives rise to these conditions. Rather than just fitting the biaxial order parameters to polynomials in S 2 and B 2 which do not necessarily respect the boundary conditions, one can start from a distribution function to derive consistent relationships, much in the same spirit as demonstrated for the uniaxial case where we introduced a parameterized relationship between S 4 and S 2 . As we have seen above, closure relationships are in use which do not obey tensorial symmetries. Such inconsistent relationships can be recognized to eventually work fine in certain flow geometries, while failing in others. Closures expressed in the form (54) do not possess these problem.

Quadratic-III closure for biaxial symmetry

The only consistent, and parameter-free quadratic closure reads a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] (quadratic-III) which corresponds to

S 4 = S 2 2 + 1 8 B 2 2 , B 4 = B 2 2 , M 4 = 2S 2 B 2 + B 2 2 , ( 55 
)
and certainly reduces to S 4 = S 2 2 in the uniaxial phase. Substitution of (55) into (53) leads to an expression for a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] in terms of directors and order parameters satisfying a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] .

These special relations (55) are always consistent and yield the correct limits for perfect alignment (uniaxial) and random alignment (isotropic).

K-I closure

As the relationship S 4 = S 2 2 is usually not valid even in equilibrium, we propose the following K-I closure for the biaxial phase a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] = ζa [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ,

(56) with a scalar prefactor ζ which is introduced to represent the ratio between S 4 and S 2 2 obtained from the (usually known) equilibrium distribution function. This closure relationship (56) with any scalar ζ = ζ(S 2 ) obeying S 2 2 ζ = S 2 for S 2 = 0 (isotropic) and S 2 = 1 (totally aligned), as well as S 2 2 ζ < 1, has correct tensorial symmetry and is again a special case of the general closure (54). More precisely, closure K-I (56) is equally represented by

S 4 = S 2 2 + 1 8 B 2 2 ζ, ( 57a 
)
B 4 = B 2 2 ζ, ( 57b 
)
M 4 = (2S 2 B 2 + B 2 2 )ζ. ( 57c 
)
This K-I closure can be applied (and will be applied in Section 6 to flowing nematics) by using the basic identities summarized in Appendix B. Further identities, if needed, can be derived using the expressions of Appendix A, or by evaluating the irreducible tensor a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] explicitly [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF]. As discussed already for the uniaxial phase, for the case of a Maier-Saupe potential, we have access to the equilibrium relationship between S 4 and S 2 which allows to calculate

ζ = ζ(S 2 ) self-consistently from the orientational distribution function f (u) of the (Maier-Saupe) form f (u) = Z -1 e αP 2 (u•n) with normalization constant Z, yielding ζ ≡ 1 -(1 -S 2 ) ν S 2 , ν ≈ 3 5 . ( 58 
)
The weighting factor ζ of (58) possesses the properties ζ = ν for ν = 0 and ν = 1, more generally,

ζ = 1 + (ν -1) 1 - ν 2 S 2 + ν 6 (ν -2)S 2 2 + O[S 3 2 ]. (59) 
That is, a maximum entropy argument has been used to relate

P 2 (u • n) ≡ f (u)P 2 (u • n) d 2 u and P 4
• n) -with Legendre polynomials P 2 and P 4 -not only qualitatively, but accurately near equilibrium, more precisely, in the uniaxial phase. The biaxial K-I closure is therefore accurately valid both close to equilibrium, as well as in the aligned state, and offers correct tensorial symmetry, by construction.

K-II closure

Another simple closure, K-II, fullfilling all the criteria of closure K-I, is

S 4 = S 2 2 + 1 8 B 2 2 ζ, ( 60a 
)
B 4 = B 2 2 , ( 60b 
)
M 4 = 2S 2 B 2 + B 2 2 , (60c) 
with ζ = S 4 /S 2 2 to be (again) either approximated via (58) or to be -more generally -obtained from the equilibrium distribution function.

One can test the decoupling approximation by (i) solving a closed dynamical equation for the alignment tensor, or by (ii) verifying the relationships between order parameters such as (60), if a numerical solution to the underlying FP equation is available. To facilitate approach (ii), the order parameters are Table 4 Series expansion coefficients c i , i = 1, . . . , 9 in the (conventional) third order expression

c 0 + c 1 S 2 + c 2 S 2 2 + c 3 S 3 2 + c 4 B 2 + c 5 B 2 2 + c 6 B 3 2 + c 7 S 2 B 2 + c 8 S 2 2 B 2 + c 9 S 2 B 2 2 + o(S ... 2 B ... 2 )
for the Bingham (BH) closure (obtained numerically using purely algebraic methods and 10,000 randomly chosen eigenvalues), as well as for the K-I (arbitrary ν), K-I (ν = 3/5) and K-II (ν = 3/5) closures [obtained analytically from Eqs. (57) and ( 60

)] Closure c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c ... 1 S 2 S 2 2 S 3 2 B 2 B 2 2 B 3 2 S 2 B 2 S 2 2 B 2 S 2 B 2 2 S ... 2 B ... 2 S 4 BH -0.0104 0.4897 -1.0465 1.5346 -0.2973 0.6320 -0.6086 0.0477 0.5106 0.7812 0 K-I 0 0 ν ν(1-ν) 2 0 ν 8 0 0 0 ν(1-ν) 16
. . . K-I 0 0 The remaining closures mentioned in this manuscript cannot be cast into this form because they do not offer the correct tensorial symmetry. Further, we can numerically obtain higher-order coefficients for the Bingham closure, but there is no closed form expression in terms of S 2 and B 2 as for the K-I and K-II closures. Therefore, the limit of total alignment, S 2 = 1 (hence, B 2 = 0), is not covered for the Bingham closure by using the numbers of this table. 

Testing the biaxial closures

As for Section 4.3.1, we consider the Hess-Doi FP equation for nematic and nematic-discotic liquid crystals [START_REF] Hess | Fokker-Planck-equation approach to flow-alignment in liquid crystals[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF] 

∂ ∂t f = -ω • Lf - 1 2 RL • f L u [2] : D + D r k B T L • f L δV δf + D r L 2 f, ( 61 
)
with vorticity ω = 1 2 ∇ × v, D = ∇v, rotational operator L ≡ u × ∂/∂u, shape factor R = (Q 2 -1)/(Q 2 + 1) of an ellipsoid of revolution with axis ratio Q = a/b [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF], rotational diffusion coefficient D r , and a mean-field functional V of the form V [f ] = - 3 2 Uk B T a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] . The FP equation has been extended Fig. 7. Same as Fig. 6 for a nondiagonal component of the alignment tensor.

to non-uniform nematics in [START_REF] Kröger | Derivation of Frank-Ericksen elastic coefficients for polydomain nematics from mean-field molecular theory for anisotropic particles[END_REF]. The equation of change for the alignment tensor derived from (61) was already stated above, cf. Eq. [START_REF] Hess | Formeln der Tensorrechnung[END_REF]. The closed version of it is immediately obtained by using the identities (B.2) and (B.4) together with a consistent closure (K-I, K-II, Bingham, etc., cf. Table 4). It can be conveniently solved using a basic solver for ordinary differential equations. On the other hand, we solve the FP equation using a reduction method as described in Appendix C. By largely varying the parameters of the FP equation this approach sets us in the position to rigorously test the closure approximation. Specifically, we performed simulations for dimensionless model parameters equally and randomly distributed within the following bounds:

-1 ≤ R ≤ 1, 0.2 ≤ D r ≤ 5, 0 ≤ U ≤ 20, -1 ≤ (∇v) μν ≤ 1
where the latter holds for all components except for the constrained component (∇v) [START_REF] Bhave | A constitutive equation for liquid-crystalline polymer solutions[END_REF] = -(∇v) 11 -(∇v) [START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF] in order to study incompressible flows. The results are collected in Figs. 4567. They remain qualitatively unaltered if we add a potential V corresponding to an orienting magnetic field. For this reason, there is no need to report about these additional results here.

Summary

We propose the 'quadratic' closure scheme (K-I)

∀ n,m a [n+m] = ζa [n] a [m] , (62) 
where . . . denotes the symmetric traceless (irreducible) part, as a more rational approach to approximating the various (symmetric traceless) alignment tensors a [n] of rank n. Eq. ( 62) with ζ = 1 (quadratic III), or ζ = S n+m /(S n S m ) (K-I) obtained with the equilibrium distribution function are the simplest closures with correct tensorial symmetry, they are correct in both the isotropic and totally aligned phases. Of uppermost relevance for applications is the case n = m = 2 in (62), while for the implementation of the higher-order decoupling approximations the representation theorems in Section 10.4.1 of [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF] can be used.

In order to easily apply the new closures, summarized in Section 5 of this manuscript, we introduced order parameters and established identities to be used when writing down the decoupled equation of change for the alignment tensor. Worked out explicit closure relationships for the uniaxial phase, parameterized by a coefficient ν > 0 have been given for the fourth moment in terms of the second one in ( 16) with ( 21) and ( 25), and compared to 'inconsistent' closures in Tables 2 and3. Exact closures for the second and third moments in terms of the first moment are given in [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF]. The closure (62) has been worked out for the biaxial case (and n = m = 2) in Section 5 and tested for the case of the Hess-Doi FP equation for liquid crystals in Section 6. In [START_REF] Chaubal | A comparison of closure approximations for the Doi theory of LCPs[END_REF][START_REF] Feng | Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?[END_REF], several closure schemes had been compared for the dynamics of liquid crystals in an exhaustive fashion. It remains to be seen, how these comparisons alter if the closures K-I (57), (B.1), K-II (60), (B.1) with correct tensorial symmetry are used. It is known that the Bingham distribution f (u) ∝ exp(∝ A : u (2) ), which is the biaxial analogue to the Maier-Saupe distribution f (u) ∝ exp{∝ P 2 (u • n)}, performs very well when considering the flow behavior [START_REF] Feng | Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?[END_REF] and nonequilibrium phase diagram [START_REF] Rienäcker | Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow[END_REF][START_REF] Rienäcker | Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals[END_REF][START_REF] Faraoni | The rigid-rod model for nematic polymers: an analysis of the shear flow problem[END_REF] of liquid crystalline polymers, certainly, because assuming a distribution function of this type leads to closure relationships which are special cases of ones presented here, and thus, in opposite to alternate closures, take into account tensorial symmetries. This manuscript aimed at illustrating these ideas from a different perspective, proposes new and simple closures shown to be useful in the uniaxial and biaxial phases, and also extends the arguments to tensors of arbitrary rank.

be, due to the Caley-Hamilton theorem, expressable as linear combination of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] [START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF].

Appendix B. Identities valid for the biaxial phase

In order to present more useful expressions for the most general closure (53) for biaxial liquid crystals, including all consistent closures in a unifying fashion, let us write down explicit expressions for the quantities D : a (4) and X appearing in [START_REF] Hess | Formeln der Tensorrechnung[END_REF]. The former term with symmetric traceless 2nd rank tensor D and a (4) = uuuu reads, using (52) and ( 53)

D : a (4) = D 1 D + D 2 D : nn + D 3 D : mm + D 4 (nn • D + D • nn) + D 5 (mm • D + D • mm) +D 6 (m • D • n)(nm + mn), (B.1)
with

D 1 = 2 15 - 4S 2 21 + 2S 4 35 - 2B 2 7 + B 4 28 + M 4 21 , D 2 = 1 7 S 2 + 4S 4 3 + B 2 2 - B 4 2 + 8M 4 9 I + S 4 - 3B 4 8 + M 4 2 n [2] + M 4 6 m [2] , D 3 = 1 7 B 2 + 4B 4 3 + 2M 4 9 I + M 4 6 n [2] + B 4 m [2] , D 4 = 2 7 S 2 -S 4 + B 2 2 + 3B 4 8 - 2M 4 3 , D 5 = 2 7 B 2 -B 4 - M 4 6 , D 6 = M 4 3 , (B.2)
where n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and m [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] are defined above. We have therefore expressed D : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] in terms of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and three unspecified order parameters S 4 , B 4 , and M 4 . The identify is of course still valid in the uniaxial phase, where B 2 = B 4 = M 4 = 0. Using identity (B.2) for the special case D = a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , the traceless quantity X ≡ a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a (2) -a (4) : a (2) with a (2) ≡ uu and a (4) ≡ uuuu becomes X = X n n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] + X m m [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] ,

(B. 

Appendix C. Reduced order modelling

A large variety of kinetic theory models related to complex fluids can be described from a parabolic partial differential equation, such as the FP Eq. ( 61), governing the evolution in time of the fluid microstructure conformation. When one is solving a non-linear parabolic partial differential equation using some standard technique, as for example, the finite element method, at least a linear system must be solved at each time step. The size of this system coincides with the number of degrees of freedom used to describe the space evolution of the considered field. In kinetic theory models the space coordinates group the physical and the conformational ones.

It has been widely noticed in a large variety of models involving linear and non-linear parabolic partial differential equations that the field evolution in the whole time interval can be accurately represented from the linear combination of a reduced number of functions that are defined in the whole spatial domain.

In that follows we are illustrating the consequences of this behavior.

We assume that the evolution of a certain field (x, t) is known. In practical applications, this field is expressed in a discrete form, that is, it is known at the N n nodes of a spatial mesh and for some times n (x) = (x, t = n t), ∀n ∈ [1, . . . , P]. The main idea of the Karhunen-Love (KL) decomposition is how to obtain the most typical or characteristic structure φ(x) among these n (x), ∀n. This is equivalent of obtaining a function φ(x) that maximizes λ defined by (C.1)

The maximization (δλ = 0) leads to the following eigenproblem

(Q • Q T ) • = λ , (C.2)
where represents the vector containing the nodal values of function φ and the matrix Q contains the discrete field history: The solution of the eigenproblem (C.2) results in N n eigenvalue-eigenvector pairs: ( k , λ k ), k ∈ [1, . . . , N n ]. As just argued, in numerous problems whose solutions are characterized by a regularity in their time evolutions, the most part of the eigenvalues are small compared with large ones. In fact, the proper orthogonal KL decomposition establishes that the magnitude of the eigenvalues represents the intensity with which the corresponding eigenvector is present in the solution representation. Crudely speaking, one can neglect in the approximation of the field the eigenvectors related to the eigenvalues verifying the relation λ k < λ 1 , where is a small enough parameter ( = 10 -8 in our simulations) and λ 1 denotes the highest eigenvalue. Thus, if only r eigenvalues are retained, one can expect that the evolution of the field can be expressed from the associated eigenvectors k , k ∈ [1, . . . , r]: 

Q = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 1 2 1 • • • P 1 1 2 2 2
(t) =
φ 1 (x N n ) φ 2 (x N n • • • φ r (x N n ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ . (C.5)
Now, we consider the linear system of equations resulting from the discretisation of the FP equation when an explicit time discretization scheme is used:

K • n = F n-1 , (C.6)
where F n-1 contains the contribution of the solution at the previous time step. Then, the unknown vector containing the nodal degrees of freedom can be expressed as 

K • n = F n-1 ⇒ K • B • a n = F n-1 , (C.8)
and multiplying both terms by B T it results

B T • K • B • a n = B T • F n-1 , (C.9)
which proves that the final linear system is of small size, i.e. the dimensions of B T • K • B are r × r, with r N n , and the dimensions of both a and B T • F are r × 1. Eq. (C.9) can be also derived introducing the approximation (C.7) into the PDE Galerkin form.

In the previous paragraphs we have illustrated the procedure to extract the significant functions representing the evolution of the field of interest in the whole time interval when this evolution is known, as a simple application of the proper orthogonal decomposition. These characteristic functions are then used to solve accurately the evolution problem, which in this case only implies a reduced number of degrees of freedom, and consequently a significant reduction of the computing time is expected. However, the procedure is not operative because in order to define the reduced basis the solution must be previously computed.

In [START_REF] Ammar | On the reduction of kinetic theory models related to finitely extensible dumbbells[END_REF], we have proposed an adaptive procedure in order to define the reduced approximation basis during the solution and without any knowledge a priori. We are summarizing the main ideas of the solution procedure. For more details the reader can refer the just referred paper. The solution procedure start by assuming that matrix B contains a single arbitrary function that could consist in the initial condition. Now, the solution is computed in the entire time interval, from which the residual R is computed at time t = P t: R = K • B • a P -F P-1 .

(C.10)

If the residual norm is greater than a threshold value, the reduced basis is enriched using the residual B ← (B, R) and the solution reevaluated in the entire time interval. This iteration procedure continues until convergence. We have proved that this algorithm is robust, efficient (it converges in few iterations) and that it allows a significant CPU time reduction. It has been used to solve the FP equation in Section 6.

Fig. 1 .

 1 Fig. 1. Absolute quality of simple closure relationships S 4 (S 2 ) = S 2 (1 -(1 -S 2 ) ν ) with ν = 3/5 and S 6 (S 2 ) = S 62 . Shown are absolute differences between exact S ex 4 (S 2 ) and S ex 6 (S 2 ) and these approximate relationships, S n ≡ S ex n -S n (S 2 ) based on the uniaxial orientational distribution function f (u) ∝ exp(∝ P 2 (u • n)) of Maier-Saupe type[START_REF] Ehrentraut | On the viscosity of partially aligned nematic and nematic discotic liquid crystals[END_REF](a special case of the so called 'Bingham distribution', cf.[START_REF] Feng | Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?[END_REF]). In that representation, the quadratic I and Doi closures, for example, have a | S 4 | as large as 0.15 at S 2 = 0.6.

Fig. 2 .

 2 Fig. 2. Comparison of decoupling approximations, cf. Tables2 and 3.

Fig. 4 .Fig. 5 .

 45 Fig.[START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF]. Diagonal elements of the orientation tensor uu obtained using a closure approximation when solving the simple dynamical Eq. (35) vs. the "exact" (numerical) solution of the corresponding FP Eq. (61) for a very broad range of parameter values (2300 independent simulation runs) which cover biaxial, uniaxial, stationary, time-dependent states for randomly chosen particle geometries, flow geometries and flow strengths. The figures report errors for all the tested closure approximations: (a) Doi, (b) HL-I, (c) HL-II, (d) Bingham, (e) K-I, and (f) K-II, where the two latter ones have been proposed in this manuscript. Using a closure, the computational effort had been reduced by three orders of magnitude.

Fig. 6 .

 6 Fig. 6. Sample time series for alignment tensor component a (2) 11 = uu 11 , with initial condition a (2) (t = 0) = e 1 e 1 , strength U = 8, flow field ∇v = Pe[e 1 e 2 + αe 2 e 1 ], α = 0.05. Comparison between closure approximations and numerical solution of the Hess-Doi FP equation.

  [START_REF] Hess | Formeln der Tensorrechnung[END_REF] has to be modified in such a way that D is replaced by D with (symmetric traceless) D ≡ D + D r R -1 χ a HH/k B T , anisotropic magnetic susceptibility χ a = χχ ⊥ , and HH = HH -1 3 H 2 I[START_REF] Kröger | Models for polymeric and anisotropic liquids[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF].

.

  

φ 2 (x 1 )

 21 t) contains the nodal values of function at time t. Thus, we define the matrix allowing the transformation between the usual finite element approximation basis and the reduced one:• • • φ r (x 1 ) φ 1 (x 2 ) φ 2 (x 2 ) • • • φ r (x 2 )

Table 2

 2 Comparison of closure relationships for the uniaxial phase (director n)

	Uniaxial closure	Equation	X ≡ a (2) • a (2) -a (4) : a (2)	iso	total
	Exact	(25)	1 35 (7 + 5S 2 -12S 4 ) a [2]	1 5	0
	Exact, S 4 via (21)	(25)	1 35 [7(1 -S 2 ) + 12S 2 (1 -S 2 ) ν ] a [2]	1 5	0
	Linear (Hand) [19]	(28)	1 35 (7 + 5S 2 ) a [2]	1 5	12 35

Table 3

 3 NI , U c , and S NI introduced in Fig.3. U NI , and S NI are the values at the nematic-isotropic phase transition, and U c , is the value above which the isotropic phase is no longer stable. The numerical solution[START_REF] Chaubal | A closure approximation for liquid-crystalline polymer models based on parametric density estimation[END_REF][START_REF] Faraoni | The rigid-rod model for nematic polymers: an analysis of the shear flow problem[END_REF][START_REF] Herzfeld | A highly convergent algorithm for computing the orientation distribution functions of rodlike particles[END_REF] gives NI ≈ 4.49, U c = 5, and S NI ≈ 0.3 in nice agreement with the recommended consistent closure with ν = 3/5 (called 'consistent' in table); U NI = 4.898, 4.457 for the HL-I and HL-II closure, respectively, and U NI = 4.55 for the unapproximated theory[START_REF] Chaubal | A comparison of closure approximations for the Doi theory of LCPs[END_REF].

	Comparison of closure relationships			
	Closure scheme	Equation	U NI	U c	S NI
	Quadratic I and Doi	(34)	8 3 ≈ 2.67	3	1 4 = 0.25
	Linear (Hand)	(28)	35 12 ≈ 2.92	5	1.00
	Consistent (ν = 3/5)	(25)	≈ 4.48	5	≈ 0.31
	Consistent (ν = 7/10)	(25)	≈ 4.54	5	≈ 0.28
	Quadratic III (ν = 1)	(25)	1680 361 ≈ 4.65	5	5 24 ≈ 0.21
	HL I	(32)	240 49 ≈ 4.90	5	1 8 ≈ 0.13
	HL II	(33)	≈ 4.38	5	≈ 0.30
	Characteristic parameters U			

  Table essentially offers a comparison at low degree of alignment where both |S 2 | and |B 2 | are very small. Notice, that the isotropic-nematic phase transition takes place at finite S 2 ≈ 0.2 (and B 2 = 0), and S 2 may become much larger at lower temperatures, and in nonequilibrium situations, where the Taylor expansion is certainly not a useful approach.

  of change such as[START_REF] Hess | Formeln der Tensorrechnung[END_REF] we are left with a parameter-free closed dynamical equation for the orientation tensor a[START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , once we have suitable expressions for the order parameters S 4 , B 4 , M 4 in terms of S 2 and B 2 . The term (B.1) considerably simplifies if one is interested in a particular flow geometry only such as shear flow with shear rate γ for which (∇v) μν = γδ 1,μ δ 2,ν and therefore (D) μν = 1 2 γ(δ 2,μ δ 1,ν + δ 1,μ δ 2,ν ) and W equals D upon replacing '+' by '-'. If a magnetic field H is present, the equation of change

													3)
	with											
	X n = S 2	1 5	+	S 2 7	-	B 2 7	-	12S 4 35	+	B 4 14	-	M 4 14
	+B 2		1 10	-	3B 2 28	-	S 4 35	-	B 4 56	-	3M 4 28	,	(B.4a)
	X m S -	2B 2 7	B 4 7	-	M 4 7	+ B 2	1 5	-	B 4 4	-	2S 4 35	.

(B.4b)

We have therefore expressed X in terms of a

[START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] 

and three unspecified order parameters S 4 , B 4 , and M 4 .

Upon inserting (B.3), (B.1) with (B.4), (B.2) into an equation
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Appendix A. Biaxial phase

In the biaxial phase, the three principal values of (8) are distinct. The methods described in Section 4 for the uniaxial phase can be immediately taken over to the biaxial phase. Instead of a single scalar order parameter S 2 for the second moment, and a single scalar order parameter S 4 for the fourth moment, we have to deal with two scalar order parameters S 2 , B 2 for the second moment, and three scalar order parameters S 4 , B 4 , M 4 (which depend on S 2 , B 2 ) for the fourth moment, because these tensors share the same eigenvectors. All rules needed for handling the biaxial case are most easily obtained by introducing orthogonal unit vectors e 1 = n and e 2 = m with e i = (cos φ i sin θ i , sin φ i sin θ i , cos θ i ) and the coupling θ 1 = -arccot[cos(φ 1φ 2 ) tan θ 2 ] ensuring |n| = |m| = 1 and n • m = 0 by construction. The set of orthonormal eigenvectors is completed by a third unit vector l via n (2) + m (2) + l (2) = I. Taking into account the constraint on the λ i , we obtain

or equivalently, in a more compact fashion, illuminating the role of B 2 ,

where n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = n [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] = n (2) -1 3 I, B 2 is the second-order scalar biaxial order parameter

and we have, for example, 3 2 a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] :

or tr(a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] • a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] 

If we again identify n = e 1 , m = e 2 , and l = e 3 , then

and l, S 2 is semipositive, and B 2 ranges in value by 0 ≤ B 2 ≤ 2S 2 ≤ 1 2 and 0 ≤ B 2 ≤ 2 3 (1 -S 2 ) ≤ 1 2 for S 2 ≤ 1 4 and S 2 ≥ 1 4 , respectively. For perfect uniaxial alignment in the n direction, S 2 = 1 and B 2 = 0. For random alignment (hence, isotropic) S 2 = B 2 = 0. Similarly, we obtain for the fourth-order alignment tensors

)

with

where (A.7)

Note that there are three distinct fourth-order scalar measures of alignment: S 4 , B 4 , and M 4 . In the uniaxial case with director n, we have B 4 = M 4 = 0, so that these two can be interpreted as fourth-order measures of the deviation from uniaxiality.

Any closure relationship for the biaxial phase with correct tensorial symmetry is therefore equivalent with a set of three functions S 4 , B 4 , and M 4 in terms of the order parameters (S 2 , B 2 ). The three functions are subject to several boundary conditions such as S 4 (1, 0) = 1, S 4 (0, 0) = 0, M 4 (•, 0) = 0, B 4 (•, 0) = 0 and their domain is restricted according to 0 ≤ B 2 ≤ 2 3 (1 -S 2 ) ≤ 1 2 for S 2 ≤ 1 4 and S 2 ≥ 1 4 , respectively. At fist glance, it does not seem possible to express the fourth-order moments a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] and a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] directly in terms of the second-order moments a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] without some type of approximation (e.g., M 4 = 0), as was possible in the uniaxial and isotropic cases. However, the orthonormal directors n and m as well as the eigenvalues of a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] , or equivalently, order parameters S 2 and B 2 can be calculated using straightforward calculus. With these quantities at hand, we can directly insert into (A.5) to obtain the desired relationship between a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] and a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] (which will be of the form presented in [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF], where we have imposed restrictions to the coefficients), and also an expressions for the biaxial generalization of [START_REF] Edwards | Time-structure invariance criteria for closure approximations[END_REF]. Moreover, concerning applications, we usually need closure relationships for second rank tensors like X or a [START_REF] Leslie | Continuum theory for biaxial nematic liquid crystals[END_REF] : a [START_REF] Leslie | Some constitutive equations for liquid crystals[END_REF] (actually, both tensors being symmetric traceless), which must