
HAL Id: hal-01005985
https://hal.science/hal-01005985v1

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computational homogenization of periodic beam-like
structures

Patrice Cartraud, Tanguy Messager

To cite this version:
Patrice Cartraud, Tanguy Messager. Computational homogenization of periodic beam-like
structures. International Journal of Solids and Structures, 2006, 43 (34), pp.686-696.
�10.1016/j.ijsolstr.2005.03.063�. �hal-01005985�

https://hal.science/hal-01005985v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Computational homogenization of periodic
beam-like structures

Patrice Cartraud, Tanguy Messager

Institut de Recherche en Génie civil et Mécanique (GeM), UMR CNRS 6183 Ecole Centrale de Nantes, BP 92101,

44321 Nantes cédex 3, France
This paper is concerned with the computation of the effective elastic properties of periodic beam like structures. The
homogenization theory is used and leads to an equivalent anisotropic Navier Bernoulli Saint Venant beam. The over
all behavior is obtained from the solution of basic cell problems posed on the three dimensional period of the structure
and solved using three dimensional finite element implementation.

This procedure is first applied to two corrugated zigzag and sinus beams subjected to in plane loading. Next, the
axial elastic properties of a stranded �6 + 1� wire cable are computed. The effective properties values obtained appear
to be very close to analytical reference results showing the efficiency of the approach.
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1. Introduction

Beam-like structures with periodic microstructure may be found in various engineering applications, e.g.,
reinforced concrete beams, repetitive lattice beams and trusses and stranded ropes. The use of homogenized
beam models offers a practical and efficient approach for analyzing such structures, resulting in a large
reduction in the number of degrees of freedom. Several methods are discussed in the literature for the global
modeling of periodic beams: some of them are restricted to lattice structures as studied by Noor (1988), to
simple geometries (transfer matrix methods, see Stephen and Wang, 1996), or to microstructures which may
be described as a lattice of curved-beam elements as studied by Potier-Ferry and Siad (1992).
1



Homogenization theory appears to be a more powerful method, since it can be applied to microstructure
of general shape, and arbitrary heterogeneity. Using this method, the initial three-dimensional heteroge-
neous problem splits in a microscopic three-dimensional problem posed on the basic cell of the structure
and a macroscopic beam problem. The microscopic analysis provides the beam�s overall stiffness.

In the literature, the application of the method to practical situations appears to be limited, especially by
means of a numerical approach. This paper presents a numerical implementation of the method, the com-
putation of the effective beam properties being performed using a finite element analysis of the basic cell
problems. First, the computation of the static in-plane stiffness of two corrugated (having sinus and zigzag
mean-lines) beams is presented. Thereafter, the axial behavior of an helical cable is investigated. The accu-
racy of the approach is assessed with respect to analytical reference solutions of the literature.

The summation convention on repeated indices will be used throughout the paper. The Latin indices
range from 1 to 3, whereas the Greek indices range from 1 to 2. Dots and semi-colons denote the scalar
and double products of tensors, e.g., (r.n)i rijnj and (a:e)ij aijklekl.
2. The homogenization method

2.1. Theoretical aspects

The homogenization theory, based on the asymptotic expansion method, has mainly be used for pris-
matic homogeneous or composite beams as detailed by Trabucho and Viaño (1996) and Volovoi et al.
(1999). In such applications, the small parameter e is defined as the slenderness of the structure (the ratio
of the width of the cross-section to the total length of the beam). Moreover, for beams with periodic micro-
structure, the ratio of the length of the period to the total length of the beam is a second small parameter
denoted e (see Fig. 1). The purpose of homogenization is then to substitute the actual three-dimensional
heterogeneous and slender domain with an homogeneous beam, by making the two small parameters e

and e tend to zero. This problem was studied theoretically by Geymonat et al. (1987), where it was shown
that different effective stiffnesses can be obtained in the case of a beam with variable cross-section, depend-
ing on the order in which the two small parameters tend to zero: namely, e ! 0 first, and then e ! 0, or
e ! 0 first, and then e ! 0 (see also Cioranescu and Saint Jean Paulin, 1999 for reticulated structures).
Another way to proceed is to assume that e ! 0 and e ! 0 simultaneously. This latter method has been
initially presented in Kolpakov (1991) (see also Kalamkarov and Kolpakov, 1997; Buannic and Cartraud,
2001; Kolpakov, 2004), as an extension of the work of Caillerie (1984) for periodic plates.
Fig. 1. The periodic structure and its basic cell.
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Thus, three homogenization approaches are available, with their own domain of validity. Our objective
here is not to discuss these different methods, the interested reader is referred to Buannic and Cartraud
(2001) (and references herein) for periodic beams : it turns out that the most accurate effective properties
are obtained when e ! 0 and e! 0 simultaneously, the only restrictions being e � 1 and e � 1. This
method will therefore be applied in this paper.

2.2. Main results

Following Kolpakov (1991, 2004), Kalamkarov and Kolpakov (1997) and Buannic and Cartraud (2001)
the main steps of the homogenization method with e ! 0 and e ! 0 simultaneously are given in this sec-
tion. The two small parameters are of the same order of magnitude and are assumed to be equal. Thus, the
asymptotic expansion method with one small parameter can be used. The starting point of the method is
the three-dimensional elasticity problem. Two scales are introduced: a microscopic one, which is the scale
of the heterogeneities and of the width of the cross-section, and a macroscopic scale on which the size of the
basic cell is very small. The corresponding variables are respectively yi xi/e and x3 where x (x1,x2,x3) is
the initial three-dimensional variable as shown in Fig. 1. The operators of the three-dimensional elasticity
problem are then expressed as functions of these new variables. Next, the solution is searched under the
form
uðxÞ ¼ u0aðx3Þea þ eu1ðx3; y1; y2; y3Þ þ e2u2ðx3; y1; y2; y3Þ þ � � � ð1Þ

where functions ui(x3,y1,y2,y3) are periodic in variable y3 with the period Y3 (the length of the cell Y at the
microscopic scale, see Fig. 1), which will be denoted Y3-periodic.

It is usually considered that the first term u0(x3) of the expansion in Eq. (1) has only components in direc-
tion e1 and e2 (u03 ¼ 0) which amounts to assuming that the bending is prominent. From Eq. (1), it turns out
that the three-dimensional elasticity problem splits in a sequence (in powers of e) of three-dimensional
microscopic problems, posed on the basic cell, and one-dimensional macroscopic problems providing the
overall beam response.

Considering Kolpakov (1991, 2004), Kalamkarov and Kolpakov (1997) and Buannic and Cartraud
(2001), the main results of the method are now recalled

• The solution of the leading order (�1th order) microscopic problem is (the solution is unique up to a Y3-
periodic rigid body displacement, which is the composition of a e3 axis rotation u1 and a translation û1):
u1 ¼ �yao3u
0
aðz3Þe3 þ û1ðz3Þ þ u1ðz3Þðy1e2 � y2e1Þ ð2Þ
where o3 denotes o/ox3.
• The leading order macroscopic problem corresponds to an anisotropic Navier Euler Bernoulli Saint-
Venant beam. This problem involves the axial displacement û13, the transverse displacements û0a and
the rotation u1 (see Fig. 2). The homogenized (or effective) constitutive relations are obtained from
the solution of the 0th order microscopic problem presented in the next section.
e3
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Fig. 2. Loading and displacements of a e3 axis beam structure.
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2.3. The basic cell problems
At the 0th order, the data of the microscopic problem come from the macroscopic strain of the displace-
ment u1 given in Eq. (2). The macroscopic variable x3 being one-dimensional, one is led to introduce the
components of the macroscopic strain (o33 denoting o2=ox23)
EEðx3Þ ¼ o3û
1
3ðx3Þ

ECaðx3Þ ¼ o33u0aðx3Þ
ET ðx3Þ ¼ o3u1ðx3Þ

8><
>: ð3Þ
which correspond respectively to extension, curvatures, and torsion rate. Denoting a the elastic moduli ten-
sor, divy and ey the divergence and strain operators with respect to the microscopic variable y, and oY‘ the
lateral surface of the period (see Fig. 1), the basic cell problems consist in finding the fields uper, e, r such
that:
divyr ¼ 0

r ¼ aðyÞ : e

eab ¼ eyabðuperÞ
e13 ¼ ey13ðuperÞ � y2E

T=2

e23 ¼ ey23ðuperÞ þ y1E
T=2

e33 ¼ ey33ðuperÞ þ EE � yaE
Ca

r.n ¼ 0 on oY ‘

uper per and r.n anti-per

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ
where �per�means Y3-periodic in variable y3, and anti-per means that r.n are opposite on opposite sides oY
and oY+ in the beam axis direction. Due to the linearity of Eq. (4), its solution (up to a Y3-periodic rigid
body displacement field) is given by
uper ¼ vEðyÞEEðx3Þ þ vCaðyÞECaðx3Þ þ vT ðyÞET ðx3Þ
r ¼ rEðyÞEEðx3Þ þ rCaðyÞECaðx3Þ þ rT ðyÞET ðx3Þ

(
ð5Þ
where the expressions of rE; rCa ; rT are easily obtained from vE; vCa ; vT using Eq. (4)2 6. The overall beam
behavior is defined from the macroscopic beam stresses obtained through integration over the cross-section
and averaging in period length. Let us introduce the macroscopic axial force N(x3), the bending moments
Ma (x3) and the torque M3(x3) detailed in Fig. 2:
Nðx3Þ ¼ hr33i; Maðx3Þ ¼ h�yar33i; M3ðz3Þ ¼ h�y2r13 þ y1r23i
h�i ¼ 1

Y 3

R
Y .dy1 dy2 dy3

(
ð6Þ
where Y3 stands for the scaled length of period Y. The overall beam behavior is then defined with respect to
ya 0, this axis being defined as the mean-line of the periodic structures for our applications. The homog-
enized constitutive equation can then be put in the form
N

M1

M2

M3

8>>><
>>>:

9>>>=
>>>;

¼ ½ahom�

EE

EC1

EC2

ET

8>>><
>>>:

9>>>=
>>>;

ð7Þ
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where [ahom] is symmetric and can be expressed from Eqs. (5, 6). Therefore, the overall behavior is obtained
from the solutions of the basic cell problems.

To the knowledge of the authors, analytical solution of the three-dimensional problem given by Eq. (4) is
not available for periodic beams. Some bounds of the effective stiffnesses can be obtained using variational
principles as detailed by Kolpakov (1998). In this paper, the basic cell problem is solved using finite element
method whose implementation is presented in the next section.
3. Numerical solving of homogenization problems

The basic cell problems given by Eq. (4) have the same characteristics as those dealt with for the homog-
enization of the elastic behavior of periodic composite materials (macroscopic deformation, periodicity
conditions), and for which different finite element solution approaches are available in the literature, see
Débordes et al. (1985), Devries et al. (1989), Guedes and Kikuchi (1990) and Michel et al. (1999) among
others. Most often, the finite element method is used to solve the basic cell problems, and the discretized
field is uper. Then, in Eq. (4), if as in Devries et al. (1989) and Guedes and Kikuchi (1990), s a(y):ey(u

per)
is chosen as the stress unknown, accounting for the macroscopic strains leads to body forces and surface
loads on the lateral surface of the period, and the calculation of the global force vector is therefore tedious.
If, as in Débordes et al. (1985), the stress field is r, one has to modify the strain displacement finite element
relation in order to satisfy Eq. (4)3 6.

In this paper, another approach is proposed. The discretized field being u, such as e(u) is determined
from Eq. (4)3 6, which yields
u1 ¼ uper1 þ 1
2
y23E

C1 � y2y3E
T

u2 ¼ uper2 þ 1
2
y23E

C2 þ y1y3E
T

u3 ¼ uper3 þ y3E
E � yay3E

Ca

8><
>: ð8Þ
In that way, the only specificity of the basic cell problems is to take into account the periodicity of the
displacement uper, which amounts to linear relationships between degrees of freedom of two nodes on oppo-
site sides oY and oY+ in the beam axis direction. Denoting U the degrees of freedom associated with u,
these relations are given by
Uþ�
1 U�

1 ¼ Y 3ðy3EC1 � y2E
T Þ

Uþ�
2 U�

2 ¼ Y 3ðy3EC2 þ y1E
T Þ

Uþ�
3 U�

3 ¼ Y 3ðEE � yaE
CaÞ

8><
>: ð9Þ
where y3 ¼ ðyþ3 þ y�3 Þ=2; ya ¼ yþa ¼ y�a , and where the superscript � and + denotes respectively the two
parts oY and oY+ of the period boundary concerned with periodicity conditions, see Fig. 1. Such a method
has already been used by Anthoine et al. (1997).

The basic cell problems are treated using Eq. (9), and by successively imposing a component of the mac-
roscopic strain of Eq. (3) to be equal to unity, and the others to be zero. As an example, considering EE 1
and ECa ¼ ET ¼ 0, from Eqs. (5) and (8), the finite element analysis provides the solution ua ¼ vEa ; u3 ¼
vE3 þ y3 and r rE(y).

The effective properties can then be computed using Eqs. (6, 7), the first column of [ahom] being obtained.
A more straightforward way to proceed consists of using the total strain energy of the period, since we
have, from Eqs. (4) and (7)
5



Z
Y
r : edY ¼ Y 3

N

M1

M2

M3

8>>><
>>>:

9>>>=
>>>;

T EE

EC1

EC2

ET

8>>><
>>>:

9>>>=
>>>;

¼ Y 3

EE

EC1

EC2

ET

8>>><
>>>:

9>>>=
>>>;

T

½ahom�

EE

EC1

EC2

ET

8>>><
>>>:

9>>>=
>>>;
Thus, considering the problem with EE ¼ 1 and ECa ¼ ET ¼ 0, the strain energy leads to ahom11 .
4. Stiffness of corrugated beams

4.1. Description of the problem

This part deals with two periodic structures with uniform in-plane constant square cross-section (area A

and inertia I about the e2-axis) corrugated beams, having zigzag and sinus mean-lines. The basic cell geom-
etry (period length L, amplitude D, section side dimension) is shown in Fig. 3. These structures are sub-
jected to in-plane loading with an axial force N and a bending moment M2 (see Fig. 2). The overall
static behavior is of the form
N

M2

� �
¼

ahom11 ahom13

ahom31 ahom33

" #
EE

EC1

� �
4.2. Reference solution

Homogenization of such corrugated beams has been studied by Potier-Ferry and Siad (1992). Starting
from curved beam equations accounting for the mean-line geometry, the double scale asymptotic expansion
method is used. The effective properties of the equivalent straight beam are then derived. The stiffness terms
are then expressed as follows:
Fig. 3. Corrugated structures.
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ahom11 ¼ Ehhcos hii
hhcos2hii

A
þ hhx21ii

I
ahom33 ¼ EIhhcos hii
ahom13 ¼ ahom31 ¼ 0

8>>>>><
>>>>>:
E is Young�s elasticity modulus, h represents the cross-section inclination angle (measured with respect to
the e1-axis) as depicted in Fig. 3 and hhÆii is the average operator
hhf ii ¼ 1

S

Z
S
f � ds
with s being the curvilinear coordinate (see Fig. 3) and S being the length of one period beam�s mean-line.
4.3. Homogenization results

For the present study, the following numerical values have been considered both for the zigzag and the
sinus periodic beam: L 100 mm; D L/2; h 1 mm; E 200 GPa; m 0.3. Two three-dimensional FE
models have been computed on SAMCEF code and coupled with the homogenization procedure described
in section 2. The meshes (presented in blank in Fig. 4) are built using 4 finite elements per cross-sections, the
corrugated beam period consists of a total of 526 finite 20-nodes solid elements (leading to 9122 dof).

The deformed shapes obtained for the displacement field u given by Eq. (8) are depicted in Fig. 4. The
two cases depicted are obtained applying the following macroscopic strains:

• case (a), traction: EE ¼ 1; EC1 ¼ EC2 ¼ ET ¼ 0;
• case (b), bending: EC2 ¼ 1; EE ¼ EC1 ¼ ET ¼ 0.

Table 1 details the stiffness terms computed both using the homogenization procedure and the reference
analytical solutions for the two corrugated beams. These numerical results appear to be consistent: the dif-
ference between analytical stiffness coefficients and those deducted from the homogenization approach are
always less than 2%.
Fig. 4. Deformed/undeformed corrugated beams.
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Table 1
Stiffness coefficients for the corrugated beams

ahom11 (N) ahom33 (10 3 N m2)

Zigzag beam Homogenization 57.45 11.85
Potier Ferry and Siad (1992) 56.56 11.79

Sinus beam Homogenization 42.63 11.60
Potier Ferry and Siad (1992) 42.64 11.39
5. Axial stiffness of a stranded cable

5.1. Description of the problem

This part deals with the static behavior of steel ropes widely employed for bridges and pre-stressed struc-
tures mentioned by Costello (1997), Labrosse (1998) and Nawrocki and Labrosse (2000). The studied cable
are �spiral strand 6 + 1� type: six cylindrical wires are wrapped around a cylindrical straight core as illus-
trated in Fig. 5. The geometry is characterized by the core radius RC, the strands radius RS, and the helical
angle ameasured with respect to the cable e3-axis. The strand cross-sections are elliptical in the (e1,e2) plane
due to the helical a angle (see Fig. 5). The helical construction mode exhibits a periodic beam-like design,
the length of one period being given by the following expression:
L ¼ 2pðRC þ RSÞ
tan a
Such rope generally possesses anchorages at its ends allowing free rotations in the e1 and e2 radial direc-
tions (see Figs. 2 and 5) as mentioned by Nawrocki and Labrosse (2000). This study focusing on the axial
behavior, the bending characteristics are not investigated. Due to the helical design of the strands, the over-
all axial behavior exhibits a coupling between tensile and torsion and can be expressed using the following
2 · 2 stiffness matrix:
Fig. 5. Geometry of the cable.
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N

M3

� �
¼

ahom11 ahom14

ahom41 ahom44

" #
EE

ET

� �
using the tensile and torsion stiffness coefficients terms ahom11 and ahom44 respectively, and the coupling coeffi-
cients ahom14 ¼ ahom41 .

5.2. Reference solution

As detailed by Costello (1997), Labrosse (1998) and Roshan Fekr et al. (1999), many authors have pro-
posed analytical expressions for stiffness coefficient ahomij of stranded �6 + 1� cables. For the present work,
Labrosse�s stranded cable model has been used as a reference (see Labrosse (1998)). In this approach,
the wires and the core are modeled as curved beams. The axial force, bending moments and torque on a
cable cross section, as well as the inter-wire efforts are expressed as a function of the cable strains and deriv-
ative of the inter-wire slippage.

The influence of relative inter-wire motions on the cable overall response has been discussed by
Nawrocki and Labrosse (2000). All the possible cases of inter-wire contacts have been studied, and the
results demonstrate that rolling and sliding have no influence on the overall behavior. Moreover, the com-
parison with experimental data shows that the pivoting has to be considered as free. It is therefore possible
to describe the kinematics of the cable section as a function of the degrees of freedom of the core. The over-
all behavior of the cable can thus be deduced from these of its constituents. Closed-form stiffness compo-
nent expressions are then obtained
ahom11 ¼ pEðR2
C þ 6R2

Scos
3aÞ

ahom44 ¼ pE 1
4ð1þmÞ ðR

4
C þ 6R4

Scos
5aÞ

h
þ 6 cos asin2aR2

S ðRC þ RSÞ2 þ
R2
S

4
ð1þ cos2aÞ

� �i
ahom14 ¼ ahom41 ¼ 6pER2

SðRC þ RSÞcos2a sin a

8>><
>>:
5.3. Homogenization results

The homogenization procedure has been applied for the example treated by Nawrocki and Labrosse
(2000) validated by experiments (see Labrosse, 1998). The cable geometry is given by (in mm)
RC 2.675, RS 2.59 and L 230.13 then leading to a 8.18�. The constitutive material is characterized
by: E 200 MPa; m 0.3.

Following the homogenization procedure principle detailed in section 2, only one three-dimensional per-
iod of the cable has been modeled using Samcef FEM code as illustrated in Fig. 6. It is worth to notice that
the geometry of the strands has been generated exactly by extruding circular surfaces along the centroidal
helical curves of the wires: as shown by Roshan Fekr et al. (1999), geometrical approximation (i.e., circular
strand cross-sections in the (e1,e2) plane instead of the real elliptical geometry, see Fig. 4) have a great influ-
ence on numerical results.

As illustrated in Fig. 6, each wire sections is modeled using 12 finite elements (six 16-nodes and six 12-
nodes solid elements), leading to a total of 7056 finite elements and 52,049 dof. For the a angle value con-
sidered, each solid element exhibits small shape distortion. Within the framework of a preliminary study
detailed in Ghoreishi et al. (2004), the influence of inter-wire contact conditions between the strands and
the core has been studied for two limit cases: sliding without friction and merging. The results obtained
show that the static overall behavior is not sensitive to these modeling assumption. For the present study,
each cross-section of the core is therefore merged to those of the strands using 6 common nodes as depicted
in Fig. 5. This assumption is consistent with the classical theoretical framework of homogenization which
implies that the basic cell constituents are assumed to be perfectly bonded.
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Fig. 6. Three dimensional FEM model of the cable.

Table 2
Stiffness coefficients for the stranded �6+1� cable

ahom11 (106 N) ahom44 (N m2) ahom14 (106 N m)

Homogenization 28.63 53.49 1.824
Labrosse (1998) 29.02 52.91 1.856
The stiffness values obtained both using the three-dimensional FE model coupled to the homogenization
procedure and Labrosse�s analytical model are given in Table 2. As can be seen, the homogenization pro-
cedure leads to accurate predictions: the corresponding stiffness coefficients present very small differences
(always below 2%) with the analytical reference solutions. These results therefore corroborate and validate
the homogenization results.
6. Conclusion

In this work, the homogenization theory is applied to beams with periodic microstructure. A finite
element implementation of basic cell problems is presented. This method is based on a three-dimensional
model, and can be easily used with a standard finite element software.

Numerical investigations carried out for two corrugated beams and a stranded �6 + 1� cable have dem-
onstrated the accuracy of this approach for stiffness predictions with respect to reference solutions of the
literature. Moreover, it can be underlined that the homogenization computations have required few
CPU times (always less than 2 min) on a standard workstation. These numerical examples allow to validate
the efficiency and usefulness of the homogenization procedure.
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Thesis, University of Nantes.
Michel, J.C., Moulinec, H., Suquet, P., 1999. Effective properties of composite materials with periodic microstruture: a computational

approach. Computer Methods in Applied Mechanical Engineering 172 (1 4), 109 143.
Nawrocki, A., Labrosse, M., 2000. A finite element model for simple straight wire rop strands. Computers and Structures 77, 345 359.
Noor, A.K., 1988. Continnum modeling for repetitive lattice structures. Applied Mechanics Reviews 41 (7), 285 296.
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