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Comparison Between NEM and FEM in 2-D Magnetostatics
Using an Error Estimator

A. Bruyère1, L. Illoul2, F. Chinesta2, and S. Clénet1

L2EP, ENSAM, CER Lille, 59046 Lille Cedex, France
LMSP, ENSAM, CER Paris, 75013 Paris, France

This communication deals with a comparison between two methods of discretization: the well known finite element method and the
natural element method that is a meshless method. An error estimator, based on the nonverification of the constitutive law, is used. This
estimation has been applied to two examples: a device with permanent magnets and a variable reluctance machine.

Index Terms—Error estimation, finite element method, magnetostatics, natural element method.

I. INTRODUCTION

NOWADAYS, the finite element method (FEM) is well es-
tablished and allows solving many problems in applied

physics. However, difficulties can appear with the FEM when
the system includes moving parts. Actually, a remeshing step
can be required to avoid a significant distortion of elements or
its overlapping. Recently, novel methods have been proposed
to circumvent, or at least alleviate, the main difficulties related
to the mesh constraints. The most usual mesh constraints are re-
lated to the need of efficient remeshing procedures, which in the
3-D case constitutes a difficulty nowadays under active investi-
gation, as well as to the field projection from the old mesh to the
new mesh that induces an inevitable numerical diffusion whose
unfavorable impact on the solution after numerous resmeshing
steps is widely accepted. It was in this context that the so-called
“meshless methods” were introduced one decade ago. Their ap-
plications in several domains experienced a spectacular progres-
sion in the last decade, after proving its ability for avoiding, or
at least for alleviating significantly, the remeshing requirements.
The natural element method [1] (from now on referred as NEM)
belongs to this new and vast family of meshless methods and its
interest compared with the vast majority of meshless techniques
concern its interpolation property that allows enforcing essen-
tial boundary conditions in an easy way, as in the finite element
method. We recall that the imposition of essential boundary con-
ditions is the main issue in the other meshless methods. On the
other hand, it has been proved that the solution accuracy does
not depend on the quality of the subjacent triangulation (“mesh-
less character”). Thus, we could affirm, crudely speaking, that
the NEM is a kind of FEM in which the triangles could be dis-
torted without a significant impact on the solution accuracy.

The NEM, which was firstly applied in the framework of
solid and fluid mechanics [2], [3], has already been success-
fully tested in electromagnetic systems for accounting, in a
simple manner, the existence of moving parts [4]. However, in
the electromagnetic framework the NEM and FEM solution

accuracy comparison has never been addressed. This is a ques-
tion needing a clear response and consequently justifying or
disappointing the use of meshless approaches in this field. In
this communication, we compare both methods NEM and FEM
by using an error estimator based on the non verification of the
constitutive law on two examples [5], [6]. The first example
concerns two permanent magnets in opposition and the second
example a Variable Reluctance Machine.

II. PROBLEM DESCRIPTION AND ERROR ESTIMATOR

The magnetostatic problem, defined in the domain D, can be
written as

and (1)
and (2)

is the magnetic flux density, is the magnetic field, and
is the current density that is assumed to be known in the domain

. is bounded by the surface where represents
the outward normal unity vector. Moreover, and verify the
constitutive relationship given by:

(3)

with the coercitive magnetic field and the permeability.
In the sequel, the problem is assumed to be linear. Let’s call
“admissible” fields and that verify (1) and (2) respec-
tively. It is obvious that an admissible field couple
verifying the constitutive relationship (3) is the exact solution
denoted . We consider now an admissible couple and
we define a constitutive law error ‘e’:

(4)

with
It can be proven [5] that this error e is equal to the distance

between an average field and the exact solution :

with
(5)

Therefore, the scalar e is a numerical error estimator for the ad-
missible solution. To obtain the admissible field couple, several
methods have been already proposed. The more accurate method
consists in solving both potential formulations. The vector poten-
tial formulation ( and on ) yields an
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Fig. 1. Construction of the Voronoï cell related to node 5.

admissible induction field . The scalar potential formula-
tion ( and on with such that

and on ) yields an admissible mag-
netic field . Then, using (4), an estimation of the numerical
error can be calculated. To evaluate the global solution quality,
let us also define a global relative error estimator

(6)

III. DISCRETIZATION

In 2-D, both potential formulations derived from the model de-
fined in (1), (2) and (3), can be solved by discretizing the asso-
ciated Galerkin’s weak form. For this purpose we need to define
the approximation to be considered for both the trial and the test
functions.Thisapproximation isusuallybuilt fromthevalues that
the unknown fields have at nodes distributed on the domain D.
A shape function ( is the position vector) is associated to
each node . Thus, both potentials can be approxi-
mated from a linear combination of such shape functions

(7)

The only difference between FEM and NEM lies on the ex-
pression of the shape functions that in both methods are de-
fined in a different manner. The ones related to the FEM are
well known and therefore they do not need additional explana-
tions. On the contrary, as the ones related to the NEM being
less known, a brief introduction seems to be suitable. The NEM
shape functions have been introduced by Sibson and are
calculated using the Voronoï diagram [1]. We are illustrating
the concepts related to the construction of such shape functions
by considering the simple distribution of five nodes depicted
in Fig. 1. Some basic constructions, as the Delaunay triangu-
lation and the associated Voronoi diagram, that serve to define
the NEM shape functions in 2-D will be illustrated.

A. Voronoï Diagram

We define the Voronoï diagram associated to a set of nodes
as the geometric subdivision of the

Fig. 2. Construction of the Voronoï diagram.

Fig. 3. Shape function calculation related to the node 5, at 2 different positions
x, T being grey area.

plane into regions , called first order Voronoï cells, each one
related to a distinct node , such that

(8)

with the coordinates of the node and the distance
between node and point . Thus, is the region of the plane
that contains the points closest to node than to any other
node in . In Fig. 1 the nodes are numbered from “1” to “5”
and the Voronoï cell related to node 5 is depicted. The construc-
tion of that Voronoï cell is quite simple. We start identifying the
natural neighbors [1] of node 5. Now, we consider the segments
joining node 5 to each neighbor node, and a straight line, normal
to each one of these segments, traced at the central point of those
segments as depicted in Fig. 1. These straight lines defined the
Voronoï cell. Fig. 2 illustrates the construction of the Voronoï
cells related to the other nodes. For additional details the inter-
ested reader can refers to [1] and the references therein.

B. Sibson Shape Functions

Once the Voronoï diagram is constructed, we can calculate
the value of the NEM shape function , related to the node

at the position . For this purpose we consider, in the scenario
depicted in Fig. 3, the insertion of a point and the compu-
tation of the shape function related to node 5 at that position,
that is, . We consider two possible placements of such
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Fig. 4. (a) Voronoï diagram (heavy lines), Delaunay triangulation (thin lines)
and the associated Delaunay circumcircles. (b) Sibson shape function.

point [Fig. 3(a) andFig. 3(b)]. After introduction of point , the
Voronoï diagram is modified because the consideration of the
cell related to the point just introduced that in our example con-
sists of the polygon “abcd”. The cell just inserted, the one re-
lated to point , intersects the former cells related to the original
nodes. In Fig. 3 we emphasize in grey color the intersection be-
tween this cell and the one initially related to node 5. Now, the
shape function related to node 5 at position is computed from
the ratio between the intersected area (the grey area in Fig. 3)
and the one related to new cell (polygon “abcd”), that is

“ ”

“ ”
(9)

It is easy to prove [1] that the support of the shape function
related to a node is given by the union of the circles passing
through this node and any other two neighbor nodes of such
that no other node falls within the circle. Fig. 4(a) depicts those
circles and the corresponding support for node 5. By computing

, by using the procedure just described at different po-
sitions , the shape function can be represented. Fig. 4(b) de-
picts the shape function related to node 5. One of the reasons
of the robustness of the Sibson interpolation against the distor-
tion of the background mesh defining the Delaunay triangles
and the associated Voronoï diagram, is that even if a triangle be-
comes very distorted, the support of the shape functions is not
restricted to this triangle (as it is the case in the finite element
method). Nowadays there is not a mathematical proof of the
higher robustness of this kind of interpolation; however, there
are numerous examples showing the low sensibility of NEM to
the mesh distortion [7]. Several simulations in solid and fluid
mechanics [2], [3] have been successfully performed using the
same cloud of nodes throughout the whole simulation.

C. Nodal Sibson Shape Function Properties

The NEM shape functions are except at the posi-
tions of nodes where they are and on the boundary of the
Delaunay circles where they are . The shape functions have
a compact support delimited approximately by the neighbour
nodes, leading to a sparse system. The band width of the re-
sulting linear systems is a little bit higher than the bandwith as-
sociated to the FEM. That is precisely one of the reason of the

Fig. 5. Studied system: two magnets surrounded by an air box.

natural element interpolation robustness. The shape functions
have other interesting properties

(10)

where is the position of node and the Kronecker’s delta.
The so-called delta property (the first one in (10)) enables to
enforce essential boundary conditions as in FEM. The other
two properties in (10) prove the linear completeness, that is,
the Sibson interpolation can represent exactly linear functions.
Moreover, the partition of unity, second relation in (10) allows
functional enrichments in the context of the partition of unity
paradigm.

The computing time related to the construction of the Sibson
shape functions is higher than the one associated with the defini-
tion of such functions in the finite element framework. However,
nowadays, there are fast algorithms coming from the computa-
tional geometry community that are robust, fast even in 3-D,
and some of them freely distributed. If we take the CPU time as
comparison criterion and consider simulations involving mas-
sively remeshning operations (that define the natural context of
application of meshless methods), finite elements simulations
are nowadays faster than natural element method, because the
existence of efficient and robust remeshing procedures in 2-D.
If one consider convergence and accuracy criteria, the conver-
gence rate for linear FEM and NEM is the same (first order in
the energy norm) but as we proved in some of our former works
in mechanics [8] (and we will prove also in magnetostatics later
in this paper) the NEM accuracy is higher than the one related to
the finite elements. Moreover, in models requiring field transfer
after each remeshing process the superiority of the NEM is more
relevant as argued previously.

IV. APPLICATIONS

First, two magnets face to face are considered (Fig. 5). Ten
meshes with an increasing number of nodes were used. Fig. 5
gives the Voronoï diagram associated to the clouds consisting
of 107, 800 and 2200 nodes. For the FEM simulation, linear
interpolation on the Delaunay triangles was used.

For each mesh, both potential formulations have been solved
using both the NEM and the FEM. Fig. 6 depicts the evolution
of energy with the number of nodes. We can notice that the ener-
gies calculated with both formulations bound the exact energy.
However, the energies computed from NEM seem to be more
accurate that the ones coming from FEM calculations.
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Fig. 6. Evolution of the energy with the number of nodes.

Fig. 7. Global relative error estimator.

By representing the evolution of the numerical error com-
puted from (6) versus the number of nodes in a log-log scale
(see Fig. 7) for both the finite element and the natural element
solutions, we notice that both evolutions are linear and that the
convergence rate, slope of such evolutions, is the same and ap-
proximately equal to one. We can also notice the higher accu-
racy of the NEM solution.

A more complex model in now considered. It concerns the
variable reluctance machine (VRM) depicted in Fig. 8. The
modelling of VRM is a very trick problem because of regions
with sharp angles where the concentration of the magnetic
flux density is very dramatic. Some simple error indicators
are available [9] allowing the nodal refinement. The relative
permeability of the rotor and stator yokes is equal to 1000.
Different nodal distributions have been tested (the coarsest
one containing 6000 nodes and the finest one more than one
million) and both potential formulations solved by using the
NEM and the FEM. The errors and have been
computed from (5). The error ratio evolves from
a value close to 2 related to the coarsest nodal distribution, to
2.5 for the finest one.

V. CONCLUSION

In this paper, the accuracy of meshless natural element
method has been compared to the FEM one. For the com-
parison purposes we proposed the use of an error estimator

Fig. 8. Variable Reluctance Machine. The windings that have been supplied
for the test is emphasized.

based on the non verification of constitutive equation. For the
considered examples, superiority in terms of accuracy of the
NEM solutions has been noticed.
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