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ABSTRACT. To solve fast dynamic problems, an explicit method is the most adapted. But for
slower dynamics, an implicit method is more stable. The industrial problems are governed by
high frequency (impact, ...) during short time intervals and slower dynamics (spring-back, ...)
during other time intervals. The optimal solution is then to have both implicit algorithm and
explicit methods readily available in the same code and to be able to switch automatically from
one to another. Criteria that decide when to shift from a method to another have been developed
here. Implicit balanced restarting conditions that annihilate numerical oscillations resulting for
an explicit calculation are also proposed.

RÉSUMÉ. Pour résoudre des problèmes de dynamique rapide une méthode explicite est la mieux
adaptée. Par contre, pour des dynamiques plus lentes, une méthode implicite est plus stable. Les
problèmes industriels sont gouvernés par des hautes fréquences (impact, ...) pendant de courts
intervalles temporels et par une dynamique plus lente (retour élastique, ...) pendant les autres
intervalles. La solution optimale est donc de posséder les deux algorithmes, disponibles dans le
même code et de pouvoir basculer automatiquement de l’un à l’autre. Des critères qui décident
automatiquement quand passer d’une méthode à l’autre, sont développés dans ce travail. Des
conditions initiales stables et équilibrées pour le passage de l’explicite vers l’implicite sont
aussi proposées.

KEYWORDS: Contact, impact, implicit-explicit, time integration, dynamics, non-linearities.
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1. Introduction

Most industrial problems of today need to be simulated with non-linear models.

This is especially true in aeronautical domains where the constructor must assure that

components stand up to impact. At the present time, those structures are developed

with a lot of experimental studies. Since they require manufacturing (and subsequent

loss) of samples, those experimental studies are extremely onerous. Adequate non-

linear numerical finite elements simulations can then avoid those expensive experi-

ments and only a final specimen is necessary in order to be validated and qualified for

flight.

Engine manufacturers thus need to be able to simulate the response of a full non-

linear structure (e.g. jet engine, ...) under external dynamics loading (e.g. load unbal-

ance, ...). Model and simulation of those non-linear dynamics phenomena can only

be solved with a time-incremental approach. The choice of a time integration algo-

rithm, adapted to the studied problem is an essential criterion to ensure efficiency and

robustness of the numerical simulations. Difficulty in this choice resides in being

able to combine robustness, accuracy and stability of the algorithm. Within time in-

tegration algorithms, there are two families: explicit algorithms [BEL 83, HUG 87,

GER 94, PON 95, HUL 96, BEN 98], and implicit algorithms [BEL 83, HUG 87,

CAS 91, CHU 93, GER 94, PON 95, GER 97, BEN 98] among other references. Im-

plicit ones need to be solved iteratively on each time increment (time step), contrarily

to explicit ones. Indeed, explicit algorithms compute solution at time tn+1 only from

solution at time tn. On the opposite, implicit algorithms compute solution at time

tn+1 from solution at time tn, but also from solution at time tn+1. But, for stability

reasons, explicit methods use smaller time steps than implicit ones. Explicit methods,

avoiding iterations and convergence problems, are therefore generally used for fast

dynamics simulation for which small time step size is always necessary to capture

high frequency solutions. It is especially true for problems with many degrees of free-

dom for which iterations are very expensive and convergence problems are frequent

[YAN 95]. On the other hand, for slower dynamics problems, implicit algorithms

allow to work with greater time step size, resulting in more numerical stability and

accuracy [YAN 95, GEL 95, SUN 00]. Nevertheless, it appears that, for some clearly

fast dynamics problems, implicit solutions are cheaper and more accurate than explicit

solutions [PON 94, HOG 96, GRA 99]. Therefore, choosing an integration algorithm

is a difficult task on which depend the cost and the accuracy of the numerical solution.

More, most of industrial problems can take advantage from a solution method that

combines both families of integration algorithms.

Three methods allow this combination. A first combination integrates in time some

forces with an implicit method and other forces with an explicit one. In [KAN 99] the

contact accelerations are treated with an implicit algorithm and the internal accel-

erations are treated with an explicit algorithm. In [PLE 85] the linear part and the

non-linear part of the constitutive relation are respectively integrated by implicit and

explicit method. A second combination separates the mesh into sub-domains. Each

sub-domain can be treated with a different integration algorithm and a different time
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step size [BEL 78, OWE 80, LIU 84, BEL 92, DAN 98, WU 00, COM 01, GRA 01].

A third combination integrates over some time intervals with an implicit method and

other time intervals with an explicit one. Few works have been developed with this

latter combination and they were all developed for sheet metal forming analysis. In

[JUN 98], a stamping simulation begins with an implicit scheme and shifts to an ex-

plicit one when a problem of convergence appears. No return to implicit scheme is

actually planned. Another method simulates stamping (as a fast dynamics problem)

with an explicit scheme and springback phase (slow dynamics) is subsequently ana-

lyzed with an implicit one [FIN 95, NAR 99]. The time of transition is fixed by the

user and initial conditions for the implicit phase, such as velocities and accelerations,

are set to zero.

This third way is the method that has been generalized in this work because non-

linear problems under consideration have significant changes of properties in time. For

example, in sheet metal forming, stamping (with a more adapted explicit scheme) has

radically different properties than springback (with a more adapted implicit scheme).

For simulation of a jet engine under load unbalance, when rotational velocity increases

(or when impact with a bird occurs) contacts and large plastic deformations appear,

leaving explicit algorithm to be the most adapted. On the other hand, when rota-

tional velocity decreases, accuracy allows to work with larger time step size and an

implicit method becomes cheaper and more stable than an explicit one. Neverthe-

less, a criterion that decides to shift from a family to another must be automatic and

not fixed by the user. There are two reasons to have an automatic criterion. Firstly:

the choice of a family could not be made only from physical criteria, but must also

consider numerical conditions. For example, some problems of fast dynamics can be

simulated with more accuracy and less computational time with an implicit method

rather than with an explicit one [PON 94, HOG 96, GRA 99]. Secondly: for com-

plex simulations, shift from a method to another can be followed by a comeback to

the original one. For example when jet engine rotation velocity decreases, simulation

can use an implicit scheme, after having simulated the impact phase (short duration

event) with an explicit scheme. But if a critical mode is excited, the algorithm must

be able to shift to an explicit scheme again. Another example can be found in hem-

ming problems where a lot of stamping and springbacks are followed by one another

[NOE 02]. Automatic criteria must then be developed. They depend on integration

error [CAS 91, GER 94, HUL 95, DUT 98, NOE 00, NOE 01, NOE 02] that allows to

determinate implicit time step size and they also depend on a ratio between the com-

putational time (or CPU) needed to solve an implicit time step and the CPU needed to

solve an explicit time step. Initial conditions, when shifting from explicit scheme to

implicit scheme occurs, are also defined to avoid lack of stability and convergence.

This paper will be organized into three sections. First, time integration algorithms

will be briefly explained. Second, the mentioned criteria and initial restarting condi-

tions will be detailed. Third, numerical simulations will be exposed to validate the

methodologies.
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2. Numerical integration of transient problems

In this section, the equations of motion and both implicit and explicit schemes of

integration are rapidly explained. Next, integration parameters management, subse-

quently needed to develop shifting criteria, are explained.

2.1. Equations of motion

FEM (space Finite Element Model) semi-discretization of the equations of motion

of a nonlinear structure leads to the following coupled set of second order nonlinear

differential equations [BEL 83, HUG 87, GER 94, PON 94, PON 95, HOG 96]:

R = Mẍ + F int (x, ẋ) − F ext (x, ẋ) = 0 [1]

where R is the residual vector, x the vector of the nodal positions at current time, ẋ the

vector of nodal velocities, ẍ the vector of nodal accelerations. M is the mass matrix,

F int the vector of internal forces resulting from body’s deformation and F ext the

vector of external forces. Both vectors are non-linear in x and in ẋ due to the coupled

phenomena of contact, plastic deformations or geometrical non-linearities. The set of

equations [1] is completed by two sets of given initial conditions at time zero:

x0 = x (t = 0) ẋ0 = ẋ (t = 0) [2]

Semi-discretized internal and external forces can be written:

F int (x, ẋ) =

∫

V (t)

[B]
T
{σ} dV [3]

F ext (x, ẋ) =

∫

V (t)

[N ]
T
{b} dV +

∫

S(t)

[N ]
T
{f} dS [4]

where b is the body force per unit mass, σ is the Cauchy stress, B is the matrix of

the derivatives of the FEM shape function, f is the surface tractions, N the matrix of

the FEM shape function, S (t) the current surface of the body and V (t) is the current

volume of the body. Note that expression [4] collects all types of loading (applied

through local or distributed actions, in a follow-up way or not, reactions to imposed

displacements and contact situations) and that the consistent mass matrix reads:

M =

∫

V (t)

ρ [N ]
T

[N ] dV =

∫

V0

ρ0 [N ]
T

[N ] dV0 [5]

where ρ is the current mass density of the material, ρ0 the initial mass density of the

material and S0 is the initial surface of the body.
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2.2. Implicit schemes

Implicit schemes are classically designed for vibrations and low speed dynamics

of structures. For an implicit scheme, the elements of the solution at time tn+1, im-

plicitly depends on other elements of the solution at time tn+1 itself. The problem

must then be solved in an iterative fashion. Stability (i.e. positive damping of initial

perturbations) imposes different restrictions on this family of algorithms and a proper

choice of parameters. The time step size does not need to be lower than a limit to have

a stable time step since the scheme is unconditionally stable.

Implicit schemes: The generalized-α trapezoidal scheme

The most general scheme for implicit integration of [1] is a generalized trapezoidal

scheme [BEL 83, HUG 87, CHU 93] where updating of positions and velocities is

based on "averaged" accelerations stemming from associated values between tn and

tn+1. It reads for instance:

ẋn+1 = ẋn + (1 − γ) ∆tẍn + γ∆tẍn+1 [6]

xn+1 = xn + ∆tẋn +

(

1

2
− β

)

∆t2ẍn + β∆t2ẍn+1 [7]

or equivalently:

ẍn+1 =
1

β∆t2

[

xn+1 − xn − ∆tẋn −

(

1

2
− β

)

∆t2ẍn

]

[8]

ẋn+1 =
γ

β∆t

[

xn+1 − xn +

(

β

γ
− 1

)

∆tẋn +

(

β

γ
−

1

2

)

∆t2ẍn

]

[9]

The discretized equations of motion [1] can be rewritten under the form proposed

by Chung and Hulbert [CHU 93]:

Rn,n+1 =
1 − αM

1 − αF

Mẍn+1 +
αM

1 − αF

Mẍn +
(

F int
n+1 − F ext

n+1

)

+

αF

1 − αF

(

F int
n − F ext

n

)

= 0 [10]

where Rn,n+1 is the residual vector of time step n to n + 1.

Particular choices of parameters lead to well-known [BEL 83, HUG 87, CHU 93]

schemes such as:

– αM = αF = 0 for Newmark scheme

– αM = 0 for Hilber-Hughes-Taylor scheme

– αF = 0 for Wood-Bossak-Zienkiewicz scheme
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Unconditional stability and second order accuracy of the scheme, for linear problems

[CHU 93], require that:

γ ≥
1

2
− αM + αF

αM ≤
1

2

β ≥
1

4
(1 + αF − αM )

2
[11]

Associated rules for Newmark scheme are the classical:

γ ≥
1

2

β ≥
1

4

(

γ +
1

2

)2

[12]

Maximum of accuracy is provided in frequency and amplitude for [CHU 93]:

αF ∈

[

0,
1

2

]

αM = 3αF − 1

γ =
1

2
− αM + αF

β =
1

4
(1 + αF − αM )

2
[13]

It’s worth pointing out that though classical schemes require 0 ≤ αF ≤ 1/2 (i.e.

sampling the force in the second half of [tn, tn+1]), here, no such rule is followed for

αM , the sampling parameter for the inertia terms: it might be negative for instance,

thus leading to an extrapolation at tn+1 instead of an interpolation.

Iterative solution of the nonlinear system [10] first requires the elimination of ac-

celeration and velocity at time tn+1 with the help of [8] and [9] and, secondly, the

writing of the Hessian matrix of the system, i.e.:

S =

[

1

β∆t2

(

1 − αM

1 − αF

)

M +
γ

β∆t
CT + KT

]

[14]

where KT , CT are respectively the tangent stiffness and damping matrices defined by:

KT =
∂

∂x

(

F int − F ext
)

[15]

CT =
∂

∂ẋ

(

F int − F ext
)

[16]
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The residual after iteration number i is defined by:

R =
1 − αM

1 − αF

Mẍi
n+1 +

αM

1 − αF

Mẍn +

[

F int
n+1

(

xi
n+1, ẋ

i
n+1

)

− F ext
n+1

(

xi
n+1, ẋ

i
n+1

)]

+

αF

1 − αF

[

F int
n − F ext

n

]

[17]

Using equations [14] to [17] and a Newton-Raphson technique, the iterative solution

of system [8], [9] and [10] can be written as:

S∆x = −R [18]

Iterations stop when the non-dimensional residual r becomes lower than the accuracy

tolerance δ that is defined by the user. Therefore, the following relation is verified:

r =
‖R‖

‖F int‖ + ‖F ext‖ + ‖Mẍ‖
≤ δ [19]

Other types of implicit schemes exist. For example, we can cite the generalized-

θ mid-point scheme [PON 95, PON 94, HOG 96], the conservative schemes such as

"Energy Momentum Conserving Algorithms" [SIM 92, GON 96, GON 99, GER 00]

or the conservative scheme with relative dissipation such as "Energy Dissipative Mo-

mentum Conserving Algorithms" [ARM 99, ROM 00, ARM 01]. Nevertheless, in this

paper only the α-generalized scheme is used. Proposed methods can be extended to

other implicit schemes.

2.3. Explicit schemes

This is the most advocated scheme [BEL 83, HUG 87] for integrating [1] in case

of wave propagation and impact problems, i.e. high speed dynamics. For an explicit

algorithm, the elements of solution at time tn+1 depend only on the solution at time

tn. Therefore, the resolution does not need to be iterative. Stability (i.e. positive

damping of initial perturbations) imposes the time step size to be lower than a limit.

The scheme is conditionally stable.

Explicit scheme: The generalized-α explicit scheme

Chung and Hulbert have extended their implicit scheme to an explicit one, taking

αF = 1 in [10] [HUL 96]. Its most principal interest is its numerical dissipation

property. Time integration is then:

ẍn+1 =
M−1

(

F ext
n − F int

n

)

− αM ẍn

1 − αM

[20]

ẋn+1 = ẋn + ∆t [(1 − γ) ẍn + γẍn+1] [21]
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xn+1 = xn + ∆tẋn + ∆t2
[(

1

2
− β

)

ẍn + βẍn+1

]

[22]

Optimal numerical dissipation is reached for the above parameters depending on

the spectral radius ρb that conditions the numerical damping of the high frequency

[HUL 96]:

αM =
2ρb − 1

1 + ρb

γ =
3

2
− αM

β =
5 − 3ρb

(1 + ρb)
2
(2 − ρb)

[23]

This scheme is conditionally stable and time step size is limited, depending on maxi-

mal model frequency ωmax but also depending on spectral radius:

∆t = γs∆tcrit = γs

Ωs (ρb)

ωmax

[24]

with:

Ωs (ρb) =

√

12 (1 + ρb)
3
(2 − ρb)

10 + 15ρb − ρ2
b + ρ3

b − ρ4
b

[25]

In relation [24], γs is a safety factor (< 1) that accounts for the destabilizing effects

of non-linearities. Evolution of Ωs (figure 1) indicates that for a low spectral radius

(i.e. high numerical dissipation), time step size is 22.5% lower than for a high spectral

radius (i.e. low numerical dissipation). Nevertheless, numerical dissipation allows to

work with higher security.

Other explicit schemes exist. The most popular one is the central difference. Its

principal drawback is its absence of numerical dissipation, leading to important nu-

merical oscillations or even to instability (rapid amplification of the numerical oscil-

lations resulting from a physical or a numerical perturbation) [BEL 83, HUG 87]. As

with implicit scheme, the proposed methodology can be extended to this scheme (ex-

cepting the setting of the spectral radius in section (3.4) that is an user parameter only

in the generalized-α explicit scheme).

2.4. Parameters control for numerical integration

First the time step size control for implicit schemes is studied. Next an algorithm

deciding when the Hessian matrix needs to be updated is explained. Finally the eval-

uation of explicit time step size is exposed.
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Figure 1. Stability limit evolution depending on spectral radius ρb

2.4.1. Implicit time step size control

The implicit time step size control is the one proposed by Géradin [GER 97], ex-

tended here to highly non-linear problems [NOE 00, NOE 02]. This scheme contin-

uously adapts time step size to physical modes evolution and keeps time step size

constant during long time intervals. To estimate time step size an integration error is

computed.

The integration error is deduced from truncated terms of relations [6] and [7]. This

error is to the third order: O
(

1
6∆t3 ˙̈x

)

≃ O
(

1
6∆t2∆ẍ

)

. Then it leads to:

e =
∆t2

6
‖∆ẍ‖ [26]

To have a problem independent error, it is made non dimensional (x0 is the initial

position vector):

end =
∆t2

6 ‖x0‖
‖∆ẍ‖ [27]

This error is then divided by a reference error ε. This reference is the average error

of a linear oscillator of pulse ω and of non-dimensional pulse Ω = ∆tω [GER 94,

NOE 00, NOE 02]:

ε (Ω) =
(1 − αF ) Ω3

√

1 + Ω2

4

3π [1 − αM + (1 − αF ) Ω2β]
[28]

Ω must be known to evaluate [28]. Ten time steps give a good accuracy for integrating

a linear oscillator over one period. Therefore, since ω = 2πν (ν is the frequency),
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taking ∆t = (10ν)
−1

leads to a reference non-dimensional pulse Ωk ≃ 0.6. Then

[27] is rewritten:

end,ref =
∆t2

6

‖∆ẍ‖

ε (Ωk) ‖x0‖
[29]

Nevertheless, for an uniform rotation, the components of the nodal vector of ac-

celerations ẍi are not a constant. Indeed, if its modulus is constant, direction changes.

Therefore, even if the motion is perfectly integrated, error [29] would not be equal

to zero. The integration error is then rewritten by taking the variation of the nodal

acceleration modulus (Nn is the number of nodes):

eint =
∆t2

6

∑Nn
i=1 ∆ ‖ẍi‖

ε (Ωk) ‖x0‖
[30]

which also remains consistent for translation motions.

Time step size is deduced from the integration error [30] and from a tolerance

PRCU fixed by the user. The relation to be verified is:

eint < PRCU [31]

The new time step size ∆tnew to reach a reference integration error (half of the toler-

ance PRCU ) is deduced from the current time step size (∆tcur) and from the current

integration error (eint,cur), using the following relation developed in [GER 94]:

(

∆tnew

∆tcur

)η

=
PRCU

2eint,cur

[32]

with η ∈ [2, 3] a user specified parameter. This range is obtained by evaluating [28]

for Ω asymptotically equal to 0 and to ∞ [GER 94, NOE 00, NOE 02]. The time

step size management, based on relations [31] and [32], used is the one developed in

[NOE 00, NOE 02] that is able to integrate with accuracy and without modifying the

time step size too often.

2.4.2. Hessian matrix updating

For non-linear problems, if the Hessian matrix is not recomputed and inverted,

the iteration is much less expensive, but the convergence of the resulting modified

Newton-Raphson iterations is slower than if the Hessian matrix were recomputed and

inverted at each iteration. For some step, divergence could even occur. Therefore, the

criterion must consider two facts [NOE 01, NOE 02]:

– Convergence of the iterations must be ensured.

– Not updating the Hessian matrix must reduce the total computation cost.
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The evolution of the non-dimensional residual r [19] from one iteration to another

could indicate if the problem is converging or not. While r decreases, iterations con-

verge even if the Hessian matrix is not recalculated and not inverted. An indication of

how it could be interesting not to recalculate the Hessian matrix is the ratio VALRF
between the CPU time needed for an iteration with re-calculation and the CPU time

needed for an iteration without re-calculation [NOE 01, NOE 02]. This ratio is gener-

ally much larger than one. The proposed algorithm is the following:

– The Hessian matrix is recalculated at the first iteration only if the time step size

has changed. Indeed, S depends on ∆t, see [14]. Therefore, a modification of the

time step size requires the Hessian matrix to be updated in order to avoid divergence.

– After the first iteration, if the residual r is divided by a ratio chosen equal to

RAPRES = V ALRF
10 ∈ [0.2, 0.85] (thus ensuring a good rate of convergence), the

Hessian matrix is kept constant until the iteration number become larger than VALRF.

Doing so, we hope to reach convergence before that. And if it is the case, the cost of

the time steps was actually cheaper.

– If the non-dimensional residual has not been divided by RAPRES, the next

iteration then needs updating of the Hessian matrix. But, if the residual has increased,

this iteration does not take as initial values (x, ẋ, ẍ) the values at the end of the

previous iteration, but the values at the end of the last iteration which has converged

(i.e. the penultimate iteration). Some divergences of the iterations are then avoided.

– When the number of iteration becomes larger than RAPRES, the Hessian matrix

is recomputed at each subsequent iteration.

This algorithm avoids some needless re-calculations and inversions of the Hessian

matrix. For problems with a lot of degrees of freedom, this algorithm reduces sub-

stantially the computation time [NOE 01, NOE 02].

2.4.3. Explicit time step size evaluation

Explicit schemes are conditionally stable. Time step size must be lower than a

limit i.e. the critical time step [24]. In this relation, the maximal structure pulse

ωmax is computed by the power iteration method proposed in [BEN 98]. ωmax is

then correctly evaluated. The critical time step ensures stability but does not ensure

accuracy. Therefore, the safety factor γs [24] can be deduced from the integration

error as it was the case for the implicit time step size [NOE 02].

3. Shifts from an algorithm family to another

Shifting from an implicit algorithm to an explicit one, in one way or another, leads

to three major practical problems. The first problem is to determine a criterion that is

able to decide to shift from an implicit algorithm to an explicit one. A second one is to
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determinate a criterion that is able to decide of the opposite shift. And a third problem

is to have stable (i.e. without too much numerical oscillations leading to divergence of

the implicit iteration) initial conditions for the implicit algorithm when coming from

an explicit one. In this paper only α-generalized implicit (section 2.2) and explicit

(section 2.3) algorithms are actually used.

3.1. Shift from an implicit algorithm to an explicit algorithm

First the ratio r∗ between the CPU needed for an implicit time step computation

and the CPU needed for an explicit time step computation, is evaluated. Such a ratio

was used in [RAM 89] to determinate if the whole computation of a linear system must

be made with an explicit or an implicit method. In this paper, this ratio is averaged

for each step to be able to shift from a method to another for non-linear simulation.

For example, if the current algorithm is implicit, the actual cost of an implicit step is

evaluated. The average cost of an implicit step is then obtained by adding 0.9 time

the old one and 0.1 time the actual. The average cost of an explicit step is obtained

with the same technique. The average cost of an implicit step divided by the explicit

one gives r∗. Initialization of r∗ is obtained by beginning the analyze with an explicit

step. The CPU needed to compute this explicit step is the initial value of the averaged

cost of an explicit step. The result of this step is ignored and the analyze begins again

with an implicit method. The CPU needed for the first implicit step gives the initial

value for the averaged cost of an implicit step. With these two values, the initial value

of r∗ can be computed. The ratio r∗ is re-evaluated only if the implicit time step size

does not change, avoiding to take into account the computation cost inherent from an

updating of the Hessian matrix coming from a time step size change (section 2.4.2).

Shift to explicit method occurs if:

µ∆timpl < r∗∆texpl [33]

where ∆texpl is evaluated with [24]. Factor µ is taken greater than unity (typical value

is disscussed in section (4)) to avoid shifting from a method to another too frequently.

This methodology allows to consider the number of degrees of freedom, the al-

gorithms efficiency, the updating of the Hessian matrix (section 2.4.2), the residual

tolerance required and the non-linearities evolution. During implicit computations,

time step size depends on integration error (section 2.4.1). Therefore time step size is

the largest one that integrates the conservation equations with the tolerance required.

Then the criterion [33] also depends implicitly on this tolerance.

Once the implicit algorithm has shifted to an explicit one, we have to be able to

return to an implicit method when the dynamics conditions allow us. This is the topic

of the following section.
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3.2. Shift from an explicit algorithm to an implicit algorithm

While the method used is an implicit one, the explicit time step size could always

be easily computed from [24]. When the current method is explicit, the implicit time

step size, which correctly integrates the problem, does not remain directly accessible.

Using developments of section (2.4.1), nodal acceleration variations can provide us

with this implicit time step size. Using relation [32], acceleration variation is pro-

portional to ∆tη . Inverting relation [30] the implicit time step size is (with Nn the

number of nodes):

∆timpl =

[

6
PRCU

2 ε (Ωk) ‖x0‖ (∆texpl)
η−2

∑Nn
i=1 ∆ ‖ẍi‖

]
1

η

[34]

Therefore the explicit to implicit shift criterion is similar to [33]. It leads:

∆timpl > µr∗∆texpl [35]

with ∆texpl the current explicit time step size.

3.3. Other considerations of the construct of the implicit/explicit algorithm

A problem results from the evaluation of r∗. Since the implicit algorithm generally

shifts to an explicit one when dynamics is fast and convergence problems are frequent,

the number of iteration with updating of the Hessian matrix is very large and the

subsequent implicit step computation time (CPU) used to evaluate r∗ is also large.

When the algorithm is able to shift to an implicit one, the dynamics is slower and

the convergence problems will be less frequent. Then, the cost of an implicit step,

computed before shifting to an explicit method is overvalued. Therefore, to have a

valid ratio r∗, the cost of an implicit step must be adapted with the dynamics evolution

of the problem when the algorithm in used is the explicit one. Then, if predicted

implicit time step size ∆timpl increases, the cost of an implicit step is decreased, to

take into account the current smoothness of the dynamics. For example, if ∆timpl

increases of 10%, then the average cost of an implicit step is decreased by d% (d will

be defined on section 4).

The implicit convergence problems are now examined. Consider an implicit step

for which integration error satisfies relation [31] but for which the next time step

diverges. Relation [33] could be verified and then the algorithm shifts to explicit. But

then relation [35] is also verified and algorithm shifts back to an implicit algorithm

that has divergence problems. Therefore, the treatment of divergence problems differs

from the one proposed in [NOE 02] (where the parameters PRCU -see relation [31]-

has been reduced) to take into account the shift from an algorithm to another. When

divergence problems occurs in a implicit step, time step size is reduced and implicit

step is recomputed. Then the non-dimensional accelerations and the time step size are

13



kept in memory. Non-dimensional accelerations are defined considering relations [30

and 32]:

∆ẍnd =

∑Nn
i=1 ∆ ‖ẍi‖

‖x0‖ (∆t)
η−2 [36]

and the stored ones are noted as ∆ẍnd,s. Stored time step size (∆ts) is the average

between non-converged time step size and actual time step size (it is taken greater

than actual time step size to allow working with this time step size). Therefore when

an implicit scheme is used, the time step size is limited to ∆ts and when an explicit

scheme is used, predicted implicit time step size is limited to ∆ts. For both schemes,

this maximum time step size is increased if non-dimensional accelerations computed

by [36] are lower than ∆ẍnd,s. When occurring, new values are:

∆tnew
s = ∆told

s

(

∆ẍold
nd,s

∆ẍnd

)
1

η

∆ẍnew
nd,s = ∆ẍnd [37]

Shifting from a balanced implicit step with a large time step size to an explicit step

with a smaller time step size does not lead to numerical problems. On the other hand,

shifting to a non-balanced explicit step with a small time step size to an implicit step

with a larger time step size generally leads to non-convergence behaviours.

3.4. Initial conditions when shifting from an explicit scheme to an implicit scheme

Classical explicit scheme such as the central difference method [BEL 83] is well

known to generate oscillatory (though stable) solutions. Especially the velocities, the

accelerations and the values at the Gauss points are concerned. Two solutions are here

provided to stabilize and balance the Gauss points values and the nodal values.

First, numerical oscillations of the Gauss points values and of the nodal values

are annihilated thanks to the numerical dissipation property of the used α-generalized

explicit scheme. Indeed, when relation [35] is satisfied, thus resulting in the choice to

switch to implicit, at step number n (at time tn), r∗ explicit steps occur with a spectral

radius ρb (section 2.3) set equal to zero (ρb is an user parameter). Thus, numerical

oscillations have been greatly reduced at time tn+r∗ (figure 2).

The second step in the algorithm will be to determine a balanced configuration at

time tn+r∗+r∗∗ . Therefore, we act twofold. First an explicit solution using r∗∗ (r∗∗

will be defined on next paragraph) explicit steps is computed. This solution results in

xexpl
n+r∗+r∗∗ , ẋexpl

n+r∗+r∗∗ and in ẍexpl
n+r∗+r∗∗ , which in turn is used as a predictor value for

an implicit solution in one time step between time tn+r∗ (where numerical oscillations

have been reduced) and time tn+r∗+r∗∗ . This procedure proved to be very effective in

order to restart an implicit solution based on explicit unbalanced solution. Therefore, a

balanced step of size equal to the implicit time step size is reached. The methodology

is thus (figure 2):

14



– At time tn+r∗ forces (internal, external and inertial) are stored.

– From time tn+r∗ to time tn+r∗+r∗∗ , r∗∗ explicit steps are computed.

– Using forces at time tn+r∗ , forces at time tn+r∗+r∗∗ are balanced to satisfy a

discretized equilibrium relation such as [10].

This third point is reached considering an implicit time step size equal to ∆tr∗∗ =
r∗∗∆texpl. Prediction values for this equilibrium are the values computed by the last

explicit step:

x0
n+r∗+r∗∗ = xexpl

n+r∗+r∗∗

ẋ0
n+r∗+r∗∗ = ẋexpl

n+r∗+r∗∗

ẍ0
n+r∗+r∗∗ = ẍexpl

n+r∗+r∗∗ [38]

Equilibrium relation [10] is then rewritten (indices n + r∗ + r∗∗ are omitted for the

sake of clarity):

Rn+r∗,n+r∗+r∗∗ =
1 − αM

1 − αF

Mẍ +
αM

1 − αF

Mẍn+r∗ +
(

F int − F ext
)

+
αF

1 − αF

(

F int
n+r∗ − F ext

n+r∗

)

= 0 [39]

with the new Hessian matrix [18]:

S =

[

1

β∆t2r∗∗

(

1 − αM

1 − αF

)

M +
γ

β∆tr∗∗

CT + KT

]

[40]

with KT , CT respectively defined by [15] and [16]. Corrections for iteration i are:

xi+1
n+r∗+r∗∗ = xi + ∆x

ẋi+1
n+r∗+r∗∗ = ẋi +

γ∆x

β∆tr∗∗

ẍi+1
n+r∗+r∗∗ = ẍi +

∆x

β∆t2r∗∗

[41]

with ∆x computed from [18]. In general, the iterative process necessary to reach

this equilibrium quickly converges and this allows to begin the implicit method with a

balanced solution at time tn+r∗+r∗∗ . Anyway r∗∗ must be defined. It is always lower

or equal to µr∗. It is lower if r∗ is too large to lead to convergence of the first truly

implicit step after time tn+r∗+r∗∗ . In this work r∗∗ is limited to 100. But if r∗∗ is

lower than µr∗, time step size is increased (multiplied by 2) each two steps to reach

∆t = µr∗∆texpl.
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Figure 2. Transition scheme from an explicit scheme to an implicit one

Figure 3. Squetch of the linear spring model

The numerical stability of such initial conditions is evaluated on a dynamic linear

example. This example is inspired from the one proposed in [ARM 01] (figure 3). It

consists in a mass of 0.02kg fixed on a spring with a stiffness of 60N/m and an initial

length of 10m. The other extremity of the spring is fixed and the mass has an initial

velocity of 10m/s. The numerical computation is reached with an implicit scheme (

αM = −0.97, αF = 0.01, β = 0.9801 and γ = 1.48, ∆t = 0.147s), with an explicit

scheme (αM = −1.6, β = 5.5, γ = 3.1, ∆t = 0.028s) and finally with a combined

implicit/explicit scheme. For this last computation, the analysis begins with 15 im-

plicit steps (∆t = 0.147s). Then the scheme is manually constrained to compute 55

explicit steps (∆t = 0.028s). Next, 5 explicit steps are reached (corresponding to the

time interval tn to tn+r∗ of figure 2) with a spectral radius ρb (section 2.3) set equal to

zero. The next 5 explicit steps (corresponding to the time interval tn+r∗ to tn+r∗+r∗∗

of figure 2) provide the predicted value to compute the balanced implicit step between

tn+r∗ and tn+r∗+r∗∗ . The rest of the computation occurs with the implicit scheme.

The total energy (kinetic energy plus potential energy) of the system if illustrated for
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Figure 4. Total energy evolution of the linear spring model

each computation (figure 4). If the total energy is preserved for the explicit compu-

tation, the implicit scheme dissipates it. Assuming that a complete revolution of the

mass is reached after about 6.2s, the implicit scheme dissipates about 5% of the en-

ergy during a revolution. The first implicit interval of the combined scheme dissipates

at the same rate as the all-implicit scheme. Shifting to the explicit scheme corresponds

to a loss of about 0.25% in energy. The explicit interval conserves the total energy as

the all explicit computation and returning to the implicit scheme corresponds to a loss

of about 0.7% in the total energy. The rest of the implicit dissipation gives a curve

of energy parallel to the all-implicit computation. In conclusion, we can assume that

shifting from a method to the other does not produce numerical instability (increase of

the total energy) and that the numerical dissipation (loss of accuracy) resulting from

the shift is less important (< 1%) than the numerical dissipation resulting from the

implicit computation (5% per revolution).

4. Numerical examples

Numerical examples will be computed with three methods. The first method uses a

purely implicit algorithm, the second method a purely explicit algorithm, and the third

method can shift from an algorithm family to another. The accuracy of the numerical

results and the computation costs are compared. For all those examples, the finite

elements use selective reduced integration, to avoid volumetric locking resulting from

the incompressibility condition of plastic deformations. There are 8 deviatoric Gauss

points and 1 volumetric Gauss point. Moreover, the parameters d (section 3.2), η
[34, 36] and µ [33, 35] are respectively taken equal to 2.5, 2.5 and 1.5. Increasing
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External diameter de = 6.4mm
Length l = 32.4mm
Density ρ = 8930kg/m3

Young’s modulus E = 117E9N/m2

Poisson’s ratio ν = 0.35
Yield stress σ0 = 400N/mm2

Hardening parameter h = 100N/mm2

Initial velocity ẋ0 = 227m/s
Initial distance from plane x0 = 1mm

Table 1. Geometrical and material properties of Taylor bar impact

d or decreasing η or µ will result in more shifts from a method to another and thus

will revert efficiency of the algorithm. In fact, if d is increased, the ratio r∗ will

decrease more rapidly (section 3.3), the relation [35] will be more rapidly verified and

the algorithm will therefore shift to an implicit one. If η is decreased, the predicted

implicit step will be increased [34] and the algorithm will shift sooner from an explicit

scheme to an implicit scheme. As mentioned in section (2.4.1), the range of variation

of η is [2, 3]. If µ is decreased, the relations [33, 35] will be less severe and the

algorithm will shift more often from a method to another. Since a return to an implicit

scheme leads to some iterations (section 3.4), computation costs can increase. On the

other hand, decreasing d or increasing η or µ will result in less shifts from a method to

another. Therefore, the used method can be the less appropriate for some time interval,

increasing the computation cost. The proposed values result from intensive numerical

experiments.

4.1. Numerical example 1: Taylor bar impact

A cylindrical bar (table 1), discretized with 1080 elements (27 in each section

times 40 along the axis), is at distance x0 from a rigid plane. It has an initial velocity

ẋ0 directed towards the plane. After the wave has propagated across it, the bar looses

contact with the wall (figure 5).

This problem is well suited to evaluate the performances of the algorithm combi-

nation method. Indeed, the integration time could be decomposed in three intervals of

different dynamics properties:

– Rigid translation motion before impact has slow dynamics properties.

– Impact with large plastic straining (about 300%) has fast dynamics properties.

– Rebound after the shock wave propagation has slow dynamics properties.
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Figure 5. Deformation of Taylor bar impact

Figure 6. Central point displacement comparison for Taylor bar impact
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αM −0.97
αF 0.01
β 0.9801
γ 1.48
δ 1e − 6

PRCU 1e − 3

Table 2. Numerical properties for the implicit scheme

ρb 0.2
αM −1.6
β 5.5
γ 3.1
γs 0.8

Table 3. Numerical properties for the explicit scheme

The method is expected to shift from implicit to explicit when impact occurs and to

come back to an implicit scheme after the plastic deformations have occurred. Numer-

ical parameters used for the time integration scheme (section 2) are reported in (table

2 and 3).

Central point displacements obtained with the three methods (full implicit, full ex-

plicit and combined implicit/explicit) are compared in figure 6. Zones treated with

implicit or explicit scheme when the combined implicit/explicit algorithm is used are

also indicated. The combined method reacts as expected. It computes the rigid trans-

lation motion and rebound with an implicit scheme and the plastic impact with an

explicit scheme. When algorithm shifts to explicit method, r∗ is equal to 6.2 and it is

equal to 3 when it comes back to an implicit scheme. Comparing computed displace-

ment, it appears that all the solution are quite similar. Computational costs (CPU)

(table 4) confirm the marked advantage of the combined algorithm. All the computa-

tions were done on a Digital Compaq XP1000 workstation (667Mhz). It is about 30%
cheaper than the implicit solution and about 700% cheaper than the explicit solution.

When shift to implicit scheme occurs, using the defined initial conditions (section

3.4), with an implicit time step size ∆timpl = µr∗∆texpl = 6∆texpl, does not lead to

convergence problem.

Implicit 11.45
Explicit 66.2

Implicit/explicit 8.3

Table 4. CPU comparison for Taylor bar impact (min.)
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Casing diameter cd = 1.305m
External blade diameter de = 1.3m
Internal blade diameter di = 0.1m

Length of section L = 0.11m
Width of section l = 0.032m
Twisting angle αt = 45◦

Density ρ = 4450kg/m3

Young’s modulus E = 110E9N/m2

Poisson’s ratio ν = 0.31
Initial yield stress σ0 = 1000N/mm2

Saturated yield stress σ∞ = 1300N/mm2

Exponential hardening parameter he = 100
Hardening parameter h = 300N/mm2

Rotational velocity Ωr = 3333.3rpm

Table 5. Properties of contact between a blade and a casing

4.2. Numerical example 2: contact between a blade and a casing

A blade, with a twisted rectangular cross section, discretized with 204 elements, is

in an uniform rotation in a rigid casing. The rotational velocity is Ωr = 3333.3rmp
(table 5 and figure 7). The plastic hardening law (σv depending on effective plastic

strain ε̄pl) is σv = σ0 + (σ∞ − σ0)
(

1 − e−heε̄pl
)

+ hε̄pl.

To simulate a load unbalance phenomenon, the center of rotation of the blade is

moved during the first rotation so that the blade comes into contact with the casing

and is subsequently deformed. The displacement of the center of rotation and the

subsequent deformations of the blade are illustrated on figure (8). The initial position

of the center of rotation is coincident with the center of the casing and there is no

contact (figure 8: Deformation 1). During the first half revolution, the rotation center

is moved 6cm in the direction opposite to the initial blade position (figure 8) so that

contact interactions between the blade and the casing is generated. These frictional

contact interactions lead to bending of the blade with irreversible plastic deformation

(figure 8: Deformation 2). During the second half of the first revolution, the center

of rotation is brought back to its initial position and the blade, after elastic unloading,

remains deformed due to the plastic deformation (figure 8: Deformation 3). Scheme

parameters (section 2) are given in (table 2 and 3).

Potential energies (i.e. work done by internal forces) obtained with the three meth-

ods (full implicit, full explicit and combined implicit/explicit) are compared in figure

9. Time intervals treated with implicit or explicit scheme when the combined im-

plicit/explicit algorithm is used are indicated. This combined scheme behaves as ex-

pected. It computes rotation with no large plastic strain (before first half revolution

and after first revolution) with an implicit scheme and interval with important plastic
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Figure 7. Squetch of the contact between a blade and a rigid casing

Figure 8. Deformation and center of rotation displacement for contact between a
blade and a rigid casing
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Figure 9. Potential energies comparison for contact between a blade and a rigid cas-
ing

Implicit 5.4
Explicit 11

Implicit/explicit 5.1

Table 6. CPU comparison for contact between a blade and a casing (min.)

deformation (between first and second half revolution) with an explicit scheme. When

algorithm shifts to explicit method, r∗ is equal to 8.4 and it is equal to 7.4 when it

comes back to an implicit scheme. Comparing full implicit and full explicit computed

energies, it appears that both solution are qualitatively identical but are about 25 %
different quantitatively. Nevertheless the implicit/explicit solution is bracketed by the

two other solutions. It proves that the combined method does not lead to numerical in-

stability. Computational costs (CPU) (table 6) confirm the advantage of the combined

algorithm. It is about 8% cheaper than the implicit solution and about 50% cheaper

than the explicit solution. Even if r∗ is greater than for numerical case 1, the gain is

lower (8% for 30%). In fact, implicit method has more divergence problem for the first

numerical example than for numerical case 2, which advantages the shift to explicit

method. When shift to implicit scheme occurs, using the defined initial conditions

(section 3.4), with an implicit time step size ∆timpl = µr∗∆texpl = 14.8∆texpl, it

does not lead to any convergence problem.
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5. Conclusions

An integration scheme that combines implicit and explicit schemes was presented.

This scheme integrates some time intervals with an implicit scheme, and others with an

explicit scheme. First, automatic criteria that decide to shift from an algorithm family

to another were developed. Those criteria, based on integration error and ratio between

CPU of an implicit step and CPU of an explicit step, aim at minimizing the CPU time

of the whole simulation. More, they take into account tolerance (on the residual and

on the integration error) imposed by the user, the non-linearities (both geometrical,

material and contact) evolution and the numerical conditions (number of elements,

implicit and explicit algorithm relative performances, ...). Next, stable balanced initial

conditions have also been proposed when shifting from an explicit algorithm to an

implicit algorithm. These initial conditions avoid divergence problems even if implicit

step size is much larger than explicit time step size and does not introduce expensive

computation operations. Finally, numerical examples were proposed that confirm the

interest of the combined algorithm.
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