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Combined implicit/explicit algorithms for

crashworthiness analysis

L. Noels1, L. Stainier2, J.-P. Ponthot*
University of Liège, LTAS-Milieux Continus & Thermom!ecanique, Chemin des Chevreuils 1, B-4000 Liège, Belgium 

In order to simulate an industrial process, an explicit method, which is conditionally stable, is the most 
adapted while the non-linearities evolve rapidly (impact phase, stamping process, etc.). But when the 
dynamics becomes quasi-linear (post-impact analysis, springback simulation, etc.), an implicit method, 
which is iterative, presents the advantage of unconditional stability. The optimal solution is then to have 
both implicit and explicit methods readily available in the same code and to be able to switch automatically 
from one to the other. Criteria that decide to switch from one method to another, depending on the current 
dynamics, have been developed. Implicit restarting conditions are also proposed that annihilate numerical 
oscillations resulting from an explicit calculation.

Keywords: Implicit; Explicit; Dynamics; Finite element; Large strains

1. Introduction

The choice of a time integration algorithm is an essential criterion to ensure efficiency and

robustness of the numerical simulations. Difficulty in this choice resides in being able to combine

robustness, accuracy and stability of the algorithm. Implicit algorithms require iterative solutions

for each time increment (time step), contrarily to explicit ones. But, for stability reasons, explicit

methods use smaller time steps than implicit ones. Explicit methods, avoiding iterations and
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Nomenclature

eint integration error

E Young modulus

F ext external force vector

F int internal force vector

h hardening parameter

M consistent mass matrix

N number of nodes

PRCU tolerance on the integration error

r� ratio between the CPU time of an implicit step and the CPU time of an explicit step

r�� number of explicit steps balanced

R residual vector

t time

x nodal positions vector

Greek symbols

Dt time step size

Os explicit non-dimensional pulsation stability limit

aM extrapolation parameter of the inertial forces

aF extrapolation parameter of the internal and external forces

b first Newmark parameter

g second Newmark parameter

gs security on the explicit time step

e reference integration error

%epl equivalent plastic strain

Z parameter for the time step size evaluation

m security of the automatic shift criterion

n Poisson’s coefficient

r density

rb spectral radius at the bifurcation limit

s0 initial yield stress

sv von Mises stress

sN saturated stress

omax maximal pulsation of the structure

Subscript

0 initial value

n value evaluated at configuration n

n; nþ 1value that refers to the two configurations n and nþ 1

new new computed value

cur current value

expl value that refers to the explicit method

impl value that refers to the implicit method
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convergence problems, are therefore generally used for highly non-linear problems with many

degrees of freedom, for which iterations are very expensive and convergence problems are

frequent [1]. On the other hand, for slower dynamics problems with less non-linearities, implicit

algorithms allow use of a larger time step size, resulting in more numerical stability and accuracy

[1–3]. However, in general, an actual impact simulation has some time intervals governed by

highly non-linear dynamics (during the impact itself) and others governed by slower non-linear

dynamics (before and after the impact). Thus, one can take advantage of this situation by

integrating over some time intervals with an implicit method and other time intervals with an

explicit one.

Few works have been developed with this latter combination. Jung and Yang [4] have simulated

a stamping simulation that begins with an implicit scheme and shifts to an explicit one when a

problem of convergence appears. No return to implicit scheme is actually planned. Another

method, developed by Finn et al. [5] and by Narkeeran and Lovell [6], simulates stamping (as a

fast dynamics problem) with an explicit scheme, and the springback phase (slow dynamics) is

subsequently analyzed with an implicit one. The time of transition is fixed by the user and initial

conditions for the implicit phase, such as velocities and accelerations, are set to zero. Automatic

criteria that decide to shift from one family to another have been developed by the authors in Ref.

[7] for impact problems and were applied to sheet-metal forming problems in Ref. [8]. They

depend on an integration error that allows determination of the implicit time step size. They also

depend on a ratio between the computational time (or CPU time) needed to solve an implicit time

step and the CPU time needed to solve an explicit time step. Initial conditions, when shifting from

explicit to implicit scheme occurs, are also defined to avoid lack of stability and convergence.

In the present paper, we focus on the practical application of the combined method. We will

present in Section 2 the principles of the implicit and explicit algorithms. In Section 3, after having

recalled the theory of shifting, developed in Ref. [7], we will present a practical way to implement

this combined method in a Finite-Element code. Finally, in Section 4, we will analyze in details the

impact dynamics of Taylor bar and of a blade casing interaction. This last simulation requires to

model interactions between deformable bodies. We will prove that our combined method is able

to simulate with accuracy these complex dynamic phenomena. A quantitative discussion on the

parameters in use will also be provided to improve the practical use of such a method.

2. Numerical integration of transient problems

Finite element method (FEM) semi-discretization of the equations of motion of a non-linear

structure leads to the following coupled set of second-order non-linear differential equations (see

Refs. [9–11]):

R ¼ M .xþ F intðx; ’xÞ � F extðx; ’xÞ ¼ 0; ð1Þ

where R is the residual vector, x the vector of the nodal positions at current time, ’x the vector of

nodal velocities, .x the vector of nodal accelerations. M is the mass matrix, F int the vector of

internal forces resulting from body deformations and F ext the vector of external forces. Both

vectors are non-linear in x and in ’x due to the coupled phenomena of contact, plastic

deformations and geometrical non-linearities.
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2.1. Implicit schemes

The most general scheme for implicit integration of Eq. (1) is a generalized trapezoidal scheme

[9,10,12] where updating of positions and velocities is based on ‘‘averaged’’ accelerations

stemming from associated values between tn and tnþ1: It reads for instance

’xnþ1 ¼ ’xn þ ð1� gÞDt .xn þ gDt .xnþ1; ð2Þ

xnþ1 ¼ xn þ Dt ’xn þ
1
2
� b

� �

Dt2 .xn þ bDt2 .xnþ1: ð3Þ

The discretized motion Eq. (1) can be rewritten under the form proposed by Chung and

Hulbert [12]:

Rn;nþ1 ¼
1� aM

1� aF
M .xnþ1 þ

aM

1� aF
M .xn þ ðF int

nþ1 � F ext
nþ1Þ

þ
aF

1� aF
ðF int

n � F ext
n Þ ¼ 0; ð4Þ

where Rn;nþ1 is the residual vector of time step n to nþ 1: Using Eqs. (2)–(4) and a Newton–

Raphson technique, the iterative solution of the problem can be computed.

The implicit time step size control is the one proposed by G!eradin [13], extended to highly non-

linear problems by Noels et al. [14,15]. This scheme continuously adapts time step size to

evolution of the physical modes and keeps time step size constant during long time intervals. To

estimate the current time step size, an integration error is computed. The integration error eint
(see Refs. [13–15] for details) is deduced from truncated terms of Eqs. (2) and (3). This error is of

third order: O 1
6
Dt3 ’.x

� �

CO 1
6
Dt2D .x

� �

: To have a problem independent error, it is made non-

dimensional, using x0 (the initial position vector) and a reference error e [13–15]. To take into

account the rotation, the integration error is then rewritten by taking the variation of the nodal

acceleration modulus (N is the number of nodes) [7]. Finally, it leads to

eint ¼
Dt2

6

PN
i¼1 Djj .xijj

ejjx0jj
: ð5Þ

Time step size is deduced from the integration error defined in Eq. (5) and from a tolerance PRCU

(10�3 is a typical value) fixed by the user. The relation to be verified is

eintoPRCU: ð6Þ

The new time step size Dtnew to reach a reference integration error (half of the tolerance PRCU) is

deduced from the current time step size (Dtcur) and from the current integration error (eint;cur),

using the following relation developed by G!eradin [13]:

Dtnew

Dtcur

� �Z

¼
PRCU

2eint;cur
: ð7Þ

Let us determine the parameter Z: If we analyze the reference error [13–15] e; it leads to limO-0 e ¼

OðO3Þ and limO-Ne ¼ OðO2Þ: Therefore, one gets ZA [2,3]. Practically, we take Z ¼ 2:5: Now, let

us explain briefly the methodology to determine the time step size in the non-linear dynamics

(more details can be found in Refs. [14,15]). Let us assume we compute the time step from time tn
to time tnþ1: From accelerations at these two configurations, the integration error eint;cur is
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computed from Eq. (5). This error is compared to the tolerance PRCU. If it is greater than 1.5

PRCU, the step is rejected and the time step is reduced using Eq. (7). If it is between 1.5 PRCU

and PRCU, the step is accepted but following time step will be computed with a smaller step size

deduced from Eq. (7). If the error is between PRCU and PRCU/2, the time step must be reduced,

but since the dynamics is non-linear, to avoid to change too often the time step size, it is decreased

only if this happened three successive times. On the other hand, if the error is lower than

PRCU/16, five successive times, the time step size is increased.

2.2. Explicit scheme

Chung and Hulbert [16] have extended their implicit scheme to an explicit one, taking aF ¼ 1 in

Eq. (4). Its principal advantage is its numerical dissipation property. Time integration is then

.xnþ1 ¼
M�1ðF ext

n � F int
n Þ � aM .xn

1� aM
; ð8Þ

’xnþ1 ¼ ’xn þ Dt½ð1� gÞ .xn þ g .xnþ1�; ð9Þ

xnþ1 ¼ xn þ Dt ’xn þ Dt2 1
2
� b

� �

.xn þ b .xnþ1

� �

: ð10Þ

This scheme is conditionally stable and time step size is limited, depending on maximal model

frequency omax; but also depending on spectral radius ðrbÞ:

Dt ¼ gsDtcrit ¼ gs
OsðrbÞ

omax

ð11Þ

with [16]:

OsðrbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12ð1þ rbÞ
3ð2� rbÞ

10þ 15rb � r2b þ r3b � r4b

s

: ð12Þ

In Eq. (11), gs is a safety factor (o1) that accounts for the destabilizing effects of non-

linearities.

3. Shifts from an algorithm family to another

This section exposes the methodology of the shifting methods. More details can be found in

Ref. [7].

3.1. Shift from an implicit algorithm to an explicit algorithm

First the ratio r� between the CPU needed for an implicit time step computation and the CPU

needed for an explicit time step computation is evaluated. In this paper, this ratio is updated for

each step, in order to be able to shift from a method to another in non-linear simulations. Shift to

explicit method occurs if:

mDtimplor�Dtexpl; ð13Þ
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where Dtexpl is evaluated from Eq. (11). This relation has the following meaning: since r�

represents the number of explicit steps that can advantageously be replaced by an implicit step, if

the size of the implicit step becomes smaller than r� multiplied by the size of an explicit step, an

explicit method is then cheaper than an implicit one. Then the implicit method shifts to an explicit

one. The factor m is taken larger than unity (typical values discussed in Section 4) to avoid shifting

from a method to another too frequently. This methodology takes into account the number of

degrees of freedom, the algorithm current efficiency, the residual tolerance required and the

evolution of non-linearities.

3.2. Shift from an explicit algorithm to an implicit algorithm

When the method in use is an implicit one, the explicit time step size can always be easily

computed from Eq. (11). When the current method is explicit, the implicit time step size, which

correctly integrates the problem, is not directly accessible. Using developments of Section 2.1,

nodal acceleration variations can provide us with this implicit time step size. Using Eq. (7),

acceleration variation is proportional to DtZ: Inverting Eq. (5) the implicit time step size becomes

(with N the number of nodes):

Dtimpl ¼ 6
PRCU

2
ejjx0jjðDtexplÞ

Z�2

PN
i¼1 Djj .xijj

" #1=Z

: ð14Þ

This expression is the relation between the accelerations and the time step size. Since
PN

i¼1 Djj .xijj is

the accelerations difference that corresponds to a time step equal to Dtexpl; using Eqs. (5) and (7),

one can deduce the equivalent implicit step Dtimpl that can lead to an error equal to PRCU=2:
Therefore, the explicit to implicit shift criterion is similar to Eq. (13). It yields

Dtimpl > mr�Dtexpl ð15Þ

with Dtexpl the current explicit time step size. This relation has same meaning that Eq. (13): since

r� represents the number of explicit steps that can be advantageously replaced by an implicit

step, if the size of the implicit step becomes larger than r� multiplied by the size of an explicit step;

therefore, an implicit method is cheaper than an explicit one.

3.3. Initial conditions when shifting to an implicit scheme

First, numerical oscillations resulting from the explicit scheme are annihilated thanks to the

numerical dissipation property of the generalized-a explicit scheme. Indeed, when Eq. (15) is

satisfied, thus resulting in the choice to switch to implicit, at step number n (at time tn), r
� explicit

steps occur with a spectral radius rb (Section 2.2) set equal to zero (rb is a user defined parameter).

Thus, numerical oscillations have been greatly reduced at time tnþr� (Fig. 1).

The second step in the algorithm is to determine a balanced configuration at time tnþr�þr�� :
Therefore, we act in two stages. First an explicit solution using r�� (r�� will be defined in next

paragraph) explicit steps is computed. This solution results in x
expl

nþr�þr��
; ’x

expl

nþr�þr��
and in

.x
expl

nþr�þr��
; which in turn are used as predictor values for an implicit solution in one time step

between time tnþr� (where numerical oscillations have been reduced) and time tnþr�þr�� : This
procedure proved to be very effective in order to restart an implicit solution based on explicit
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unbalanced solution. Therefore, a balanced step of size equal to the implicit time step size is

reached leading to solutions at time tnþr�þr�� from solutions (nodal and Gauss points values) at

time tnþr� : The methodology is illustrated in Fig. 1. This balanced solution is reached considering

an implicit time step size equal to Dtr�� ¼ r��Dtexpl: In general, the iterative process necessary to

reach this equilibrium quickly converges and this allows the implicit method to begin with a

balanced solution at time tnþr�þr�� : Anyway r�� must be defined. It is always lower or equal to

mr�: It is equal to mr� or limited to an user defined parameter (e.g. 100).

3.4. Numerical implementation in a Finite-Element code

The practical implementation of the combined method is based on the full compatibility of the

explicit formulation with the implicit formulation in the same Finite-Element code. This compatibility

results from the same element (volume, contact, etc.) formulation, and from the same material law

(elasto-plastic hypoelastic, frictional contact law, etc.) models for both methods. This avoids some

inaccurate procedure of transition between an explicit and an implicit finite element code.

Once this compatibility is guaranteed, we can integrate the two resolution methods in a time

integration algorithm. We will explain this integration that is represented in Fig. 2. Let us assume

that all the values (time, nodal values and values at the Gauss points) are known at time tn:
Let us first study the case where the integration method is chosen to be explicit. Therefore, a

direct resolution of Eqs. (8)–(10) determines the complete solution at time tnþ1: Using the CPU

needed for this step, the ratio r� can be updated. Moreover, using accelerations at time tn and tnþ1;
the new explicit time step can be computed from Eq. (11) and the equivalent implicit time step is

evaluated from Eq. (14). Then if the balance criterion defined in Section 3.2 is not verified and if

we are not in an explicit steps balancing situation (i.e. shift=false), the method remains explicit.

Then the new integration time is evaluated and the step number is incremented.

If the balance criterion defined in Section 3.2 is verified and if we are not in an explicit steps

balancing situation (i.e. shift=false), the process to determinate the initial conditions described in

Section 3.3 begins. Firstly, the shift indicator is set to true, a step counter i is initialized to zero,

and the spectral radius is set to zero. The explicit integration continues during r� steps,

incrementing i at each step. When i ¼ r�; the solution obtained (time, nodal values and values at

Gauss points) is saved (on disk), before the explicit integration continues during r�� steps. When

i ¼ r� þ r�� the balance step can be finalized. First, the values previously saved on disk are

tn tn+r* tn+r*+r** tn+r*+r**+1

∆tr**∆texpl

explicit implicit

Shift decision
and dissipation

beginning

implicit
equilibrium from
explicit values

Stabilized
explicit solution

Balanced
explicit solution

∆tr**

Fig. 1. Transition scheme from an explicit scheme to an implicit one.

7



reloaded and stored as the solution at time tn: The method is set to implicit; but the time step

number n is not incremented. Then, during the step resolution, the method used is the implicit

one, but the prediction values are the previous explicit solution reached at time tnþ1 (x
expl
nþ1; ’x

expl
nþ1

and .x
expl
nþ1). A classical iteration procedure corrects these values, leading to a balanced solution

with a time step equal to Dt ¼ r��Dtexpl:
Then the method remains implicit and the step number is incremented. The next implicit steps use

the classical prediction formula, using the solution at time tn leading to the solution at time tnþ1:
The new implicit time step can then be computed by Eq. (7) and the critical explicit time step by

Eq. (11). Finally, if Eq. (13) is verified, the method shifts to an explicit time integration algorithm.

4. Numerical examples

In the numerical examples, the finite elements use selective reduced integration, to avoid

volumetric locking resulting from the incompressibility condition on plastic deformations. There

method is explicit
yesno

direct resolution

values at time tn

iterative resolution

values at time tn+1

determination of r*, t and of t∆ ∆expl impl

µ∆ ∆t < r* timpl expl
yes

method = explicit
n++

t =t + tn+1 n expl∆

no ∆ µ   ∆t >  r* t
& shift=false

impl expl
yes no

shift = true
i=0

=0ρb

shift=true
yes

i= r*
yes

no

values at are
saved on disk

tn+1

no

i= r*+r**
yesno

values at are loaded
method =implicit
i=0

tn

i++

method = implicit
n++

t =t + tn+1 n impl∆

shift=true yesno

prediction value from values at t
shift=false

n+1classical prediction
from values at tn

Fig. 2. Implementation of the combined method.

8



are eight deviatoric Gauss points and one volumic Gauss point. When studying the first problem,

we will discuss on the influence of user parameters. The second problem will show how to take

into account the oscillations successive to the impact.

4.1. Taylor’s bar impact

A cylindrical bar (properties in Table 1), discretized with 1080 elements (27 in each section times

40 along the axis), is at an initial distance x0 from a rigid plane. It has an initial velocity ’x0
directed towards the plane. Numerical parameters used for the time integration scheme are for the

implicit scheme (Section 2.1): aM ¼ �0:97; aF ¼ 0:01; b ¼ 0:9801; g ¼ 1:48: The tolerance on the

Newton–Raphson residual is 10�6: For the explicit scheme, the parameters are (Section 2.2):

rb ¼ 0:2 and gs ¼ 0:9:
Let us first compare a full implicit solution with an integration error tolerance PRCU ¼ 10�3 to

a full explicit solution and to a combined solution. For the combined solution, we first choose a

security m ¼ 1:5 (Eqs. (13) and (15)). Discussion over this value will be achieved later. This

problem is well suited to evaluate the performances of the algorithm combination method.

Indeed, the simulation could be decomposed into three intervals of different dynamics properties:

first a rigid translation motion before impact has slow dynamics properties, second an impact with

large plastic straining (about 300%) has fast dynamics properties, and third a rebound after the

shock wave propagation has slow dynamics properties. The method is expected to shift from

implicit to explicit when impact occurs and to come back to an implicit scheme after the plastic

deformations have occurred.

Central point displacements, of the respectively bottom section and top section, obtained

with the three methods (full implicit, full explicit and combined implicit/explicit) are compared in

Fig. 3(a) and (b). Zones treated with the explicit scheme when the combined implicit/explicit

algorithm is used are also indicated. Impact occurs at time t ¼ 4:4 ms: At this time, the central

node at the bottom face enters into contact, and the external force change the sign of the velocity

(Fig. 4(a)). This change of sign leads the node to be separated from the wall. But, due to the

inertial forces, the velocity changes of sign again and the node reenters into contact. Moreover,

Table 1

Geometrical and material values of the Taylor bar

Property Value

External diameter de ¼ 6:4 mm

Length l ¼ 32:4 mm

Density r ¼ 8930 kg=m3

Young’s modulus E ¼ 117E9 N=m2

Poisson’s ratio n ¼ 0:35
Yield stress s0 ¼ 400 N=mm2

Hardening parameter h ¼ 100 N=mm2

Initial distance from the wall x0 ¼ 1 mm

Initial velocity ’x0 ¼ 227 m=s
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the impact creates a wave of velocity3 equal to 2857 m=s; which reaches the top side of the cylinder

at time4 tC4:4 msþ ð0:0324=2857ÞsC15:7 ms: At this time, the velocity of the top central node

becomes to decrease to zero (Fig. 4(b)). It appear from this result that the bottom side is subjected

to impact, leading to overshoot in the velocity, but that the top side is subject to wave reflection

and its values evolve smoothly. After about 80 ms; the bar rebounds from the rigid surface. Fig. 5

illustrates the deformations and the equivalent plastic strains for each simulation. All the

solutions are identical to about 6%:
The combined method reacts as expected. It computes the rigid translation motion and rebound

with an implicit scheme and the plastic impact with an explicit scheme. Fig. 6(a) illustrates the

explicit interval

(b) top node(a) bottom node

-1.2E-03

-1.0E-03

-8.0E-04

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

0.0E+00 2.5E-05 5.0E-05 7.5E-05 1.0E-04

Time (s)

D
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p
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c
e
m

e
n

t 
(m

)

Implicit Combined (∆ =1.5; PRCU=1.E-3) Explicit

-1.4E-02

-1.2E-02

-1.0E-02

-8.0E-03

-6.0E-03

-4.0E-03

-2.0E-03

0.0E+00

0.0E+00 2.5E-05 5.0E-05 7.5E-05 1.0E-04
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D
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p
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c
e
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e
n

t 
(m

)

Fig. 3. Central point displacement for Taylor bar impact: (a) bottom node, (b) top node.

explicit interval

(b) top node(a) bottom node

Implicit Combined ( =1.5; PRCU=1.E-3) Explicit

-8.0E+02

-6.0E+02

-4.0E+02

-2.0E+02

0.0E+00

2.0E+02

4.0E+02

0.0E+00 2.5E-05 5.0E-05 7.5E-05 1.0E-04

Time (s)

V
e
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c

it
y

(m
/s

)

-2.5E+02

-2.0E+02

-1.5E+02

-1.0E+02

-5.0E+01

0.0E+00

5.0E+01

0.0E+00 2.5E-05 5.0E-05 7.5E-05 1.0E-04

Time (s)

V
e
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y

(m
/s

)

Fig. 4. Central point velocity for Taylor bar impact: (a) bottom node, (b) top node.

3The sound speed (longitudinal wave) in a solid is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð1þ nÞð1� 2nÞ=rð1� nÞ
p

:
4Since the length of the beam change, this is an overestimate.

10



evolution of the time step size. For the full explicit solution, the time step is reduced when the

cylinder impacts and then it is increased while the dynamics becomes smoother. For the explicit

simulation, since the elements becomes smaller, the critical time step size follows, and the step is

reduced after the impact. The combined solution take advantage of the explicit method when the

implicit time step is decreased, and take advantage of the implicit method when the dynamics

becomes smoother. This results into a reduction of the CPU time (Fig. 6(b)) of about 30% from

the implicit solution and of about 75% from the explicit solution.

Let us now discuss the influence of the security parameter m: If the security m is decreased, both

Eqs. (13) and (15) will be verified sooner when the combined method is used. Let us assume that

m ¼ 1 and that the algorithm shifts from an implicit method to an the explicit one. At this point

Eq. (13) is verified. But if m ¼ 1; Eq. (15) will be verified simultaneously, and the method will shift

to an implicit one. We will observe this shift until the implicit scheme is able to converge without

verifying Eq. (13). We compare in Fig. 7 the influence of m on the combined method. It appears

(Fig. 7(a)) that, as expected, for m ¼ 1; the combined method shift from a method to another eight

times before the implicit method could be continuously used. This result in a increase of the CPU

time when compared to the value m ¼ 1:5 (Fig. 7(b)). If we use m ¼ 2; the combined method shift a

Implicit ExplicitImplicit/Explicit
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Fig. 5. Equivalent plastic strain for Taylor bar impact.
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little later to the implicit algorithm (Fig. 7(a)) than when m ¼ 1; leading to a small increase in CPU

time (Fig. 7(b)).

Now, let us study the influence of the integration tolerance PRCU on the combined method.

Fig. 8 illustrates the results obtained for three values (10�2; 10�3 and 10�4) of this tolerance. When

the tolerance is increased from 10�3 to 10�2; the implicit step used is larger and the combined

method shifts to an explicit scheme later (Fig. 8(a)). Surprisingly, even if the predicted implicit

step computed by Eq. (14) is larger since PRCU is larger, the combined method return to an

implicit method later. It results from the fact that the ratio r� is also larger since the larger the

PRCU, the larger the CPU time needed to compute an implicit step. Eq. (15) is verified later.

Therefore, the total CPU time is larger for a less accurate solution as we can see in Fig. 8(b). If the

PRCU parameter is taken smaller (i.e. 10�4), the predicted implicit step obtained by Eq. (15) is

much smaller than for PRCU ¼ 10�3 and the combined method shifts later to an implicit step

(Fig. 8(a)). This results to a more expensive solution (Fig. 8(b)), but since the integration error is

always smaller, this solution is also more accurate.

explicit interval

(b) CPU(a) Time step size

1.E-08

1.E-07

1.E-06

1.E-05

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05

Time (s)

T
im

e
 s

te
p

 (
s

)

Combined (µ =1.5; PRCU=1.E-3)

Combined (µ =1; PRCU=1.E-3)

Combined (µ =2; PRCU=1.E-3)

3.42 3.48

4.38

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

CPU (min)

Combined (µ =1.5; PRCU=1. E-3)

Combined (µ =1; PRCU=1.E-3)

Combined (µ =2; PRCU=1.E-3)

Fig. 7. Security influence for Taylor bar impact: (a) time step size evolution, (b) CPU.

explicit interval

(b) CPU(a) Time step size

1.E-08

1.E-07

1.E-06

1.E-05

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05
Time (s)

T
im

e
s
te

p
(s

)

Combined (µ =1.5; PRCU=1.E-2

)Combined 1.5; PRCU=1.E-3

Combined

=

1.5; PRCU=1.E-4

(µ
=(µ

)

)

3.42

5.55

4.2

0

1

2

3

4

5

6

CPU (min)

Combined (µ =1.5; PRCU=1.E-3)

Combined (µ =1.5; PRCU=1.E-2)

Combined (µ =1.5; PRCU=1.E-4)

Fig. 8. Integration error tolerance influence for Taylor bar impact: (a) time step size evolution, (b) CPU.

12



4.2. Blade-casing interaction

We consider the rotor blade illustrated in Fig. 9(a). It has a twisted rectangular cross section

and is placed in a casing (properties reported in Table 2). The material properties of the blade

are identical to the material properties of the casing. The plastic isotropic hardening law
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t c
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c
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bc

0 125 250 375 500

(a) (b)

Fig. 9. Description of the blade-casing interaction: (a) geometry, (b) initial von Mises stress (MPa).

Table 2

Geometrical and material values of the blade-casing interaction

Property Value

Casing radius rc ¼ 1:305 m

Casing thickness tc ¼ 5 mm

Casing length Lc ¼ 0:4 m

External blade radius re ¼ 1:3 m

Internal blade radius ri ¼ 0:1 m

Length of section L ¼ 0:11 m

Width of section l ¼ 0:032 m

Twisting angle at ¼ 45	

Distance between the blade and the top of the casing dbc ¼ 0:145 m

Density r ¼ 4450 kg=m3

Young’s modulus E ¼ 110e9 N=m2

Poisson’s ratio n ¼ 0:31
Initial yield stress s0 ¼ 1e9 N=m2

Saturated yield stress sN ¼ 1:3e9 N=mm2

Exponential hardening parameter he ¼ 100

Linear hardening parameter h ¼ 300 N=mm2

Rotational velocity Or ¼ 3333:3 rpm:

13



(sv depending on effective plastic strain %epl) is sv ¼ s0 þ ðsN � s0Þð1� e�he%e
pl

Þ þ h%epl: The blade is
discretized with 45 elements and the casing is discretized with 160 elements. The rotational

velocity of the blade is constant ðOrÞ: At time t ¼ 0 s; the initial configuration of the rotor is

computed for a rotation velocity of 4775 rpm: This initial configuration is computed with a

Newton–Raphson scheme where the external forces are the analytical inertial forces computed

from the nodal positions and from the imposed rotation velocity. The von Mises stresses resulting

from this uniform rotation velocity are illustrated at Fig. 9(b). To simulate a load unbalance

phenomenon, the center of rotation of the blade is moved during the first rotation so that the

blade comes into contact with the casing and is subsequently deformed. The displacement of the

center of rotation is the following. Its initial position is coincident with the center of the casing

and there is no contact. During the first half revolution, the rotation center is moved 7:5 cm to the

opposite direction of the initial blade position, so that contact interactions between the blade and

the casing are generated. These interactions lead to irreversible plastic deformation of the blade.

During the second half of the first revolution, the center of rotation is brought back to its initial

position. The frictional contact simulation uses the penalty method with a normal penalty of 109

and a tangent penalty of 108: The Coulomb friction coefficient is equal to 0.2. Numerical

parameters used for the time integration scheme are for the implicit scheme (Section 2.1): aM ¼

�0:97; aF ¼ 0:01; b ¼ 0:9801; g ¼ 1:48: The tolerance on the Newton–Raphson residual is 10�9

and the tolerance on the integration error (PRCU) is 10�3: For the explicit scheme, the parameter

are (Section 2.2): rb ¼ 0:2 and gs ¼ 0:9: Moreover, for the combined implicit/explicit method,

parameter m of Eqs. (13) and (15) is taken equal to 1.5.

The resulting force on the extremity of the blade, obtained with the three methods (full implicit,

full explicit and combined implicit/explicit), is illustrated in Fig. 10(a). Zones treated with explicit

scheme when the combined implicit/explicit algorithm is used are also indicated. We see that the

impact occurs after 0.4 revolution. At this time the combined method shifts to an explicit

algorithm. The impact results in the apparition of plastic deformations. Fig. 10(b) illustrates the

time evolution of the energy plastically dissipated. It appears that half of this energy is dissipated

between 0.4 revolution and the first half revolution. This time interval corresponds to the explicit

resolution of the combined method. Fig. 11 illustrates the equivalent plastic strain obtained after a

explicit interval
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Fig. 10. Time evolution of the results for the blade-casing interaction: (a) resulting force on the blade, (b) energy

plastically dissipated.
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half revolution. We see that the higher plastic deformations are localized at the extremity of the

blade. The explicit method overestimates this maximal value, when comparing to the implicit

solution. The combined method gives a solution between these two values. After the impact, the

blade oscillates until the end of the simulation. During these oscillations, contact with the casing

can occur (Fig. 10(a)) and the plastically dissipated energy increases. During these oscillations,

new plastic strains appear at the root of the blade as we can see in Fig. 12. When analyzing the

time step size in Fig. 13(a), we see that the implicit method must decrease the step size to simulate

the impact. Then the combined method shifts to an explicit method. The end of the simulation can

be simulated with an implicit scheme, since the time steps size that integrates the motion with

accuracy, is much more important than the explicit one. When analyzing the CPU time needed for

each simulation (Fig. 13(b)), we see that, since the number of elements is small and since the

implicit solution has not led to important convergence problems, the gain resulting from the

combined solution, compared to the implicit one, is small ð2%Þ: Nevertheless, the combined

method has reacted as expected.

Let us now show the importance of the numerical dissipation when simulating a problem

subject to oscillations. We compare the solution of the combined method with two different
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Fig. 11. Equivalent plastic strain of the blade-casing interaction after a half revolution.
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Fig. 12. Equivalent plastic strain of the blade-casing interaction after two revolutions.
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spectral radii: rb ¼ 0:2 that leads to a high numerical dissipation and rb ¼ 0:8 that leads to a low

numerical dissipation. If we compare the evolution of the time step size in Fig. 14(a), we see that,

during the explicit simulation, if the high-frequency modes are not numerically dissipated, the

predicted implicit step is never large enough to shift to an implicit algorithm. This results in an

increase of the CPU time needed to solve problem (Fig. 14(b)).

5. Conclusions

An integration scheme that combines implicit and explicit schemes was presented. This scheme

integrates some time intervals with an implicit scheme, and others with an explicit scheme. First,

automatic criteria that decide to shift from an algorithm family to another were developed. Next,

stable balanced initial conditions have also been proposed when shifting from an explicit

algorithm to an implicit algorithm. Then, we explain how to implement the combined scheme in a

finite element code. Finally, numerical examples of impact were proposed. The combined method

was shown to be as accurate as a full implicit or explicit method. But the computation time was
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Fig. 14. Numerical dissipation influence: (a) time step size evolution, (b) CPU.
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Fig. 13. Method comparison for the blade-casing interaction: (a) time step size evolution, (b) CPU.
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reduced thanks to this combination. Next, we see that the choice of the user parameters can

modify the computational time of the combined method. For example, if the security factor of the

shift criteria is chosen to low or if the integration error tolerance is chosen to high, the combined

method leads to some uninteresting change of methods. Finally, we show that to be able to shift

automatically to an implicit method when the impact was computed with an explicit algorithm,

the explicit method needs to possess numerical dissipation. Without this dissipation, oscillations

resulting from the impact do not allow the integration error to verify the shift criterion.
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