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NUMBER OF EIGENVALUES FOR DISSIPATIVE SCHRÖDINGER

OPERATORS UNDER PERTURBATION

XUE PING WANG

Abstract. In this article, we prove for a class of dissipative Schrödinger operators
H = −∆+ V (x) with a complex-valued potential V (x) on R

n, n ≥ 2, and ℑV (x) ≤ 0
and ℑV ̸= 0 that 0 is not an accumulating point of the eigenvalues of H. If ℑV is
sufficiently small, we show that N(V ) = N(ℜV ) + k, where k is the multiplicity of
the zero resonance of the selfadjoint Schrödinger operator −∆ + ℜV and N(W ) the
number of eigenvalues of −∆+W , counted according to their algebraic multiplicity.

Résumé. Dans cet article, nous démontrons que zéro n’est pas point
d’accumulation des valeurs propres pour une classe d’opérateurs de
Schrödinger dissipatifs H = −∆ + V (x) sur R

n, n ≥ 2, avec un potentiel
complexe V (x) tel que sa partie imaginaire vérifie : ℑV (x) ≤ 0 et ℑV ̸= 0.
Si ℑV est suffisamment petit, nous montrons que N(V ) = N(ℜV ) + k, où k

est la multiplicité de la résonance au seuil zéro de l’opérateur de Schrödinger
autoadjoint −∆ + ℜV et N(W ) le nombre des valeurs propres de −∆ + W ,
comptées selon leur multiplicité algébrique.

1. Introduction

Consider the Schrödinger operator H = −∆+ V (x) with a complex-valued potential
V (x) = V1(x)− iV2(x) on L2(Rn), n ≥ 2, where V1 and V2 are real measurable functions.
V and H are called dissipative if V2(x) ≥ 0 and V2(x) > 0 on some non trivial open
set. Assume that V is a −∆-compact perturbation. H is then closed with domain
D(H) = D(−∆). Let σ(H) (resp., σess(H), σd(H)) denote the spectrum (resp., essential
spectrum, discrete spectrum) of H. By Weyl’s essential spectrum theorem, one has
σess(H) = [0,∞[ and the spectrum of H is discrete in C\[0,∞[, consisting of eigenvalues
with finite multiplicity which may accumulate to any point of [0,∞[. For real-valued
potentials V , it is well-known that if V (x) decays like O(|x|−ρ) for some ρ > 2, the
eigenvalues of H1 = −∆ + V1(x) can not accumulate to 0 (cf. [9]). In this work, we
prove that this is still true for dissipative Schrödinger operators when n ≥ 3. We also
study the number of eigenvalues of H when ℑV is regarded as a small perturbation.
Throughout this work, eigenvalues are counted according to their algebraic multiplicity.

The minimal assumptions used in this work are as follows. Suppose that n ≥ 2, V1
and V2 are real functions satisfying the estimates

|Vj(x)| ≤ C⟨x⟩−ρj , V2(x) ≥ 0 and V2 ̸= 0, (1.1)
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for some ρj > 1, j = 1, 2. Here ⟨x⟩ = (1 + |x|2)1/2; the real part of the potential is
allowed to have critical decay:

V1(x) =
q(θ)

r2
+O(⟨x⟩−ρ′1), |x| > R, (1.2)

for some R > 0 and ρ′1 > 2, where r = |x|, x = rθ, θ ∈ S
n−1 and q(θ) is a real continuous

function on S
n−1 such that the lowest eigenvalue, µ1, of −∆Sn−1 + q(θ) on S

n−1 verifies

µ1 > −(n− 2)2

4
. (1.3)

Set ν1 =
√
µ1 +

(n−2)2

4
. Note that if n ≥ 3 and V1 satisfies (1.1) for some ρ1 > 2, (1.2)

and (1.3) are satisfied with q = 0 and µ1 = 0. For n = 2, the condition (1.3) requires
the potential to be positive in some sense when |x| is large enough. Rapidly decaying
potentials are excluded when n = 2.

For potentials satisfying (1.1), (1.2) and (1.3), we say that zero is a resonance of H if
the equation Hu = 0 has a solution u ∈ H1,−s \L2 for any s > 1 ( H1,−s is the weighted
first order Sobolev space with the weight ⟨x⟩−s) and u is then called a resonant state.
As for selfadjoint operators ( cf. [4]), zero is called a regular point of H if it is neither an
eigenvalue nor a resonance of H (notice however that dissipative Schrödinger operators
H have no real eigenvalues). For the selfadjoint operator H1 with a critically decaying
potential V1, zero resonance may appear in any space dimension n ≥ 2 with arbitrary
multiplicity depending on q(θ) (see [14, 15]). The following result says that this can not
happen for dissipative Schrödinger operators.

Theorem 1.1. Let n ≥ 2. Under the conditions (1.1)-(1.3) with ρ′1 > 2 and ρ2 > 2,
zero is a regular point of H. The eigenvalues of H can not accumulate to zero and there
exists c0 > 0 such that the limits

R(λ± i0) = lim
ϵ→0+

R(λ± iϵ) (1.4)

exist in L(−1, s; 1,−s), s > 1, uniformly in λ ∈ [−c0, c0].
,
For the notation L(−1, s; 1,−s), see the end of Introduction. In [8], A. Laptev and O.

Safronov deduce from their estimates on complex eigenvalues that if n = 3 and V2 ≥ 0
is integrable, the eigenvalues of −∆ − iV2 can not accumulate to zero. The limiting
absorption principle of Schrödinger operators with complex-valued potentials is studied
in [6, 11] at λ > 0 and outside some exceptional set of measure zero in ]0,∞[ (see also
[12]). Recently, the limiting absorption principle from the upper half-complex plane for
each λ > 0 is proved in [10] for abstract dissipative operators without such an implicit
condition.

The next result of this work is on the number of eigenvalues of a dissipative Schrödinger
operator when the imaginary part of the potential is small. Denote H(γ) = H1 − iγV2
where γ > 0 is a small parameter. Let N(γ) (resp. N1) be the total number of the com-
plex eigenvalues of H(γ) (resp., H1). It is easy to show that under the same conditions
as in Theorem 1.1, if 0 is a regular point of H1, then

N(γ) = N1 (1.5)
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for 0 < γ ≤ γ0. See Proposition 3.1. A more interesting question is the case when
zero happens to be an eigenvalue or a resonance of H1. For the class of potentials V1
under consideration, zero resonance of H1 may appear in any space dimension with
arbitrary multiplicity. The interaction between resonant states makes the threshold
spectral analysis rather difficult. See [15] for the resolvent expansion. In this work, we
only study a particular case where

{
ν =

√
µ+

(n− 2)2

4
, µ ∈ σ(−∆Sn−1 + q)

}
∩]0, 1] = {ν1} (1.6)

with ν1 =
√
µ1 +

(n−2)2

4
. The condition (1.6) is satisfied if q(θ) = q0 is an appropriate

constant and it ensures that if zero is a resonance of H1, then it is simple. Let φ0 be a
normalized eigenfunction (which can be taken to be positive) of −∆Sn−1 + q associated
with µ1. Set

W1(x) = V1(x)−
q(θ)

r2
, η0(x) =

φ0(θ)

r
n−2
2

−ν1
, x = rθ.

Theorem 1.2. Assume (1.1) - (1.3) with ρ′1 > 4 and ρ2 > 4 and (1.6).
(a). Assume that zero is an eigenvalue but not a resonance of H1. Then

N(γ) = N1 (1.7)

for 0 < γ < γ0. Here N1 is the total number of eigenvalues of H1, including the zero
eigenvalue.

(b). Assume that zero is a resonance but not an eigenvalue of H1 and that

ν1 ∈ [
1

2
, 1] and ⟨W1η0, ϕ⟩⟨V2η0, ϕ⟩ < 0. (1.8)

Then there exits γ0 > 0 such that

N(γ) = N1 + 1, (1.9)

for 0 < γ < γ0. Here N1 is the total number of negative eigenvalues of H1.

Note that ⟨W1η0, ϕ⟩ ̸= 0 if ϕ is a resonant state ([14, 15]) and the condition

⟨W1η0, ϕ⟩⟨V2η0, ϕ⟩ < 0

is independent of the choice of ϕ. If n = 3 or 4 and if the condition (1.1) is satisfied
with ρ1 > 2, one has q = 0, ν1 = 1

2
or 1, respectively, W1 = V1 and η0 is constant:

η0 =
1√

|Sn−1|
. The condition (1.8) is then simplified as

⟨V1, ϕ⟩⟨V2, ϕ⟩ < 0. (1.10)

In particular, if V2 = −V1, one has

⟨V1, ϕ⟩⟨V2, ϕ⟩ = −|⟨V1, ϕ⟩|2 < 0

for any resonant state ϕ, because ⟨V1, ϕ⟩ ̸= 0 by the characterization of resonant states.
As a consequence of Theorem 1.2, we deduce that under the conditions that n = 3, 4,
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V1 = −V2 verifying the condition (1.1) with ρ1 = ρ2 > 4 and zero is an eigenvalue or a
resonance of H1, the number of eigenvalues of H(γ) = −∆+ (1 + iγ)V1 is given by

N(γ) =

{
N1, if zero is not a resonance of H1;

N1 + 1, if zero is a resonance of H1.
(1.11)

for γ > 0 sufficiently small. An example of the potential V1 for which zero is a resonance
but not an eigenvalue of H1 is given in Section 3.

Theorem 1.1 is proved in Section 2. As a consequence, we deduce a global resolvent
estimate on the whole real axis which may be useful to study the long-time quantum
dynamics of the semigroup. The number of eigenvalues under dissipative perturbation is
studied in Section 3. A Breit-Wigner type resolvent estimate is given near the eigenval-
ues. The main attention is payed to the case where zero eigenvalue and zero resonance
of the selfadjoint operator H1 are present. The techniques used in the proof of the both
theorems are threshold spectral analysis.

Notation. Hr,s, r, s ∈ R, denotes the weighted Sobolev space of order r defined by
Hr,s = {f ∈ S ′(Rn); ⟨x⟩s(1 − ∆)r/2f ∈ L2} equipped with the natural norm noted as
∥ · ∥r,s. The dual product between Hr,s and H−r,−s is identified with L2-scalar product.
Denote H0,s = L2,s and Hr,0 = Hr. L(r, s; r′, s′) is the space of continuous linear oper-
ators from Hr,s to Hr′,s′ and L(r, s) = L(r, s; r, s).

2. Spectral properties near the threshold

The following result is essential to prove Theorem 1.1.

Lemma 2.1. Let s ∈ [0, 1[. Suppose that the condition (1.1) is satisfied with ρj > s+1,
j = 1, 2. Then u ∈ H1,−s and Hu = 0 imply u = 0.

Proof. Let ρ′ = min{ρ1, ρ2}. Then ρ′ − s > 1 and one has −∆u = −V u ∈ L2,ρ′−s,
H1u = iV2u ∈ L2,ρ′−s. The equation Hu = 0 gives

⟨u,H1u⟩ = i⟨u, V2u⟩. (2.1)

We want to show that ⟨H1u, u⟩ is a real number, although u is not in the domain of
the selfadjoint operator H1. To do this, we need to show that ∇u ∈ L2. Notice first
that since u ∈ L2,−s, ∆u ∈ L2,s ⊂ L2,−s and since ⟨x⟩−s∇(1 −∆)−1⟨x⟩s is bounded on
L2, one has

⟨x⟩−s∇u = (⟨x⟩−s∇(1−∆)−1⟨x⟩s)⟨x⟩−s(1−∆)u ∈ L2.

Therefore e−ϵ⟨x⟩∇u ∈ L2 for any ϵ > 0 and one has

∥e−ϵ⟨x⟩∇u∥2 = ⟨e−2ϵ⟨x⟩u,−∆u⟩+ 2ϵ⟨e−2ϵ⟨x⟩u,
x

⟨x⟩ · ∇u⟩. (2.2)

Since u ∈ L2,−s for some s < 1, one has

|ϵ⟨e−2ϵ⟨x⟩u,
x

⟨x⟩ · ∇u⟩| ≤Mϵ1−s∥⟨x⟩−su∥∥e−ϵ⟨x⟩∇u∥, (2.3)
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with M = supr≥0 r
se−r. It follows that for ϵ0 > 0 small enough

∥e−ϵ⟨x⟩∇u∥2 ≤ 1

1−Mϵ1−s
|⟨e−2ϵ⟨x⟩u,−∆u⟩|+ Mϵ1−s

1−Mϵ1−s
∥⟨x⟩−su∥2, 0 < ϵ ≤ ϵ0. (2.4)

Since −∆u ∈ L2,s and u ∈ L2,−s,

|⟨e−2ϵ⟨x⟩u,−∆u⟩| ≤ ∥u∥L2,−s∥∆u∥L2,s ∀ϵ > 0.

We deduce that sup0<ϵ≤ϵ0 ∥e−ϵ⟨x⟩∇u∥2 <∞ which implies ∇u ∈ L2 and

∥∇u∥2 ≤ |⟨u,−∆u⟩|.
Let χ ∈ C∞

0 (Rn) such that χ(x) = 1 for |x| ≤ 1, 0 for |x| ≥ 2. let χR(x) = χ(x/R),
R > 1. Then ⟨χRu,−∆(χRu)⟩ ≥ 0 and

⟨χRu,−∆(χRu)⟩ = ⟨χRu,−χR∆u⟩+ ⟨χRu, [−∆, χR]u⟩
→ ⟨u,−∆u⟩, R → ∞.

When taking the limit, we used u ∈ L2,−s, ∆u ∈ L2,s with s < 1 and ∇u ∈ L2. This
proves that ⟨u,−∆u⟩ ≥ 0. In particular, ⟨u,H1u⟩ = ⟨u,−∆u⟩+⟨u, V1u⟩ is a real number.

It follows from (2.1) that ⟨H1u, u⟩ = 0 and ⟨V2u, u⟩ = 0. Since V2 ≥ 0 and V2 ̸= 0,
one has V2u = 0 and u(x) = 0 for x in a non trivial open set Ω. Now u is solution to
the equation H1u = 0. We can apply the unique continuation theorem (see [3]) to H1

to conclude u = 0 on R
n. �

The same argument as that used in Lemma 2.1 shows that H has no real eigenvalues.

Corollary 2.2. Under the conditions of Theorem 1.1, zero is a regular point of H: if
Hu = 0 and u ∈ H1,−s for any s > 1, then u = 0.

Proof. For u ∈ H1,−s, ∀s > 1, and Hu = 0, one can expand u in terms of the
eigenfunctions of −∆Sn−1 + q(θ) to show that

u(x) =
ψ(θ)

r
n−2
2

+ν1
+ v, for r = |x| large,

with ν1 =
√
µ1 +

(n−2)2

4
> 0, ψ ∈ L2(Sn−1) and v ∈ L2(|x| > 1). See Theorem 4.1 in [14].

This means that u is in fact in H1,−s for any s ∈]1−ν1, 1[. Since min{ρ1, ρ2} = 2 > 1+s,
Lemma 2.1 can be applied to conclude that u = 0. �

For z0 ∈ C and r > 0, denote D(z0, r) = {z ∈ C; |z − z0| < r}, D±(z0, r) =
D(z0, r) ∩ C± and D′(0, r) = D(0, r) \ [0, r[.

Proof of Theorem 1.1. Let χ1(x)
2 + χ2(x)

2 = 1 be a partition of unity on R
n with

χ1 ∈ C∞
0 such that 0 ≤ χj ≤ 1 and χ1(x) = 1 for |x| ≤ 1. (1.3) implies that the

form defined by −∆ + q(θ)
r2

on C∞
0 (Rn \ {0}) is positive. Let H0 denote its Friedrich’s

extension. Then the following generalized Hardy’s inequality holds: there exists c > 0
such that

⟨ 1
r2
u, u⟩ ≤ c⟨u,H0u⟩, ∀ u ∈ D(H0). (2.5)
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Set

R̃0(z) = χ1(−∆+ 1− z)−1χ1 + χ2(H0 − z)−1χ2,

and

K(z) = R̃0(z)(H − z)− 1,

for z ∈ D′(0, δ). One has

K(z) = χ1(−∆+ 1− z)−1([∆, χ1] + (V − 1)χ1)

+χ2(H0 − z)−1([∆, χ2] + (V − q(θ)

r2
)χ2).

Note that (−∆+1−z)−1 is holomorphic for z near 0 and the asymptotics of (H0−z)−1

are computed in [14] (see Theorem A.1 of Appendix A). In particular, (1.3) ensures that
the ln z-term is absent. One deduces that the limit

F0 = lim
z→0,z ̸∈R+

R̃0(z)

exists in L(−1, s; 1,−s) for any s > 1. Since ρ′1 > 2 and ρ2 > 2, K(z) is a compact
operator-valued function on H1,−s, 1 < s < min{ρ′1/2, ρ2/2}, holomorphic in D′(0, δ),
continuous up to the boundary and

K(z) = K0 +O(|z|δ0)
in L(1,−s; 1,−s) for some δ0 > 0, where K0 = limz→0,z ̸∈R+ K(z) is a compact operator.

By the same method, one can show that the limits R̃0(λ ± i0) and K(λ ± i0) exist
uniformly for λ near 0.

We claim that −1 is not an eigenvalue of K0. In fact, let u ∈ H1,−s for any s > 1
such that K0u = −u. A standard ellipticity argument shows that u ∈ H2

loc. By the
expression of K0, one sees that

Hu = H0(u+K0u) = 0

in the open set where χ2(x) = 1. Therefore w := Hu is of compact support and

F0w = (1 +K0)u = 0.

In particular,

⟨w, F0w⟩ = q1(w) + q2(w) = 0, (2.6)

where

q1(w) = lim
λ→0−

⟨w1, (−∆+ 1− λ)−1w1⟩ and

q2(w) = lim
λ→0−

⟨w2, (−∆+
q(θ)

r2
− λ)−1w2⟩

with wj = χjw, j = 1, 2. For each λ < 0, one has ⟨w1, (−∆+ 1− λ)−1w1⟩ ≥ 0

and ⟨w2, (−∆+ q(θ)
r2

− λ)−1w2⟩ ≥ 0 (by (2.5) ). Taking the limit λ → 0, one obtains
q1(w) ≥ 0 and q2(w) ≥ 0. (2.6) gives then qj(w) = 0, j = 1, 2. Since w ∈ L2,
q1(w) = 0 gives that χ1w = 0. This proves w = Hu = 0. By Corollary 2.2, one has
u = 0. Therefore −1 is not an eigenvalue of K0 and (1+K0)

−1 exists in L(1,−s; 1,−s),
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s ∈]1,min{ρ′1/2, ρ2/2}[. An argument of perturbation shows that 1+K(z) is invertible
for z ∈ D′(0, δ) with δ > 0 small enough and

sup
z∈∈D′(0,δ)

∥(1 +K(z))−1∥L(1,−s;1,−s) <∞. (2.7)

It follows from the equation R̃0(z)(H − z) = 1 + K(z) that H has no eigenvalues in
D′(0, δ) and one has

R(z) = (1 +K(z))−1R̃0(z), z ∈ D′(0, δ), (2.8)

and for any s > 1, supz∈D′(0,δ) ∥⟨x⟩−sR(z)⟨x⟩−s∥ <∞. In addition, The existence of the
limits

(1 +K(λ± i0))−1 = lim
ϵ→0+

(1 +K(λ± iϵ))−1

in L(1,−s; 1,−s), s ∈]1,min{ρ′1/2, ρ2/2}[ uniformly for λ ∈ R and λ near 0 implies the
existence of the limits R(λ± i0) in L(−1, s; 1,−s), s > 1, for λ in a neighborhood of 0.
�

Remark that R(λ+ i0) = R(λ− i0) for λ < 0 since H has no spectrum in ]−∞, 0[.
The same is true for λ = 0 by the proof given above.

Under the condition (1.1) with ρj > 1, the limiting absorption principle from the
upper-half complex plan for λ away from 0 can be deduced by an argument of pertur-
bation ([1]) or by Mourre’s theory for dissipative operators (see [10]) which also applies
to dissipative Schrödinger operators with long-range potentials). One deduces from
Theorem 1.1 the following

Corollary 2.3. Under the conditions of Theorem 1.1, one has for any s > 1

∥⟨x⟩−sR(λ+ i0)⟨x⟩−s∥ ≤ Cs⟨λ⟩−1/2, ∀ λ ∈ R. (2.9)

The global resolvent estimate (2.9) can be used to study quantum dynamics of the
semigroup e−itH , t > 0, such as the rate of time-decay and Kato’s smoothness estimate
for the semigroup. These problems of scattering nature will be treated in a separate
publication.

3. Number of eigenvalues under dissipative perturbation

We are mainly interested in the perturbation of zero eigenvalue and zero resonance
of H1. Let us begin with the easy case where zero is a regular point of the selfadjoint
operator H1 (see also [6]).

Under the conditions (1.1)-(1.3) with ρ2 > 2, H1 = −∆1+V1 has only a finite number
of eigenvalues:

σ1 < σ2 < · · · < σk ≤ 0. (3.1)

The resolvent R1(z) of H1 verifies for any δ > 0, s > 1/2,

∥⟨x⟩−sR1(z)⟨x⟩−s∥ ≤ Cδ|z|−
1
2 , (3.2)
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for all z ∈ C \ R+ with |z| > δ and |z − σj| > δ. If zero is a regular point of H1, then
σk < 0 and one has for any s > 1,

∥⟨x⟩−sR1(z)⟨x⟩−s∥ ≤ C, (3.3)

for all z ∈ C \ R+ with |z| ≤ δ for some δ > 0 small enough. Since ρ2 > 2, we have

∥|V2|1/2R1(z)|V2|1/2∥ ≤ Cδ (3.4)

for all z ∈ C \ R+ with |z − σj| > δ, j = 1, · · · , k, if zero is a regular point of H1.

Proposition 3.1. Under the conditions (1.1)-(1.3), let H1 = −∆ + V1 and H(γ) =
H1 − iγV2, γ > 0. Let N(γ) (resp., N1) denote the number of eigenvalues of H(γ)
(resp., H1). Assume that zero is a regular point of H1. Then there exists some γ0 > 0
such that

N(γ) = N1 (3.5)

for 0 < γ < γ0. More precisely, for each eigenvalue σj of H1 with multiplicity mj, there
exists δ > 0 such that H(γ) has mj eigenvalues in the disc {z; |z − σj| < δ} given by

zk = σj − iγak +O(γ2), γ ∈]0, γ0], k = 1, · · · ,mj, (3.6)

for some ak > 0. One has the following Breit-Wigner type resolvent estimate

∥R(µ, γ)∥ ≤ max
σj∈σd(H1)

Cδ

|µ− (σj − iγ)| , (3.7)

for µ ∈]−∞,−δ], δ > 0 and γ ∈]0, γ0].
Proof. For each negative eigenvalue σj < 0 of H1 with multiplicity mj, a standard
perturbation argument can be used to show that ∃δ0 > 0 such that H(γ) has mj

eigenvalues in D−(σj, δ0) if γ > 0 is small enough. In fact, let Πj denote the spectral
projection of H1 associated with the eigenvalue σj. Then

E(z, γ) := ((1− Πj)H(γ)(1− Πj)− z)−1(1− Πj)

is well defined and is uniformly bounded for |z − σj| and γ sufficiently small. One has
the following Feshbach-Grushin formula:

R(z, γ) = E(z, γ)− (1 + iγE(z, γ)V2)Πj(E−+(z, γ))
−1Πj(1 + iγV2E(z, γ)) (3.8)

where

E−+(z, γ) = Πj(z − σj + iγV2 − γ2V2E(z, γ)V2)Πj (3.9)

See also (3.19) below. The eigenvalues of H(γ) in a small disk around σj coincide
with the zeros of detE−+(z, γ) there. Notice that ΠjV2Πj ≥ 0, since V2 ≥ 0. This
operator is positive definite on Ran Πj, because if for some ψ ∈ Ran Πj, ΠjV2ψ = 0,
then V2ψ = 0, which means ψ(x) = 0 for x in some nontrivial open set. But ψ is an
eigenfunction of H1 with eigenvalue σj. The unique continuation theorem shows that
ψ = 0. Consequently, the eigenvalues, a1, · · · , amj

, of ΠjV2Πj on Ran Πj are strictly
positive. One can calculate that H(γ) has mj eigenvalues near σj given by

zk = σj − iγak +O(γ2).
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Since E−+(z, γ) can be diagonalized up to O(γ2), we obtain

∥(E−+(µ, γ))
−1Πj∥ ≤ C

1

|µ− (σj − iγ)| (3.10)

uniformly in µ real, |µ − σj| and γ > 0 small enough. It follows from (3.8) that (3.7)
holds for R(µ, γ) for µ near σd(H1). For any δ > 0, one has

∥R1(µ)∥ ≤ Cδ/|µ|, µ ≤ −δ and dist(µ, σd(H1)) ≥ δ.

The global bound (3.7) for µ < −δ follows by an argument of perturbation.
For any fixed δ0 > 0, let Ω = C− \ (∪jD−(σj, δ0)). It is easy to see that H(γ) has

no eigenvalues in Ω when γ is sufficiently small. In fact, by (3.4), there exists γ0 > 0 is
such that

γ0∥|V2|1/2R1(z)|V2|1/2∥ < 1, (3.11)

for all z ∈ Ω. Then, H(γ) has no eigenvalues in Ω if |γ| < γ0, because if u is an
eigenfunction of H(γ) associated with the eigenvalue z0 ∈ Ω,

H(γ)u = z0u,

then v = |V2|1/2u ̸= 0. v is a non zero solution of the equation

v = −iγ|V2|1/2R1(z0)V
1/2
2 v, V

1/2
2 = sign V2|V2|1/2.

This is impossible, because ∥γ|V2|1/2R1(z0)|V2|1/2∥ < 1. This proves that the total
number of complex eigenvalues of H(γ) is equal to the number of negative eigenvalues
of H1. �

As is clear from the proof, the sign restriction on V2 and γ is not necessary for (3.5),
but it is necessary for the Breit-Wigner type resolvent estimate (3.7).

Let us study now the perturbation of zero eigenvalue and zero resonance. Assume
that zero is an eigenvalue of H1 = −∆ + V1 with multiplicity k0 and a resonance with
multiplicity k. k0 or k may eventually be equal to 0. We want to show H(γ) = H1−iγV2
has m = k0 + k complex eigenvalues near 0 when γ > 0 is sufficiently small. Thresh-
old eigenvalues and resonances are unstable under perturbation and may produce both
eigenvalues or quantum resonances (if the potential is dilation-analytic). Therefore, it
may be interesting to see why zero eigenvalue and zero resonance of H1 will be turned
into eigenvalues of the dissipative Schrödinger operator H under weak perturbation.

Theorem 3.2. Assume (1.1)-(1.3) with ρ′1 > 4 and ρ2 > 4, and (1.6).
(a). If zero is an eigenvalue of multiplicity m, but not a resonance of H1, then there

exists δ, γ0 > 0 such that for 0 < γ < γ0, H(γ) has m eigenvalues in D−(0, δ).
(b). If zero is a resonance, but not an eigenvalue of H1, suppose in addition that the

condition (1.8) is satisfied. Then for 0 < γ < γ0, H(γ) has one eigenvalue in D−(0, δ).

Proof. Let H0 denote the Friedrich’s realization of −∆+ q(θ)
r2

and

W1(x) = V1(x)−
q(θ)

r2
. (3.12)
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Then H1 = H0 +W1. Denote Rj(z) = (Hj − z)−1, j = 0, 1. The low-energy asymptotic
expansion of R0(z) is calculated in [14] and is recalled in Appendix A. One has

R0(z) = G0 + zν1G1 + zG2 +O(|z|1+ϵ)

where Gj is continuous from H−1,s to H1,−s with s > j+1 for j = 0, 2 and G1 is a rank
one operator given by

G1 = c0⟨η0, u⟩η0, u ∈ H−1,s, s > 2, (3.13)

with η0 defined in Introduction and

c0 = − e−iπν1Γ(1− ν1)

ν122ν1+1Γ(1 + ν1)
, if 0 < ν1 < 1; c0 = −1

8
if ν1 = 1. (3.14)

zν1 is defined by

zν1 =

{
eν1 ln z, ν1 ∈]0, 1[
z ln z, ν1 = 1.

with the branch of ln z chosen such that it is holomorphic on the slit complex plane
C \R+ and limϵ→0+ ln(γ + iϵ) = ln γ if γ > 0. Although W1 is not H0-form compact, it
is still H0-form bounded by the Hardy’s inequality (2.5). By the comparaison with the
decomposition

H1 = H ′
0 +W ′

1, with H ′
0 = χ1(−∆+ 1)χ1 + χ2H0χ2

where χ2
1 + χ2

2 = 1 with χ2(x) = 0 for x near 0, one can show (see [5]) that 1 +G0W1 is
a Fredholm operator and its kernel, K, in H1,−s coincides with that of 1+G′

0W
′
1, where

G′
0 = lim

z→0,z ̸∈R+

(H ′
0 − z)−1, in L(−1, s; 1,−s).

Using the generalized Hardy inequality for H0, one sees that the Hermitian form

K ×K ∋ (φ, ψ) → ⟨φ,−W1ψ⟩ ∈ C

is positive definite and there exists a basis {ϕ1, · · · , ϕm}, m = k0 + k, such that

⟨ϕi,−W1ϕj⟩ = δij.

The assumption (1.6) implies that the multiplicity of the zero resonance is at most
one. If zero is a resonance, we assume without loss that ϕ1 is a resonant state and ϕj,
2 ≤ j ≤ m, are eigenfunctions of H1. Let Q : H1,−s → H1,−s, Qf =

∑m
j=1⟨−W1ϕj, f⟩ϕj.

Q is a projection from H1,−s onto K. Set Q′ = 1− Q. One can show that range of Q′

is closed and is equal to the range of 1 + G0W1 in H1,−s. Then the Fredholm theory
shows that (Q′(1 +G0W1)Q

′)−1Q′ exists and is continuous on H1,−s. See [5, 15].

Let R(z, γ) = (H(γ)− z)−1, z ̸∈ σ(H(γ). One has the resolvent equations

R(z, γ) = (1− iγR1(z)V2)
−1R1(z) = (1 +R0(z)(W1 − iγV2))

−1R0(z).

The eigenvalues of H(γ) in D−(0, δ) are the same as the set of z for which Hu = zu
has a nontrivial solution u in H1,−s for some s > 0. Since R0(z) is holomorphic in C−,
a point z0 ∈ C− is an eigenvalue of H(γ) if and only if it is a pole of

z → (1 +R0(z)(W1 − iγV2))
−1
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and their multiplicities are the same. Let

W (z, γ) = 1 + R0(z)(W1 − iγV2).

Then for any s > 1 and s near 1,

W (z, γ) = 1 +G0W +O(|z|ϵ + γ)

in L(1,−s; 1,−s) for z ∈ D−(0, δ) and 0 < γ ≤ γ0. Since (Q′(1 +G0W1)Q
′)−1Q′ exists

on H1,−s, we deduce that for δ and γ0 small enough,

E ′(z, γ) := (Q′W (z, γ)Q′)−1Q′

exists on H1,−s and ∥E ′(z, γ)∥L(1,−s;1,−s) is uniformly bounded for z ∈ D−(0, δ) and
0 < γ ≤ γ0.

This allows us to construct for z ∈ D−(0, δ) and 0 < γ ≤ γ0 the inverse for the
following Grushin problem

W(z, γ) =

(
W (z, γ) T

S 0

)
: H1,−s × C

m → H1,−s × C
m,

where s > 1, T and S are given by

Tc =
m∑

j=1

cjϕj, c = (c1, · · · , cm) ∈ C
m,

Sf = (⟨−W1ϕ1, f⟩, · · · , ⟨−W1ϕm, f⟩) ∈ C
m, f ∈ H1,−s.

This inverse is given by

W(z, γ)−1 =

(
E(z) E+(z)

E−(z) E+−(z)

)
,

where

E(z) = E ′(z), (3.15)

E+(z) = T − E ′(z)W (z)T, (3.16)

E−(z) = S − SW (z)E ′(z), (3.17)

E+−(z) = −SW (z)T + SW (z)E ′(z)W (z)T. (3.18)

Here to simplify notation, the indication of dependance on γ is omitted. It follows that
the inverse of W (z) is given by

W (z)−1 = E(z)− E+(z)E+−(z)
−1E−(z) on H

1,−s. (3.19)

Since E(z), E±(z) and E+−(z) are holomorphic and uniformly bounded as operators on
H1,−s for z ∈ D−(0, δ) and γ > 0 small, z0 is a pole of W (z)−1 in D−(0, δ) if and only if

F (z0, γ) := detE+−(z0) = 0

and their multiplicities are the same (cf. [2]). Since the equation Hu = zu for u ∈ H1,−s

and ℑz < 0 implies u ∈ H1,r for any r > 0, the poles of z → W (z)−1 in C− as operator
on H1,−s coincide with the eigenvalues of H.
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We are now led to prove that for 0 < γ ≤ γ0 small enough, F (z, γ) has m zeros in
D−(0, δ). Since ϕj ∈ L2,−s for any s > 1, under the condition ρ′1 > 4 and ρ2 > 4, one
can calculate the asymptotics of the matrix

E+−(z) = (⟨−W1ϕj, (W (z)−W (z)E ′(z)W (z))ϕk⟩)1≤j,k≤m , (3.20)

up to an error O(|z|1+ϵ). This computation is done in the case γ = 0 (see Proposition
4.4, [15]). In the case γ ̸= 0, the calculation is similar. We give only the result and omit
the details. One has

(E+−(z))j,k = −iγvjk + zν1ajk + z(bjk + rjk) +O(|z|1+ϵ) (3.21)

where

vjk = ⟨ϕj, V2ϕk⟩ (3.22)

ajk = −c0(|c1|2δ1jδ1k − iγc1c
′
kδ1k) with (3.23)

c1 = ⟨W1η0, ϕ1⟩, c′j = ⟨V2η0, ϕj⟩, (3.24)

bjk = ⟨−W1ϕj, G2W1ϕk⟩+ iγ⟨W1ϕj, G2V2ϕk⟩ (3.25)

rjk = ⟨−W1ϕj, G1(W1 − iγV2)E
′(0)G1(W1 − iγV2)ϕk⟩. (3.26)

Here δ1j = 1 or 0 according to whether j = 1 or not. In the case 0 is not a resonance,
c1 = 0. Remark also that if ϕj and ϕk are both eigenfunctions of H1,

⟨W1ϕj, G2W1ϕk⟩ = ⟨ϕj, ϕk⟩ (3.27)

and if ϕj is an eigenfunction of H1,

rjk = 0, k = 1, · · · ,m. (3.28)

One can show as in Proposition 3.1 that the matrice (vjk) is positive definite. In fact,
it is clearly positive since V2 ≥ 0. If 0 is an eigenvalue of this matrix, we can take an
associated eigenvector d = (d1, · · · , dm) ∈ C

m \ {0}. Let ψ =
∑

j djϕj. Then one has
V2ψ = 0 and H1ψ = 0 which imply Hψ = 0. Lemma 2.1 shows that ψ = 0. This leads
to a contradiction with the fact that ϕ1, · · · , ϕm are linearly independent.

Consider firstly the case that zero is an eigenvalue but not a resonance of H1. One
has ajk = 0 and

(E+−(z))j,k = −iγvjk + z(−⟨ϕj, ϕk⟩+ iγ⟨W1ϕj, G2V2ϕk⟩) +O(|z|1+ϵ) (3.29)

Since the matrices (γvjk) and (⟨ϕj, ϕk⟩) are positive definite, F0(z, γ) = det(i(γvjk) +
z(⟨ϕj, ϕk⟩)) has m zeros of the form z = −iγσj, σj > 0. Let −iγσ be one of the zeros
of F0(z, γ) with order k. For some appropriate c > 0 such that the distance from zeros
of z → F0(z, γ) to the circle ∂D(−iγσ, cγ) is at least c′γ for some c′ > 0, one has

|F0(z, γ)| ≥ C1γ
m, |F (z, γ)− F0(z, γ)| ≤ C2γ

m+ϵ

for |z + iγσ| = cγ. For γ > 0 small, we can apply Rouché’s theorem to F (z, γ) to
conclude that F (z, γ) has also k zeros in the disk D(−iγσ, cγ). Therefore, the total
number of zeros of F (z, γ) in D−(0, δ) are at least m. If z0 is a zero of F (z, γ), the
asymptotic expansion of F (z, γ) in z shows that ς = limγ→0 z0/γ exists and γς is a zero
of F0(z, γ). This allows to conclude that F (z, γ) has m zeros in D−(0, δ) for δ > 0 and
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0 < γ < γ0 small enough.

Now assume that zero is a resonance, but not an eigenvalue of H1. E+−(z) is a scalar
function, holomorphic in z ∈ D−(0, δ) and

E+−(z) = −iγv11 − c0zν1(|c1|2 − iγc1c
′
1) +O(|z|), (3.30)

where v11 > 0. Assume (1.8). The root of the equation

iγv11 + c0zν1(|c1|2 − iγc1c
′
1) = 0. (3.31)

can be explicitly calculated. Set

r =
γv11

|c0| |(|c1|2 − iγc1c′1)|
.

Since c1c
′
1 < 0 by the assumption (1.8), the argument, φ, of −γc1c′1 + i|c1|2 verifies

0 < φ <
π

2
, lim

γ→0+
φ =

π

2
. (3.32)

With the above definitions of r and φ, (3.31) can be rewritten as

zν1 = − iγv11
c0(|c1|2 − iγc1c′1)

= rei(φ+π−arg c0). (3.33)

For ν1 ∈]0, 1[, zν1 = zν1 and c0 = − e−iπν1Γ(1−ν1)
ν122ν1+1Γ(1+ν1)

. (3.33) becomes

zν1 = rei(πν1+φ). (3.34)

When ν1 ∈ [1/2, 1[, (3.34) has a unique solution z′ = ρeiθ in D−(0, δ) given by

ρ = r1/ν1 and θ = π + ν−1
1 φ. (3.35)

The above calculation gives the location of this root:

z′ = d1γ
1
ν1 e

i(π+ π
2ν1

−γd2)(1 + o(1)) (3.36)

for some d1, d2 > 0.
When ν1 = 1, zν1 = z ln z and c0 = −1

8
. z′ = ρeiθ is a solution of (3.33) if

ρeiθ(ln ρ+ iθ) = reiφ (3.37)

Remark that r = O(γ) as γ → 0 and arg(ln ρ+iθ) → π− as ρ→ 0+. Set ln z
′ = τei(−π−σ)

with τ = | ln z′|. For γ > 0 small enough, one can check that the system
{

τe−τ cosσ = r,
−σ + τ sin σ = φ+ π

has a unique solution (τ, σ) such that τ → ∞ and σ → 0+ as γ → 0. This shows that
(3.37) has a unique solution z′ = ρeiθ in D−(0, δ) given by

ρ = |eτei(−π−σ) | = e−τ cosσ and θ = π + φ− σ.

Using Rouché’s theorem, one can show as before that E+−(z, γ) has just one zero
in D−(0, δ) which is located inside the small disk D(z0, g(γ)), where g(γ) = aγ1/ν1 if
ν1 ∈]0, 1[ and g(γ) = aγ⟨ln γ⟩−1 if ν1 = 1, a > 0 being an appropriate constant. This
proves that H(γ) has exactly one eigenvalue in D−(0, δ) and it is simple. �
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Theorem 1.2 follows from Theorem 3.2 and the argument used Proposition 3.1 outside
a small neighborhood of zero.

The case that zero is both an eigenvalue and a resonance can in principle be ana-
lyzed in a similar way, using the asymptotic expansion of E+−(z, γ) given above. But
the evaluation of zeros of the determinant raises some technical difficulties when m is
arbitrary. Without the assumption (1.6), zero resonance of H1 may appear with arbi-
trary multiplicity. The matrix E+−(z, γ) can be still calculated, but its analysis is more
complicated. We do not go further here.

Remark 3.3. An example for which zero is not an eigenvalue, but a resonance of
H1 = −∆+ V1 can be constructed as follows. Let n = 3 or 4 and let v1 be a real-valued
function satisfying (1.1) with ρ1 > 4 and v1 ≤ 0, v1 ̸= 0. Let H1(β) = −∆ + βv1.
Then one can show that there exists a critical constant β0 > 0 such that H1(β0) ≥ 0 and
H1(β) has at least one negative eigenvalue for any β > β0. Then zero is a resonance but
not an eigenvalue of H1(β0). A resonant state of H1 = −∆ + β0v1 can be constructed
as weak limit of the fundamental state of H1(β) as β → β0+ and it does not change
sign. The condition (1.8) is then satisfied for V1 = β0v1 and for any V2 ∈ C∞

0 (Rn) with
V2 ≥ 0 and V2 ̸= 0. In this example, the number of eigenvalues of H1 is zero, while that
of H1 − iγV2 is one for any γ > 0 small enough.

Appendix A. Low-energy resolvent expansion on conical manifolds

In this appendix, we recall in a concise way the result of [14] on low-energy resolvent
expansion of the model operator. Consider the operator

P0 = −∆g +
q(θ)

r2
(A.1)

on a conical manifold M = R+ ×Σ equipped with a Riemannian metric g, where Σ is
an (n − 1)-dimensional compact manifold, n ≥ 2. Here (r, θ) ∈ R+ ×Σ, q(θ) is a real
continuous function and the metric g is of the form

g = dr2 + r2h

with h a Riemannian metric on Σ independent of r. If Σ is of boundary, the Dirichlet
condition is used for P0. We still denote by P0 its Friedrich’s realization with the core
C∞

0 (Rn \ {0}). Let ∆h denote Laplace-Beltrami operator on Σ. Assume

−∆h + q(θ) ≥ −(n− 2)2

4
, on L2(Σ). (A.2)

Put

σ∞ =

{
ν; ν =

√
λ+

(n− 2)2

4
, λ ∈ σ(−∆h + q)

}
. (A.3)

Denote

σk = σ∞ ∩ [0, k], k ∈ N.
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Let πν denote the orthogonal projection in L2(M) onto the subspace spanned by the

eigenfunction of −∆h + q associated with the eigenvalue λν = ν2 − (n−2)2

4
. Define for

ν ∈ σ∞

zν =

{
zν

′

, if ν ̸∈ N

z ln z, if ν ∈ N
∗,

where ν ′ = ν − [ν]. Let σN = σ∞ ∩ [0, N ]. For ν > 0, let [ν]− be the largest integer
strictly less than ν. When ν = 0, set [ν]− = 0. Define δν by δν = 1, if ν ∈ N ∩ σ∞; 0,
otherwise.

Theorem A.1. Let R0(z) = (P0−z)−1 for z ̸∈ R+. The following asymptotic expansion
holds for z near 0 with z ̸∈ R+.

R0(z) = δ0 ln z G0,0 +
N∑

j=0

zjFj +
∑

ν∈σN

zν

N−1∑

j=[ν]−

zjGν,j+δνπν +O(|z|N+ϵ), (A.4)

in L(−1, s; 1,−s), s > 2N + 1. Each term in the above expansion can be explicitly
calculated. In particular, Fj ∈ L(−1, s; 1,−s), s > 2j+1 and Gν,j, j ≥ [ν]−, is of finite
rank with its Schwartz kernel on L2(R+; r

n−1dr) given by

Gν,j(r, τ) =
(−1)j+1−[ν]e−iν′πΓ(1− ν ′) (rτ)−

n−2
2

+ν′+j

22ν+1π
1
2 (j − [ν])! Γ(1

2
+ ν)ν ′(ν ′ + 1) · · · (ν ′ + j)

Pν,j−[ν](ρ) (A.5)

for ν ̸∈ N, j ≥ [ν] and ν ′ = ν − [ν]; and

Gν,j(r, τ) =
(−1)j+l+1

π
1
222l+1j! (j − l)! Γ(l + 1

2
)
(rτ)−

n−2
2

+jPl,j−l(ρ) (A.6)

for ν = l ∈ N and j ≥ l. Pν,k(ρ) is a polynomial of degree k in ρ:

Pν,k(ρ) =

∫ 1

−1

(ρ+
θ

2
)k(1− θ2)ν−1/2dθ, ρ =

r2 + τ 2

4rτ
. (A.7)

Note that

Pν,0(ρ) =
Γ(1/2)Γ(1/2 + ν)

Γ(1 + ν)
, Pν,1(ρ) =

Γ(1/2)Γ(1/2 + ν)

Γ(1 + ν)
ρ. (A.8)

One has for ν ∈ [0, 1]

Gν,[ν](r, τ) = γν(rτ)
−n−2

2
+ν , (A.9)

with

γν = − e−iπνΓ(1− ν)

ν22ν+1Γ(1 + ν)
for ν ∈]0, 1[, γ0 = −1

2
and γ1 = −1

8
. (A.10)

The expansion of R0(z) is obtained by decomposing R0(z) into

R0(z) =
∑

ν∈σ∞

(Qν − z)−1πν

with

Qν = − d2

dr2
− n− 1

r

d

dr
+
ν2 − (n−2)2

4

r2
, on L2(R+; r

n−1dr).
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Since the Schwartz kernel of e−itQν is given by

1

2it
(rτ)−

n−2
2 e−

r2+τ2

4it
−iπν

2 Jν(
rτ

2t
), t ∈ R, (A.11)

where Jν(·) is the Bessel function of the first kind of order ν (see [13]) and

(Qν − z)−1 = i

∫ ∞

0

e−it(Qν−z) dt

for ℑz > 0, the Schwartz kernel of (Qν − z)−1 is

Kν(r, τ ; z) = (rτ)−
n−2
2

∫ ∞

0

e−
r2+τ2

4it
+izt−iπν

2 Jν(
rτ

2t
)
dt

2t
. (A.12)

for ℑz > 0. The formula (2.6) in [14] for this kernel contains a wrong sign. The
coefficients in (A.5) and (A.6) are obtained from the constants given in Section 2 and
Appendix A of [14], in taking into account some sign corrections. Note that under the
assumption (1.8), the continuity of Fj and the remainder estimate can be improved.
See Remark 2.4 in [14].
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