Xue Ping Wang 
  
NUMBER OF EIGENVALUES FOR DISSIPATIVE SCHR ÖDINGER OPERATORS UNDER PERTURBATION

Keywords: 2000 Mathematics Subject Classification. 35J10, 35P15, 47A55 Complex eigenvalues, threshold resonance, non-selfadjoint operators, dissipative Schrödinger operators

In this article, we prove for a class of dissipative Schrödinger operators H = -∆ + V (x) with a complex-valued potential V (x) on R n , n ≥ 2, and ℑV (x) ≤ 0 and ℑV ̸ = 0 that 0 is not an accumulating point of the eigenvalues of H. If ℑV is sufficiently small, we show that N (V ) = N (ℜV ) + k, where k is the multiplicity of the zero resonance of the selfadjoint Schrödinger operator -∆ + ℜV and N (W ) the number of eigenvalues of -∆ + W , counted according to their algebraic multiplicity.

Résumé. Dans cet article, nous démontrons que zéro n'est pas point d'accumulation des valeurs propres pour une classe d'opérateurs de

Schrödinger dissipatifs H = -∆ + V (x) sur R n , n ≥ 2, avec un potentiel complexe V (x) tel que sa partie imaginaire vérifie : ℑV (x) ≤ 0 et ℑV ̸ = 0. Si ℑV est suffisamment petit, nous montrons que N (V ) = N (ℜV ) + k, où k est la multiplicité de la résonance au seuil zéro de l'opérateur de Schrödinger autoadjoint -∆ + ℜV et N (W ) le nombre des valeurs propres de -∆ + W , comptées selon leur multiplicité algébrique.

Introduction

Consider the Schrödinger operator H = -∆ + V (x) with a complex-valued potential V (x) = V 1 (x) -iV 2 (x) on L 2 (R n ), n ≥ 2, where V 1 and V 2 are real measurable functions.

V and H are called dissipative if V 2 (x) ≥ 0 and V 2 (x) > 0 on some non trivial open set. Assume that V is a -∆-compact perturbation. H is then closed with domain D(H) = D(-∆). Let σ(H) (resp., σ ess (H), σ d (H)) denote the spectrum (resp., essential spectrum, discrete spectrum) of H. By Weyl's essential spectrum theorem, one has σ ess (H) = [0, ∞[ and the spectrum of H is discrete in C\[0, ∞[, consisting of eigenvalues with finite multiplicity which may accumulate to any point of [0, ∞[. For real-valued potentials V , it is well-known that if V (x) decays like O(|x| -ρ ) for some ρ > 2, the eigenvalues of H 1 = -∆ + V 1 (x) can not accumulate to 0 (cf. [START_REF] Rozenblum | Counting Schrödinger boundstates: semiclassics and beyond[END_REF]). In this work, we prove that this is still true for dissipative Schrödinger operators when n ≥ 3. We also study the number of eigenvalues of H when ℑV is regarded as a small perturbation. Throughout this work, eigenvalues are counted according to their algebraic multiplicity.

The minimal assumptions used in this work are as follows. Suppose that n ≥ 2, V 1 and V 2 are real functions satisfying the estimates

|V j (x)| ≤ C⟨x⟩ -ρ j , V 2 (x) ≥ 0 and V 2 ̸ = 0, (1.1) 
for some ρ j > 1, j = 1, 2. Here ⟨x⟩ = (1 + |x| 2 ) 1/2 ; the real part of the potential is allowed to have critical decay:

V 1 (x) = q(θ) r 2 + O(⟨x⟩ -ρ ′ 1 ), |x| > R, (1.2) 
for some R > 0 and ρ ′ 1 > 2, where r = |x|, x = rθ, θ ∈ S n-1 and q(θ) is a real continuous function on S n-1 such that the lowest eigenvalue, µ 1 , of -∆ S n-1 + q(θ) on S n-1 verifies

µ 1 > - (n -2) 2 4 . (1.3) Set ν 1 = √ µ 1 + (n-2) 2 4
. Note that if n ≥ 3 and V 1 satisfies (1.1) for some ρ 1 > 2, (1.2) and (1.3) are satisfied with q = 0 and µ 1 = 0. For n = 2, the condition (1.3) requires the potential to be positive in some sense when |x| is large enough. Rapidly decaying potentials are excluded when n = 2.

For potentials satisfying (1.1), (1.2) and (1.3), we say that zero is a resonance of H if the equation Hu = 0 has a solution u ∈ H 1,-s \ L 2 for any s > 1 ( H 1,-s is the weighted first order Sobolev space with the weight ⟨x⟩ -s ) and u is then called a resonant state. As for selfadjoint operators ( cf. [START_REF] Jensen | Spectral properties of Schrödinger operators and time decay of wave functions[END_REF]), zero is called a regular point of H if it is neither an eigenvalue nor a resonance of H (notice however that dissipative Schrödinger operators H have no real eigenvalues). For the selfadjoint operator H 1 with a critically decaying potential V 1 , zero resonance may appear in any space dimension n ≥ 2 with arbitrary multiplicity depending on q(θ) (see [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF][START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF]). The following result says that this can not happen for dissipative Schrödinger operators.

Theorem 1.1. Let n ≥ 2. Under the conditions (1.1)-(1.3) with ρ ′
1 > 2 and ρ 2 > 2, zero is a regular point of H. The eigenvalues of H can not accumulate to zero and there exists c 0 > 0 such that the limits

R(λ ± i0) = lim ϵ→0 + R(λ ± iϵ) (1.4) exist in L(-1, s; 1, -s), s > 1, uniformly in λ ∈ [-c 0 , c 0 ].
, For the notation L(-1, s; 1, -s), see the end of Introduction. In [START_REF] Laptev | Eigenvalues estimates for Schrödinger operators with complex potentials[END_REF], A. Laptev and O. Safronov deduce from their estimates on complex eigenvalues that if n = 3 and V 2 ≥ 0 is integrable, the eigenvalues of -∆ -iV 2 can not accumulate to zero. The limiting absorption principle of Schrödinger operators with complex-valued potentials is studied in [START_REF] Kako | Spectral and scattering theory for a class of non-selfadjoint operators[END_REF][START_REF] Saito | The principle of limiting absorption for the nonselfadjoint Schrödinger operator in R N (N ̸ = 2)[END_REF] at λ > 0 and outside some exceptional set of measure zero in ]0, ∞[ (see also [START_REF] Schwartz | Some non-selfadjoint operators[END_REF]). Recently, the limiting absorption principle from the upper half-complex plane for each λ > 0 is proved in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] for abstract dissipative operators without such an implicit condition.

The next result of this work is on the number of eigenvalues of a dissipative Schrödinger operator when the imaginary part of the potential is small. Denote H(γ) = H 1 -iγV 2 where γ > 0 is a small parameter. Let N (γ) (resp. N 1 ) be the total number of the complex eigenvalues of H(γ) (resp., H 1 ). It is easy to show that under the same conditions as in Theorem 1.1, if 0 is a regular point of H 1 , then

N (γ) = N 1 (1.5)
for 0 < γ ≤ γ 0 . See Proposition 3.1. A more interesting question is the case when zero happens to be an eigenvalue or a resonance of H 1 . For the class of potentials V 1 under consideration, zero resonance of H 1 may appear in any space dimension with arbitrary multiplicity. The interaction between resonant states makes the threshold spectral analysis rather difficult. See [START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF] for the resolvent expansion. In this work, we only study a particular case where

{ ν = √ µ + (n -2) 2 4 , µ ∈ σ(-∆ S n-1 + q) } ∩]0, 1] = {ν 1 } (1.6) with ν 1 = √ µ 1 + (n-2) 2

4

. The condition (1.6) is satisfied if q(θ) = q 0 is an appropriate constant and it ensures that if zero is a resonance of H 1 , then it is simple. Let φ 0 be a normalized eigenfunction (which can be taken to be positive) of -∆ S n-1 + q associated with µ 1 . Set 

W 1 (x) = V 1 (x) - q(θ) r 2 , η 0 (x) = φ 0 (θ) r n-2 2 -ν 1 , x = rθ.
N (γ) = N 1 (1.7)
for 0 < γ < γ 0 . Here N 1 is the total number of eigenvalues of H 1 , including the zero eigenvalue.

(b). Assume that zero is a resonance but not an eigenvalue of H 1 and that

ν 1 ∈ [ 1 2
, 1] and ⟨W 1 η 0 , ϕ⟩⟨V 2 η 0 , ϕ⟩ < 0.

(1.8)

Then there exits γ 0 > 0 such that

N (γ) = N 1 + 1, (1.9) 
for 0 < γ < γ 0 . Here N 1 is the total number of negative eigenvalues of H 1 .

Note that ⟨W 1 η 0 , ϕ⟩ ̸ = 0 if ϕ is a resonant state ( [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF][START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF]) and the condition ⟨W 1 η 0 , ϕ⟩⟨V 2 η 0 , ϕ⟩ < 0 is independent of the choice of ϕ. If n = 3 or 4 and if the condition (1.1) is satisfied with ρ 1 > 2, one has q = 0,

ν 1 = 1 2 or 1, respectively, W 1 = V 1 and η 0 is constant: η 0 = 1 √ |S n-1 |
. The condition (1.8) is then simplified as ⟨V 1 , ϕ⟩⟨V 2 , ϕ⟩ < 0.

(1.10)

In particular, if

V 2 = -V 1 , one has ⟨V 1 , ϕ⟩⟨V 2 , ϕ⟩ = -|⟨V 1 , ϕ⟩| 2 < 0
for any resonant state ϕ, because ⟨V 1 , ϕ⟩ ̸ = 0 by the characterization of resonant states. As a consequence of Theorem 1.2, we deduce that under the conditions that n = 3, 4, V 1 = -V 2 verifying the condition (1.1) with ρ 1 = ρ 2 > 4 and zero is an eigenvalue or a resonance of H 1 , the number of eigenvalues of

H(γ) = -∆ + (1 + iγ)V 1 is given by N (γ) = { N 1 , if zero is not a resonance of H 1 ; N 1 + 1, if zero is a resonance of H 1 .
(1.11)

for γ > 0 sufficiently small. An example of the potential V 1 for which zero is a resonance but not an eigenvalue of H 1 is given in Section 3.

Theorem 1.1 is proved in Section 2. As a consequence, we deduce a global resolvent estimate on the whole real axis which may be useful to study the long-time quantum dynamics of the semigroup. The number of eigenvalues under dissipative perturbation is studied in Section 3. A Breit-Wigner type resolvent estimate is given near the eigenvalues. The main attention is payed to the case where zero eigenvalue and zero resonance of the selfadjoint operator H 1 are present. The techniques used in the proof of the both theorems are threshold spectral analysis.

Notation. H r,s , r, s ∈ R, denotes the weighted Sobolev space of order r defined by H r,s = {f ∈ S ′ (R n ); ⟨x⟩ s (1 -∆) r/2 f ∈ L 2 } equipped with the natural norm noted as ∥ • ∥ r,s . The dual product between H r,s and H -r,-s is identified with L 2 -scalar product. Denote H 0,s = L 2,s and H r,0 = H r . L(r, s; r ′ , s ′ ) is the space of continuous linear operators from H r,s to H r ′ ,s ′ and L(r, s) = L(r, s; r, s).

Spectral properties near the threshold

The following result is essential to prove Theorem 1.1.

Lemma 2.1. Let s ∈ [0, 1[. Suppose that the condition (1.1) is satisfied with ρ j > s + 1, j = 1, 2. Then u ∈ H 1,-s and Hu = 0 imply u = 0.

Proof. Let ρ ′ = min{ρ 1 , ρ 2 }. Then ρ ′ -s > 1 and one has -∆u = -V u ∈ L 2,ρ ′ -s , H 1 u = iV 2 u ∈ L 2,ρ ′ -s . The equation Hu = 0 gives ⟨u, H 1 u⟩ = i⟨u, V 2 u⟩. (2.1) 
We want to show that ⟨H 1 u, u⟩ is a real number, although u is not in the domain of the selfadjoint operator H 1 . To do this, we need to show that ∇u ∈ L

2 . Notice first that since u ∈ L 2,-s , ∆u ∈ L 2,s ⊂ L 2,-s and since ⟨x⟩ -s ∇(1 -∆) -1 ⟨x⟩ s is bounded on L 2 , one has ⟨x⟩ -s ∇u = (⟨x⟩ -s ∇(1 -∆) -1 ⟨x⟩ s )⟨x⟩ -s (1 -∆)u ∈ L 2 .
Therefore e -ϵ⟨x⟩ ∇u ∈ L 2 for any ϵ > 0 and one has

∥e -ϵ⟨x⟩ ∇u∥ 2 = ⟨e -2ϵ⟨x⟩ u, -∆u⟩ + 2ϵ⟨e -2ϵ⟨x⟩ u, x ⟨x⟩ • ∇u⟩. (2.2)
Since u ∈ L 2,-s for some s < 1, one has

|ϵ⟨e -2ϵ⟨x⟩ u, x ⟨x⟩ • ∇u⟩| ≤ M ϵ 1-s ∥⟨x⟩ -s u∥∥e -ϵ⟨x⟩ ∇u∥, (2.3) 
with M = sup r≥0 r s e -r . It follows that for ϵ 0 > 0 small enough

∥e -ϵ⟨x⟩ ∇u∥ 2 ≤ 1 1 -M ϵ 1-s |⟨e -2ϵ⟨x⟩ u, -∆u⟩| + M ϵ 1-s 1 -M ϵ 1-s ∥⟨x⟩ -s u∥ 2 , 0 < ϵ ≤ ϵ 0 . (2.4) Since -∆u ∈ L 2,s and u ∈ L 2,-s , |⟨e -2ϵ⟨x⟩ u, -∆u⟩| ≤ ∥u∥ L 2,-s ∥∆u∥ L 2,s ∀ϵ > 0.
We deduce that sup 0<ϵ≤ϵ 0 ∥e -ϵ⟨x⟩ ∇u∥ 2 < ∞ which implies ∇u ∈ L 2 and

∥∇u∥ 2 ≤ |⟨u, -∆u⟩|. Let χ ∈ C ∞ 0 (R n ) such that χ(x) = 1 for |x| ≤ 1, 0 for |x| ≥ 2. let χ R (x) = χ(x/R), R > 1. Then ⟨χ R u, -∆(χ R u)⟩ ≥ 0 and ⟨χ R u, -∆(χ R u)⟩ = ⟨χ R u, -χ R ∆u⟩ + ⟨χ R u, [-∆, χ R ]u⟩ → ⟨u, -∆u⟩, R → ∞.
When taking the limit, we used u ∈ L 2,-s , ∆u ∈ L 2,s with s < 1 and ∇u ∈ L 2 . This proves that ⟨u, -∆u⟩ ≥ 0. In particular, ⟨u,

H 1 u⟩ = ⟨u, -∆u⟩+⟨u, V 1 u⟩ is a real number.
It follows from (2.1) that ⟨H 1 u, u⟩ = 0 and ⟨V 2 u, u⟩ = 0. Since V 2 ≥ 0 and V 2 ̸ = 0, one has V 2 u = 0 and u(x) = 0 for x in a non trivial open set Ω. Now u is solution to the equation H 1 u = 0. We can apply the unique continuation theorem (see [START_REF] Ionescu | On the absence of positive eigenvalues of Schrödinger operators with rough potentials[END_REF]) to H 1 to conclude u = 0 on R n .

The same argument as that used in Lemma 2.1 shows that H has no real eigenvalues.

Corollary 2.2. Under the conditions of Theorem 1.1, zero is a regular point of H: if

Hu = 0 and u ∈ H 1,-s for any s > 1, then u = 0.

Proof. For u ∈ H 1,-s , ∀s > 1, and Hu = 0, one can expand u in terms of the eigenfunctions of -∆ S n-1 + q(θ) to show that

u(x) = ψ(θ) r n-2 2 +ν 1 + v, for r = |x| large, with ν 1 = √ µ 1 + (n-2) 2 4 > 0, ψ ∈ L 2 (S n-1 ) and v ∈ L 2 (|x| > 1). See Theorem 4.1 in [14]. This means that u is in fact in H 1,-s for any s ∈]1-ν 1 , 1[. Since min{ρ 1 , ρ 2 } = 2 > 1+s, Lemma 2.1 can be applied to conclude that u = 0. For z 0 ∈ C and r > 0, denote D(z 0 , r) = {z ∈ C; |z -z 0 | < r}, D ± (z 0 , r) = D(z 0 , r) ∩ C ± and D ′ (0, r) = D(0, r) \ [0, r[. Proof of Theorem 1.1. Let χ 1 (x) 2 + χ 2 (x) 2 = 1 be a partition of unity on R n with χ 1 ∈ C ∞ 0 such that 0 ≤ χ j ≤ 1 and χ 1 (x) = 1 for |x| ≤ 1. (1.
3) implies that the form defined by -∆ + q(θ) r 2 on C ∞ 0 (R n \ {0}) is positive. Let H 0 denote its Friedrich's extension. Then the following generalized Hardy's inequality holds: there exists c > 0 such that

⟨ 1 r 2 u, u⟩ ≤ c⟨u, H 0 u⟩, ∀ u ∈ D(H 0 ). (2.5) Set R0 (z) = χ 1 (-∆ + 1 -z) -1 χ 1 + χ 2 (H 0 -z) -1 χ 2 ,
and

K(z) = R0 (z)(H -z) -1,
for z ∈ D ′ (0, δ). One has

K(z) = χ 1 (-∆ + 1 -z) -1 ([∆, χ 1 ] + (V -1)χ 1 ) +χ 2 (H 0 -z) -1 ([∆, χ 2 ] + (V - q(θ) r 2 )χ 2
). Note that (-∆ + 1 -z) -1 is holomorphic for z near 0 and the asymptotics of (H 0 -z) -1 are computed in [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF] (see Theorem A.1 of Appendix A). In particular, (1.3) ensures that the ln z-term is absent. One deduces that the limit

F 0 = lim z→0,z̸ ∈R + R0 (z) exists in L(-1, s; 1, -s) for any s > 1. Since ρ ′ 1 > 2 and ρ 2 > 2, K(z) is a compact operator-valued function on H 1,-s , 1 < s < min{ρ ′ 1 /2, ρ 2 /2}
, holomorphic in D ′ (0, δ), continuous up to the boundary and

K(z) = K 0 + O(|z| δ 0 ) in L(1, -s; 1, -s) for some δ 0 > 0, where K 0 = lim z→0,z̸ ∈R + K(z) is a compact operator.
By the same method, one can show that the limits R 0 (λ ± i0) and K(λ ± i0) exist uniformly for λ near 0.

We claim that -1 is not an eigenvalue of K 0 . In fact, let u ∈ H 1,-s for any s > 1 such that K 0 u = -u. A standard ellipticity argument shows that u ∈ H 2 loc . By the expression of K 0 , one sees that

Hu = H 0 (u + K 0 u) = 0
in the open set where χ 2 (x) = 1. Therefore w := Hu is of compact support and

F 0 w = (1 + K 0 )u = 0.
In particular, ⟨w, F 0 w⟩ = q 1 (w) + q 2 (w) = 0, (

where

q 1 (w) = lim λ→0 - ⟨w 1 , (-∆ + 1 -λ) -1 w 1 ⟩ and q 2 (w) = lim λ→0 - ⟨w 2 , (-∆ + q(θ) r 2 -λ) -1 w 2 ⟩
with w j = χ j w, j = 1, 2. For each λ < 0, one has ⟨w 1 , (-∆ + 1 -λ) -1 w 1 ⟩ ≥ 0 and ⟨w 2 , (-∆ + q(θ) r 2 -λ) -1 w 2 ⟩ ≥ 0 (by (2.5) ). Taking the limit λ → 0, one obtains q 1 (w) ≥ 0 and q 2 (w) ≥ 0. (2.6) gives then q j (w) = 0, j = 1, 2. Since w ∈ L 2 , q 1 (w) = 0 gives that χ 1 w = 0. This proves w = Hu = 0. By Corollary 2.2, one has u = 0. Therefore -1 is not an eigenvalue of K 0 and (1

+ K 0 ) -1 exists in L(1, -s; 1, -s), s ∈]1, min{ρ ′ 1 /2, ρ 2 /2}
[. An argument of perturbation shows that 1 + K(z) is invertible for z ∈ D ′ (0, δ) with δ > 0 small enough and sup z∈∈D ′ (0,δ)

∥(1 + K(z)) -1 ∥ L(1,-s;1,-s) < ∞.
(2.7)

It follows from the equation R 0 (z)(H -z) = 1 + K(z) that H has no eigenvalues in D ′ (0, δ) and one has

R(z) = (1 + K(z)) -1 R 0 (z), z ∈ D ′ (0, δ), (2.8) 
and for any s > 1, sup z∈D ′ (0,δ) ∥⟨x⟩ -s R(z)⟨x⟩ -s ∥ < ∞. In addition, The existence of the limits

(1 + K(λ ± i0)) -1 = lim ϵ→0 + (1 + K(λ ± iϵ)) -1 in L(1, -s; 1, -s), s ∈]1, min{ρ ′ 1 /2, ρ 2 /2}
[ uniformly for λ ∈ R and λ near 0 implies the existence of the limits R(λ ± i0) in L(-1, s; 1, -s), s > 1, for λ in a neighborhood of 0.

Remark that R(λ + i0) = R(λ -i0) for λ < 0 since H has no spectrum in ] -∞, 0[. The same is true for λ = 0 by the proof given above.

Under the condition (1.1) with ρ j > 1, the limiting absorption principle from the upper-half complex plan for λ away from 0 can be deduced by an argument of perturbation ( [START_REF] Agmon | Spectral properties of Schrödinger operators and scattering theory[END_REF]) or by Mourre's theory for dissipative operators (see [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF]) which also applies to dissipative Schrödinger operators with long-range potentials). One deduces from Theorem 1.1 the following Corollary 2.3. Under the conditions of Theorem 1.1, one has for any s > 1

∥⟨x⟩ -s R(λ + i0)⟨x⟩ -s ∥ ≤ C s ⟨λ⟩ -1/2 , ∀ λ ∈ R.
(2.9)

The global resolvent estimate (2.9) can be used to study quantum dynamics of the semigroup e -itH , t > 0, such as the rate of time-decay and Kato's smoothness estimate for the semigroup. These problems of scattering nature will be treated in a separate publication.

Number of eigenvalues under dissipative perturbation

We are mainly interested in the perturbation of zero eigenvalue and zero resonance of H 1 . Let us begin with the easy case where zero is a regular point of the selfadjoint operator H 1 (see also [START_REF] Kako | Spectral and scattering theory for a class of non-selfadjoint operators[END_REF]).

Under the conditions (1.1)-(1.3) with ρ 2 > 2, H 1 = -∆ 1 +V 1 has only a finite number of eigenvalues:

σ 1 < σ 2 < • • • < σ k ≤ 0. (3.1)
The resolvent R 1 (z) of H 1 verifies for any δ > 0, s > 1/2,

∥⟨x⟩ -s R 1 (z)⟨x⟩ -s ∥ ≤ C δ |z| -1 2 , (3.2) 
for all z ∈ C \ R + with |z| > δ and |z -σ j | > δ. If zero is a regular point of H 1 , then σ k < 0 and one has for any s > 1,

∥⟨x⟩ -s R 1 (z)⟨x⟩ -s ∥ ≤ C, (3.3) 
for all z ∈ C \ R + with |z| ≤ δ for some δ > 0 small enough. Since ρ 2 > 2, we have

∥|V 2 | 1/2 R 1 (z)|V 2 | 1/2 ∥ ≤ C δ (3.4) for all z ∈ C \ R + with |z -σ j | > δ, j = 1, • • • , k, if zero is a regular point of H 1 . Proposition 3.1. Under the conditions (1.1)-(1.3), let H 1 = -∆ + V 1 and H(γ) = H 1 -iγV 2 , γ > 0. Let N (γ) (resp., N 1
) denote the number of eigenvalues of H(γ) (resp., H 1 ). Assume that zero is a regular point of H 1 . Then there exists some γ 0 > 0 such that

N (γ) = N 1 (3.5)
for 0 < γ < γ 0 . More precisely, for each eigenvalue σ j of H 1 with multiplicity m j , there exists δ > 0 such that H(γ) has m j eigenvalues in the disc {z; |z -σ j | < δ} given by

z k = σ j -iγa k + O(γ 2 ), γ ∈]0, γ 0 ], k = 1, • • • , m j , (3.6) 
for some a k > 0. One has the following Breit-Wigner type resolvent estimate

∥R(µ, γ)∥ ≤ max σ j ∈σ d (H 1 ) C δ |µ -(σ j -iγ)| , (3.7 
)

for µ ∈] -∞, -δ], δ > 0 and γ ∈]0, γ 0 ].
Proof. For each negative eigenvalue σ j < 0 of H 1 with multiplicity m j , a standard perturbation argument can be used to show that ∃δ 0 > 0 such that H(γ) has m j eigenvalues in D -(σ j , δ 0 ) if γ > 0 is small enough. In fact, let Π j denote the spectral projection of H 1 associated with the eigenvalue σ j . Then

E(z, γ) := ((1 -Π j )H(γ)(1 -Π j ) -z) -1 (1 -Π j )
is well defined and is uniformly bounded for |z -σ j | and γ sufficiently small. One has the following Feshbach-Grushin formula:

R(z, γ) = E(z, γ) -(1 + iγE(z, γ)V 2 )Π j (E -+ (z, γ)) -1 Π j (1 + iγV 2 E(z, γ)) (3.8) 
where

E -+ (z, γ) = Π j (z -σ j + iγV 2 -γ 2 V 2 E(z, γ)V 2 )Π j (3.9)
See also (3.19) below. The eigenvalues of H(γ) in a small disk around σ j coincide with the zeros of det E -+ (z, γ) there. Notice that Π j V 2 Π j ≥ 0, since V 2 ≥ 0. This operator is positive definite on Ran Π j , because if for some ψ ∈ Ran Π j , Π j V 2 ψ = 0, then V 2 ψ = 0, which means ψ(x) = 0 for x in some nontrivial open set. But ψ is an eigenfunction of H 1 with eigenvalue σ j . The unique continuation theorem shows that ψ = 0. Consequently, the eigenvalues, a 1 , • • • , a m j , of Π j V 2 Π j on Ran Π j are strictly positive. One can calculate that H(γ) has m j eigenvalues near σ j given by

z k = σ j -iγa k + O(γ 2 ).
Since E -+ (z, γ) can be diagonalized up to O(γ 2 ), we obtain

∥(E -+ (µ, γ)) -1 Π j ∥ ≤ C 1 |µ -(σ j -iγ)| (3.10)
uniformly in µ real, |µ -σ j | and γ > 0 small enough. It follows from (3.8) that (3.7) holds for R(µ, γ) for µ near σ d (H 1 ). For any δ > 0, one has

∥R 1 (µ)∥ ≤ C δ /|µ|, µ ≤ -δ and dist(µ, σ d (H 1 )) ≥ δ.
The global bound (3.7) for µ < -δ follows by an argument of perturbation.

For any fixed δ 0 > 0, let Ω = C -\ (∪ j D -(σ j , δ 0 )). It is easy to see that H(γ) has no eigenvalues in Ω when γ is sufficiently small. In fact, by (3.4), there exists γ 0 > 0 is such that

γ 0 ∥|V 2 | 1/2 R 1 (z)|V 2 | 1/2 ∥ < 1, (3.11) 
for all z ∈ Ω. Then, H(γ) has no eigenvalues in Ω if |γ| < γ 0 , because if u is an eigenfunction of H(γ) associated with the eigenvalue z 0 ∈ Ω,

H(γ)u = z 0 u, then v = |V 2 | 1/2 u ̸ = 0. v is a non zero solution of the equation v = -iγ|V 2 | 1/2 R 1 (z 0 )V 1/2 2 v, V 1/2 2 = sign V 2 |V 2 | 1/2 . This is impossible, because ∥γ|V 2 | 1/2 R 1 (z 0 )|V 2 | 1/2 ∥ < 1.
This proves that the total number of complex eigenvalues of H(γ) is equal to the number of negative eigenvalues of H 1 .

As is clear from the proof, the sign restriction on V 2 and γ is not necessary for (3.5), but it is necessary for the Breit-Wigner type resolvent estimate (3.7).

Let us study now the perturbation of zero eigenvalue and zero resonance. Assume that zero is an eigenvalue of H 1 = -∆ + V 1 with multiplicity k 0 and a resonance with multiplicity k. k 0 or k may eventually be equal to 0. We want to show H(γ) = H 1 -iγV 2 has m = k 0 + k complex eigenvalues near 0 when γ > 0 is sufficiently small. Threshold eigenvalues and resonances are unstable under perturbation and may produce both eigenvalues or quantum resonances (if the potential is dilation-analytic). Therefore, it may be interesting to see why zero eigenvalue and zero resonance of H 1 will be turned into eigenvalues of the dissipative Schrödinger operator H under weak perturbation.

Theorem 3.2. Assume (1.1)-(1.3) with ρ ′

1 > 4 and ρ 2 > 4, and (1.6). (a). If zero is an eigenvalue of multiplicity m, but not a resonance of H 1 , then there exists δ, γ 0 > 0 such that for 0 < γ < γ 0 , H(γ) has m eigenvalues in D -(0, δ).

(b). If zero is a resonance, but not an eigenvalue of H 1 , suppose in addition that the condition (1.8) is satisfied. Then for 0 < γ < γ 0 , H(γ) has one eigenvalue in D -(0, δ).

Proof. Let H 0 denote the Friedrich's realization of -∆ + q(θ) r 2 and

W 1 (x) = V 1 (x) - q(θ) r 2 .
(3.12)

Then

H 1 = H 0 + W 1 . Denote R j (z) = (H j -z) -1 , j = 0, 1.
The low-energy asymptotic expansion of R 0 (z) is calculated in [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF] and is recalled in Appendix A. One has

R 0 (z) = G 0 + z ν 1 G 1 + zG 2 + O(|z| 1+ϵ )
where G j is continuous from H -1,s to H 1,-s with s > j + 1 for j = 0, 2 and G 1 is a rank one operator given by

G 1 = c 0 ⟨η 0 , u⟩η 0 , u ∈ H -1,s , s > 2, (3.13) 
with η 0 defined in Introduction and

c 0 = - e -iπν 1 Γ(1 -ν 1 ) ν 1 2 2ν 1 +1 Γ(1 + ν 1 ) , if 0 < ν 1 < 1; c 0 = - 1 8 if ν 1 = 1. (3.14)
z ν 1 is defined by

z ν 1 = { e ν 1 ln z , ν 1 ∈]0, 1[ z ln z, ν 1 = 1.
with the branch of ln z chosen such that it is holomorphic on the slit complex plane

C \ R + and lim ϵ→0+ ln(γ + iϵ) = ln γ if γ > 0. Although W 1 is not H 0 -form compact, it
is still H 0 -form bounded by the Hardy's inequality (2.5). By the comparaison with the decomposition

H 1 = H ′ 0 + W ′ 1 , with H ′ 0 = χ 1 (-∆ + 1)χ 1 + χ 2 H 0 χ 2 where χ 2 1 + χ 2 2 = 1 with χ 2 (x) = 0 for
x near 0, one can show (see [START_REF] Jia | Some threshold spectral problems for Schrödinger operators[END_REF]) that 1 + G 0 W 1 is a Fredholm operator and its kernel, K, in H 1,-s coincides with that of 1

+ G ′ 0 W ′ 1 , where G ′ 0 = lim z→0,z̸ ∈R + (H ′ 0 -z) -1 , in L(-1, s; 1, -s).
Using the generalized Hardy inequality for H 0 , one sees that the Hermitian form

K × K ∋ (φ, ψ) → ⟨φ, -W 1 ψ⟩ ∈ C
is positive definite and there exists a basis {ϕ 1 ,

• • • , ϕ m }, m = k 0 + k, such that ⟨ϕ i , -W 1 ϕ j ⟩ = δ ij .
The assumption (1.6) implies that the multiplicity of the zero resonance is at most one. If zero is a resonance, we assume without loss that ϕ 1 is a resonant state and ϕ j , 2 ≤ j ≤ m, are eigenfunctions of

H 1 . Let Q : H 1,-s → H 1,-s , Qf = ∑ m j=1 ⟨-W 1 ϕ j , f ⟩ϕ j . Q is a projection from H 1,-s onto K. Set Q ′ = 1 -Q. One can show that range of Q ′ is closed and is equal to the range of 1 + G 0 W 1 in H 1,-s . Then the Fredholm theory shows that (Q ′ (1 + G 0 W 1 )Q ′ ) -1 Q ′ exists and is continuous on H 1,-s . See [5, 15]. Let R(z, γ) = (H(γ) -z) -1 , z ̸ ∈ σ(H(γ). One has the resolvent equations R(z, γ) = (1 -iγR 1 (z)V 2 ) -1 R 1 (z) = (1 + R 0 (z)(W 1 -iγV 2 )) -1 R 0 (z).
The eigenvalues of H(γ) in D -(0, δ) are the same as the set of z for which Hu = zu has a nontrivial solution u in H 1,-s for some

s > 0. Since R 0 (z) is holomorphic in C -, a point z 0 ∈ C -is an eigenvalue of H(γ) if and only if it is a pole of z → (1 + R 0 (z)(W 1 -iγV 2 )) -1
and their multiplicities are the same. Let

W (z, γ) = 1 + R 0 (z)(W 1 -iγV 2 ).
Then for any s > 1 and s near 1,

W (z, γ) = 1 + G 0 W + O(|z| ϵ + γ) in L(1, -s; 1, -s) for z ∈ D -(0, δ) and 0 < γ ≤ γ 0 . Since (Q ′ (1 + G 0 W 1 )Q ′ ) -1 Q ′ exists on H 1,
-s , we deduce that for δ and γ 0 small enough,

E ′ (z, γ) := (Q ′ W (z, γ)Q ′ ) -1 Q ′ exists on H 1,-s and ∥E ′ (z, γ)∥ L(1,-s;1,-s) is uniformly bounded for z ∈ D -(0, δ) and 0 < γ ≤ γ 0 .
This allows us to construct for z ∈ D -(0, δ) and 0 < γ ≤ γ 0 the inverse for the following Grushin problem

W(z, γ) = ( W (z, γ) T S 0 ) : H 1,-s × C m → H 1,-s × C m ,
where s > 1, T and S are given by

T c = m ∑ j=1 c j ϕ j , c = (c 1 , • • • , c m ) ∈ C m , Sf = (⟨-W 1 ϕ 1 , f ⟩, • • • , ⟨-W 1 ϕ m , f ⟩) ∈ C m , f ∈ H 1,-s .
This inverse is given by

W(z, γ) -1 = ( E(z) E + (z) E -(z) E +-(z)
)

,

where

E(z) = E ′ (z), (3.15) E + (z) = T -E ′ (z)W (z)T, (3.16) E -(z) = S -SW (z)E ′ (z), (3.17) E +-(z) = -SW (z)T + SW (z)E ′ (z)W (z)T. (3.18)
Here to simplify notation, the indication of dependance on γ is omitted. It follows that the inverse of W (z) is given by

W (z) -1 = E(z) -E + (z)E +-(z) -1 E -(z) on H 1,-s . (3.19)
Since E(z), E ± (z) and E +-(z) are holomorphic and uniformly bounded as operators on H 1,-s for z ∈ D -(0, δ) and γ > 0 small, z 0 is a pole of W (z) -1 in D -(0, δ) if and only if

F (z 0 , γ) := det E +-(z 0 ) = 0
and their multiplicities are the same (cf. [START_REF] Helffer | Résonances en limite semi-classique[END_REF]). Since the equation Hu = zu for u ∈ H 1,-s and ℑz < 0 implies u ∈ H 1,r for any r > 0, the poles of z → W (z) -1 in C -as operator on H 1,-s coincide with the eigenvalues of H.

We are now led to prove that for 0 < γ ≤ γ 0 small enough, F (z, γ) has m zeros in D -(0, δ). Since ϕ j ∈ L 2,-s for any s > 1, under the condition ρ ′ 1 > 4 and ρ 2 > 4, one can calculate the asymptotics of the matrix

E +-(z) = (⟨-W 1 ϕ j , (W (z) -W (z)E ′ (z)W (z))ϕ k ⟩) 1≤j,k≤m , (3.20) 
up to an error O(|z| 1+ϵ ). This computation is done in the case γ = 0 (see Proposition 4.4,[START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF]). In the case γ ̸ = 0, the calculation is similar. We give only the result and omit the details. One has

(E +-(z)) j,k = -iγv jk + z ν 1 a jk + z(b jk + r jk ) + O(|z| 1+ϵ ) (3.21)
where

v jk = ⟨ϕ j , V 2 ϕ k ⟩ (3.22) a jk = -c 0 (|c 1 | 2 δ 1j δ 1k -iγc 1 c ′ k δ 1k ) with (3.23) c 1 = ⟨W 1 η 0 , ϕ 1 ⟩, c ′ j = ⟨V 2 η 0 , ϕ j ⟩, (3.24) 
b jk = ⟨-W 1 ϕ j , G 2 W 1 ϕ k ⟩ + iγ⟨W 1 ϕ j , G 2 V 2 ϕ k ⟩ (3.25) r jk = ⟨-W 1 ϕ j , G 1 (W 1 -iγV 2 )E ′ (0)G 1 (W 1 -iγV 2 )ϕ k ⟩.
(3.26)

Here δ 1j = 1 or 0 according to whether j = 1 or not. In the case 0 is not a resonance, c 1 = 0. Remark also that if ϕ j and ϕ k are both eigenfunctions of H 1 ,

⟨W 1 ϕ j , G 2 W 1 ϕ k ⟩ = ⟨ϕ j , ϕ k ⟩ (3.27)
and if ϕ j is an eigenfunction of H 1 ,

r jk = 0, k = 1, • • • , m. (3.28) 
One can show as in Proposition 3.1 that the matrice (v jk ) is positive definite. In fact, it is clearly positive since V 2 ≥ 0. If 0 is an eigenvalue of this matrix, we can take an associated eigenvector d

= (d 1 , • • • , d m ) ∈ C m \ {0}. Let ψ = ∑ j d j ϕ j .
Then one has V 2 ψ = 0 and H 1 ψ = 0 which imply Hψ = 0. Lemma 2.1 shows that ψ = 0. This leads to a contradiction with the fact that ϕ 1 , • • • , ϕ m are linearly independent.

Consider firstly the case that zero is an eigenvalue but not a resonance of H 1 . One has a jk = 0 and

(E +-(z)) j,k = -iγv jk + z(-⟨ϕ j , ϕ k ⟩ + iγ⟨W 1 ϕ j , G 2 V 2 ϕ k ⟩) + O(|z| 1+ϵ ) (3.29)
Since the matrices (γv jk ) and (⟨ϕ j , ϕ k ⟩) are positive definite, F 0 (z, γ) = det(i(γv jk ) + z(⟨ϕ j , ϕ k ⟩)) has m zeros of the form z = -iγσ j , σ j > 0. Let -iγσ be one of the zeros of F 0 (z, γ) with order k. For some appropriate c > 0 such that the distance from zeros of z → F 0 (z, γ) to the circle ∂D(-iγσ, cγ) is at least c ′ γ for some c ′ > 0, one has

|F 0 (z, γ)| ≥ C 1 γ m , |F (z, γ) -F 0 (z, γ)| ≤ C 2 γ m+ϵ
for |z + iγσ| = cγ. For γ > 0 small, we can apply Rouché's theorem to F (z, γ) to conclude that F (z, γ) has also k zeros in the disk D(-iγσ, cγ). Therefore, the total number of zeros of F (z, γ) in D -(0, δ) are at least m. If z 0 is a zero of F (z, γ), the asymptotic expansion of F (z, γ) in z shows that ς = lim γ→0 z 0 /γ exists and γς is a zero of F 0 (z, γ). This allows to conclude that F (z, γ) has m zeros in D -(0, δ) for δ > 0 and 0 < γ < γ 0 small enough. Now assume that zero is a resonance, but not an eigenvalue of H 1 . E +-(z) is a scalar function, holomorphic in z ∈ D -(0, δ) and

E +-(z) = -iγv 11 -c 0 z ν 1 (|c 1 | 2 -iγc 1 c ′ 1 ) + O(|z|), (3.30) 
where v 11 > 0. Assume (1.8). The root of the equation

iγv 11 + c 0 z ν 1 (|c 1 | 2 -iγc 1 c ′ 1 ) = 0. (3.31) can be explicitly calculated. Set r = γv 11 |c 0 | |(|c 1 | 2 -iγc 1 c ′ 1 )| . Since c 1 c ′ 1 < 0 by the assumption (1.8), the argument, φ, of -γc 1 c ′ 1 + i|c 1 | 2 verifies 0 < φ < π 2 , lim γ→0 + φ = π 2 . (3.32)
With the above definitions of r and φ, (3.31) can be rewritten as Remark that r = O(γ) as γ → 0 and arg(ln ρ+iθ) → π -as ρ → 0 + . Set ln z ′ = τ e i(-π-σ) with τ = | ln z ′ |. For γ > 0 small enough, one can check that the system { τ e -τ cos σ = r, -σ + τ sin σ = φ + π has a unique solution (τ, σ) such that τ → ∞ and σ → 0 + as γ → 0. This shows that (3.37) has a unique solution z ′ = ρe iθ in D -(0, δ) given by ρ = |e τ e i(-π-σ) | = e -τ cos σ and θ = π + φ -σ. Using Rouché's theorem, one can show as before that E +-(z, γ) has just one zero in D -(0, δ) which is located inside the small disk D(z 0 , g(γ)), where g(γ) = aγ 1/ν 1 if ν 1 ∈]0, 1[ and g(γ) = aγ⟨ln γ⟩ -1 if ν 1 = 1, a > 0 being an appropriate constant. This proves that H(γ) has exactly one eigenvalue in D -(0, δ) and it is simple. Theorem 1.2 follows from Theorem 3.2 and the argument used Proposition 3.1 outside a small neighborhood of zero.

z ν 1 = - iγv 11 c 0 (|c 1 | 2 -iγc 1 c ′ 1 ) = re i(φ+π-arg c 0 ) . (3.33) For ν 1 ∈]0, 1[, z ν 1 = z ν 1 and c 0 = -e -iπν 1 Γ(1-ν 1 ) ν 1 2 2ν 1 +1 Γ(1+ν 1 ) . (3.33) becomes z ν 1 = re i(πν 1 +φ) . (3.34) When ν 1 ∈ [1/2, 1[, ( 3 
The case that zero is both an eigenvalue and a resonance can in principle be analyzed in a similar way, using the asymptotic expansion of E +-(z, γ) given above. But the evaluation of zeros of the determinant raises some technical difficulties when m is arbitrary. Without the assumption (1.6), zero resonance of H 1 may appear with arbitrary multiplicity. The matrix E +-(z, γ) can be still calculated, but its analysis is more complicated. We do not go further here. Remark 3.3. An example for which zero is not an eigenvalue, but a resonance of H 1 = -∆ + V 1 can be constructed as follows. Let n = 3 or 4 and let v 1 be a real-valued function satisfying (1.1) with ρ 1 > 4 and v 1 ≤ 0, v 1 ̸ = 0. Let H 1 (β) = -∆ + βv 1 . Then one can show that there exists a critical constant β 0 > 0 such that H 1 (β 0 ) ≥ 0 and H 1 (β) has at least one negative eigenvalue for any β > β 0 . Then zero is a resonance but not an eigenvalue of H 1 (β 0 ). A resonant state of H 1 = -∆ + β 0 v 1 can be constructed as weak limit of the fundamental state of H 1 (β) as β → β 0+ and it does not change sign. The condition (1.8) is then satisfied for V 1 = β 0 v 1 and for any V 2 ∈ C ∞ 0 (R n ) with V 2 ≥ 0 and V 2 ̸ = 0. In this example, the number of eigenvalues of H 1 is zero, while that of H 1 -iγV 2 is one for any γ > 0 small enough.

z ′ = d 1 γ 1 ν 1 ei(π+ π 2ν 1 -γd 2 )

 1112 .34) has a unique solution z ′ = ρe iθ in D -(0, δ) given by ρ = r 1/ν 1 and θ = π + ν -1 1 φ.(3.35)The above calculation gives the location of this root:(1 + o(1)) (3.36)for some d 1 , d 2 > 0.When ν 1 = 1, z ν 1 = z ln z and c 0 = -1 8 . z ′ = ρe iθ is a solution of (3.33) if ρe iθ (ln ρ + iθ) = re iφ (3.37)

Acknowledgement The author thanks the anonymous referee for his or her kind remark and suggestion on the proof of Lemma 2.1.

Research supported in part by the French national research project NONAa, No. ANR-08-BLAN-0228-01 and by Qian Ren project at Nanjing University.

Appendix A. Low-energy resolvent expansion on conical manifolds

In this appendix, we recall in a concise way the result of [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF] on low-energy resolvent expansion of the model operator. Consider the operator

on a conical manifold M = R + × Σ equipped with a Riemannian metric g, where Σ is an (n -1)-dimensional compact manifold, n ≥ 2. Here (r, θ) ∈ R + × Σ, q(θ) is a real continuous function and the metric g is of the form

with h a Riemannian metric on Σ independent of r. If Σ is of boundary, the Dirichlet condition is used for P 0 . We still denote by P 0 its Friedrich's realization with the core

Let π ν denote the orthogonal projection in L 2 (M ) onto the subspace spanned by the eigenfunction of -∆ h + q associated with the eigenvalue

Each term in the above expansion can be explicitly calculated. In particular, F j ∈ L(-1, s; 1, -s), s > 2j + 1 and G ν,j , j ≥ [ν] -, is of finite rank with its Schwartz kernel on L 2 (R + ; r n-1 dr) given by

for ν = l ∈ N and j ≥ l. P ν,k (ρ) is a polynomial of degree k in ρ:

Note that

The expansion of R 0 (z) is obtained by decomposing R 0 (z) into

Since the Schwartz kernel of e -itQν is given by 1

where J ν (•) is the Bessel function of the first kind of order ν (see [START_REF] Taylor | Partial differential equations II[END_REF]) and

for ℑz > 0. The formula (2.6) in [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF] for this kernel contains a wrong sign. The coefficients in (A.5) and (A.6) are obtained from the constants given in Section 2 and Appendix A of [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF], in taking into account some sign corrections. Note that under the assumption (1.8), the continuity of F j and the remainder estimate can be improved. See Remark 2.4 in [START_REF] Wang | Threshold energy resonance in geometric scattering[END_REF].
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