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ZERO-THRESHOLD RESOLVENT ASYMPTOTICS OF

THREE-BODY SCHRÖDINGER OPERATORS

XUE PING WANG

Abstract. We analyze the spectral properties for three-body Schrödinger op-
erators at the threshold zero and give some results on the asymptotics of resol-
vent under the condition that zero is a regular point for all two-body Subhamil-
tonians.

1. Introduction

The Efimov effect theoretically discovered by V. Efimov in 1970 ([5]) de-
scribes an interesting and unexpected phenomenon for three-body Schrödinger
operators which can be roughly stated as follows. When the essential spectrum of
the three-particle Hamiltonian is the positive real axis, and when at least two of
its two-body Subhamiltonians have a resonance at the threshold zero, the discrete
spectrum of the three-body Schrödinger operator is infinite, even if the interac-
tions are very short-range. This phenomenon is striking if one compares it with
the results on the finiteness of eigenvalues of two-body Schrödinger operators or
N -body Schrödinger operators whose bottom of essential spectrum is only reached
by the spectrum of two-cluster Subhamiltonians ([6, 17]). Since then, many works,
both in mathematical and physical literature, are devoted to this subject (see, for
example, [1, 2, 3, 9, 10, 13, 15, 16, 19, 21, 23]).

Mathematical study of the three-body Efimov effect for Schrödinger operators
is carried out in [13, 15, 23]. The analysis is based on threshold spectral properties
of two-body Schrödinger operators in presence of zero resonance which is an inter-
esting topic in itself. See [4, 7, 11] and the references quoted therein and [12, 20, 22]
for some more recent results when the potential has a critical decay like − γ

|x|2
at

the infinity. For N -body systems with N ≥ 4, R. D. Amado and F. C. Green-
wood ([2]) discussed the contribution of zero energy resonance of (N − 1)-particle
subsystems to the discrete spectrum of the total system and argued heuristically
that singularities in some integral are not strong enough to make it divergent and
concluded that there is no Efimov effect for four or more particle systems. Notice
that for N -body systems, there are many possible spectral configurations. In [19],
the author of the present work proved the existence of N-body Efimov effect when
the bottom of the essential spectrum is strictly negative.
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More precisely, let P be an N -body Schrödinger operator, N ≥ 4, obtained
by removing mass-center from the operator

−

N
∑

j=1

1

2mj

∆xj
+

∑

1≤i<j≤N

Vij(xi − xj), xj ∈ R
3, (1.1)

where xj and mj denote the position and mass of the j-th particle. Assume that

|Vij(y)| ≤ C⟨y⟩−ρ, y ∈ R
3, ρ > 2, (1.2)

where ⟨y⟩ = (1+ |y|2)1/2. For a cluster decomposition a of the N -body system, let
P a denote the Subhamiltonian associated with a and #a the number of clusters
in a. Assume that the bottom of the essential spectrum, E0, of P is attained by a
three-cluster decomposition b = (b1, b2, b3):

inf σ(P b) = E0 := inf σess(P ). (1.3)

Let ak = (bi ∪ bj, bk), k = 1, 2, 3, be two-cluster decompositions resulting from b,
where i, j and k take distinct values in {1, 2, 3}. By the HVZ Theorem, one has
σ(P ak) = [E0,∞[, k = 1, 2, 3. We say that E0 is unique three-cluster if

inf σ(P a) = E0, a ∈ {b, a1, a2, a3}; inf σ(P a) > E0, a ̸∈ {b, a1, a2, a3},#a ≥ 2.
(1.4)

For technical reasons, we also assume that the inter-cluster interactions related to
b are attractive: if the pair (ij) is not included in one cluster of b, then

Vij(y) ≤ 0. (1.5)

Theorem 1.1 ([19]). Let N ≥ 4. Let the conditions (1.2) with ρ > 2, (1.4)
and (1.5) be satisfied. Assume that each of the two-cluster Subhamiltonians P aj ,
j = 1, 2, 3, has a threshold resonance at E0. Let N(λ) denote the number of the
eigenvalues of P below λ < E0. Then, there exists C0 > 0 depending only on the
reduced masses of the clusters b1, b2, b3 such that

N(λ) ≥ C0| log(E0 − λ)| (1.6)

for λ < E0 and λ near E0.

In fact, Theorem 1.1 is proved in [19] for generalized N -body Schrödinger
operators including atomic-type ones and mild local singularities are allowed. The
accumulation towards E0 of eigenvalues of P is clearly due to the presence of
threshold resonances of two-cluster Subhamiltonians, which is a phenomenon sim-
ilar to the well-known three-body Efimov effect. The proof is based on the result
of [18] on the spectral analysis of N -body Schrödinger operator near a two-cluster
threshold, in particular, the contribution of two-cluster threshold resonance to the
singularity of the resolvent. In [21], we studied the existence of two-cluster thresh-
old resonances, which allows us to construct a concrete example of the four-body
Efimov effect: there exists some constants α, β, gj > 0 such that all conditions
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(hence the conclusion) of Theorem 1.1 hold for the four-body Schrödinger opera-
tor with Yukawa-type potentials

P = −β(∆x1 +∆x2 +∆x3)−
αe−α|x1|

|x1|
− g1

e−|x2−x3|

|x2 − x3|
(1.7)

−g2(
e−|x2|

|x2|
+

e−|x1−x2|

|x1 − x2|
)− g3(

e−|x3|

|x3|
+

e−|x1−x3|

|x1 − x3|
), xj ∈ R

3.

The parameters α, β are adjusted to guarantee the unique three-cluster condition
with the three-cluster decomposition b = {(01), 2, 3} (the mass center being fixed
at 0 here), while the coupling constants gj are varied in such a way that each
two-cluster Subhamiltonian has a threshold resonance at some critical value. See
[21] for more information. Thus mathematically the N -body Efimov effect exists
if the bottom of the essential spectrum is unique three-cluster. Note that our re-
sults are not in discrepancy with the claim of [2], because it concerns a different
spectral configuration: zero-threshold in four-body problems does not verify the
unique three-cluster assumption. It is an interesting open question to show rigor-
ously whether or not the Efimov effect can happen at zero-threshold of four-body
systems.

To study the Efimov effect for N -body Schrödinger operators when the unique
three-cluster assumption is not satisfied, the first step is to understand the singu-
larities at the threshold of the resolvent of three-cluster Subhamiltonians. In this
work, we analyze the threshold zero for three-body Schrödinger operators under
the assumption that the potentials are weak enough so that none of the two-body
Subhamiltonians has negative eigenvalues, nor zero resonance. It reveals that the
related mathematical questions are highly nontrivial. We discuss the notion of
three-body zero resonance and give the asymptotics of the resolvent when zero is
a regular point. We also give a brief discuss on some open questions on this topic.

Notation. For s ∈ R and k ∈ Z, we denote by L2,s and Hk,s the weighted-L2

and weighted-Sobolev spaces L2(⟨x⟩2sdx) and Hk(⟨x⟩2sdx), respectively. For two
Banach spaces B and B′, L(B,B′) is the space of linear continuous operators from
B to B′ and L(B) = L(B,B). Set L(k, s; k′, s′) = L(Hk,s, Hk′,s′) and L(s; s′) =
L(0, s; 0, s′).

2. Zero-resonant states for three-body systems

Let P be a three-body Schrödinger operator obtained from

−
3
∑

j=1

1

2mj

∆x(j) +
∑

1≤i<j≤3

Vij(x
(i) − x(j)) (2.1)

by removal of the mass center, where ∆x(j) is the Laplacian in x(j) ∈ R
3, mj > 0,

and Vij(y) satisfies
|Vij(y)| ≤ C⟨y⟩−ρ, y ∈ R

3. (2.2)
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for some ρ > 0. The configuration space is

X = {(x(1), x(2), x(3));
1

M

3
∑

j=1

mjx
(j) = 0},

with M = m1+m2+m3, which is identified with R
6. For a cluster-decomposition

a = {(ij), k} of the whole system labelled by {1, 2, 3}, where i, j, k take distinct
values in {1, 2, 3}, denote by (xa, xa) the associated clustered Jacobi coordinates
in X, Va(x

a) is the function Vij(x
(i) − x(j)) expressed in terms of the intracluster

coordinates xa. The Two-body Subhamiltonian associated with a is

P a = −
1

2µk

∆xa + Va(x
a), (2.3)

µa being the effective mass defined by

1

µa

=
1

mi

+
1

mj

.

Let A denote the set of two-cluster decompositions for the three-body system.
Denote by ∆ the Laplacian on X equipped with the metric q(x) =

∑

j 2mj|xj|
2

on X. Then P can be written as

P = −∆+
∑

a∈A

Va(x
a) (2.4)

To be simple, we assume in the following that all constants are appropriately
normalized. Denote P0 = −∆, Pa = −∆ + Va(x

a). Pa can also be written as
Pa = −∆xa

+ P a. Let R(z) = (P − z)−1, (resp., Ra(z), R0(z)) the resolvent of P
(resp., of Pa and P0) for z ̸∈ σ(P ). One has the resolvent equation

R(z) = R0(z)−
∑

a∈A

R0(z)VaR(z) (2.5)

= R0(z)−
∑

a∈A

R0(z)VaRa(z) +
∑

a,b∈A,a ̸=b

R0(z)VaRa(z)VbR(z)

It follows that

R(z) = (1−K(z))−1R0(z)(1−
∑

a∈A

VaRa(z)), (2.6)

where K(z) =
∑

a,b∈A,a ̸=b R0(z)VaRa(z)Vb. The main assumptions of this work are
the following

A. |Va(y)| ≤ C⟨y⟩−ρ, y ∈ R
3, ρ > 0.

B. P a ≥ 0 and zero is a regular point (i.e., zero is neither eigenvalue nor
resonance) of P a for any two-cluster decomposition a = {(ij), k}.

P0 is a six dimensional Laplacian whose Green function can be explicitly
computed. One has the following resolvent asymptotics:

R0(z) =
N
∑

j=0

zjFj+
N
∑

j=2

zj ln zGj+O(|z|N+ϵ), in L(−1, s; 1,−s), s > 2N+1, (2.7)
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for z near 0 and z ̸∈ R+. Here Fj, Gj ∈ L(−1, s; 1,−s), s > 2j+1. More precisely,
F0 ∈ L(−1, s; 1,−s′) if s, s′ > 1/2 and s + s′ > 2 and G2 is an integral operator
with the constant integral kernel

G2(x, y) = −
1

4|S5|
. (2.8)

See, for example, [8] or Theorem 2.2 in [22] for Laplacian on a cone. Making use
of a partial Fourier transform and the resolvent properties of three-dimensional
Laplacian, one sees that

⟨u⟩−sF0⟨u⟩
−s′ ∈ L(L2(R6)), u = xa or xa (2.9)

if s, s′ > 1/2 and s+ s′ > 2.

Lemma 2.1. Let f(x), g(x) be locally bounded on R
6 satisfying for some s, s′ < 1

and s + s′ < −3, |f(x)| = O(⟨x⟩s) and |g(x)| = O(⟨x⟩s
′

). Then the operator
f(x)F0g(x) is compact in L2(R6). In particular, F0 maps L2,s into L2 if s > 3.

Proof. Let χ be a cut-off around 0 ∈ R: χ(λ) = 0 for |λ| ≥ 1; 0 for |λ| ≤
1/2. Clearly, f(x)(1 − χ(P0))F0g(x) is a compact operator. The integral kernel
of χ(P0)F0 is locally bounded and behaves like O( 1

|x−y|4
) at infinity. Under the

condition on s and s′, one can check that the integral kernel of f(x)χ(P0)F0g(x)
belongs to L2(R6×R

6). Therefore f(x)χ(P0)F0g(x) is a Hilbert-Schmidt operator,
hence also compact. ✷

Lemma 2.1 shows in particular that for a two-body Schödinger operator
−∆ + U(x) on R

6 with a sufficiently rapidly decreasing potential U(x), if u ∈
L2(R6, ⟨x⟩−2sdx) for some s > 1/2 and (−∆+ U(x))u = 0, then u = −F0Uu and
u is in L2. This implies that 0 is never a resonance for six-dimensional two-body
Schrödinger operators with rapidly decreasing potentials with ρ > 2 sufficiently
large. See [8]. Notice however that zero can still be a resonance in any space di-
mension if U(x) has a critical-decay like − γ

|x|2
([22]). Lemma 2.1 does not directly

apply to three-body operators, because the total potential does not decay on the
whole configuration space. In the following, we analyze the threshold properties
by taking into account the geometry of three-body problems.

Lemma 2.2. Let a, b be two cluster decompositions with a ̸= b. Assume ρ > 7/2.
For s ∈]1

2
,min{1, ρ− 3}[, ⟨xa⟩−sF0VaF0Vb⟨x⟩

s is a compact operator on L2(R6).

Proof. Write

⟨xa⟩−sF0VaF0Vb⟨x⟩
s = (⟨xa⟩−sF0⟨x

a⟩−s′)(⟨xa⟩s
′

VaF0Vb⟨x⟩
s).

For any s, s′ > 1/2 and s + s′ > 2, ⟨xa⟩−sF0⟨x
a⟩−s′ is bounded. Let a ̸= b. Then

(xa, xb) forms a coordinate system of R6 and

⟨x⟩s ≤ Cs(⟨x
a⟩s + ⟨xb⟩s). (2.10)

To show that ⟨xa⟩−ρ+s′F0⟨x
b⟩−ρ⟨x⟩s is compact on L2, if s < 1 and ρ−s−s′ > 3/2,

we use the cut-off in energies introduced in Lemma 2.1. Operator

⟨xa⟩−ρ+s′χ0(P0)F0⟨x
b⟩−ρ⟨x⟩s
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is compact on L2 if ρ−s−s′ > 0. The integral kernel of ⟨xa⟩−ρ+s′χ0(P0)F0⟨x
b⟩−ρ⟨x⟩s

can be bounded by ⟨xa⟩−ρ+s′O(|x − y|−4)⟨yb⟩−ρ⟨y⟩s for |x|, |y| and |x − y| large.
Since a ̸= b, one can use (xa, xb) as coordinate system on R

6 to evaluate the
integral. By (2.10), one has for ρ > 7/2

|

∫

R6
y

1

⟨x− y⟩8
⟨yb⟩−2ρ⟨y⟩2sdya dyb|

≤ Cϵ(⟨x
a⟩2s⟨xb⟩−5+ϵ + ⟨xb⟩−5+2s+ϵ) (2.11)

for any ϵ > 0. This shows that

⟨xa⟩−ρ+s′O(|x− y|−4)⟨yb⟩−ρ⟨y⟩s

is square-integrable on R
12 if s < 1 and ρ − s′ − s > 3/2 and it defines Hilbert-

Schmidt operator on L2. If ρ > 7
2
and s ∈]1

2
, ρ − 3[, there exists s′ > 1

2
such that

2− s < s′ < ρ− s− 3
2
. The decay conditions on potentials gives the desired result.

✷

Proposition 2.3. Let a, b ∈ A with a ̸= b. Assume that 0 is a regular point of
P a. Then for ρ > 2, the limit

Ra(0) = lim
z→0,z ̸∈R+

Ra(z) (2.12)

exists as operator from L2(⟨xa⟩2sdx) to L2(⟨xa⟩−2s′dx), s, s′ > 1/2 and s+s′ > 2. In
addition, for ρ > 7/2, s ∈]1/2,min{1, ρ− 3}[, F0VaRa(0)Vb is a compact operator
on L2,−s.

Proof. By the partial Fourier transform in xa-variables, Pa = P0 + V a(xa) is
unitarily equivalent with P a + |ξa|

2, ξa being the dual variables of xa. Using the
well-known results for two-body Schrödinger operators in dimension three([7]),
one sees that

lim
z→0,z ̸∈R+

R0(z)Va = F0Va

in L(L2(⟨xa⟩−2sdx)) for any s > 1/2 if ρ > 2 and that if 0 is a regular point of P a,
the limit

Ra(0) := lim
z→0,z ̸∈R+

Ra(z) = (1 + F0Va)
−1F0 : L

2(⟨xa⟩2sdx) → L2(⟨xa⟩−2s′dx)

(2.13)
exists and is continuous if s, s′ > 1/2 and s+ s′ > 2.

To see the second part of Proposition 2.3, we write:

F0VaRa(0)Vb = (1− F0Va(1 + F0Va)
−1)F0VaF0Vb

According to Lemma 2.2, ⟨xa⟩−sF0VaF0Vb⟨x⟩
s is a compact on L2 when a ̸= b.

Since zero is a regular point of P a and ρ > 7/2, F0Va(1 + F0Va)
−1 is bounded on

L2(⟨xa⟩−2sdx). Therefore F0VaRa(0)Vb is compact on L2,−s if s > 1/2. ✷

From Proposition 2.3, one deduces the following
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Corollary 2.4. Assume that 0 is a regular point of all two-body subhamiltonians
and ρ > 7

2
. Then, operator

K =
∑

a,b∈A,a ̸=b

F0VaRa(0)Vb : L
2,−s → L2,−s (2.14)

is compact if s ∈]1
2
,min{1, ρ− 3}[.

By studying the dependence on z of R0(z) and Ra(z), one can deduce that

lim
z→0,ℜz<0

K(z) = K (2.15)

in norm of operators on L2,−s. See the next Section.

Corollary 2.5. Assume the conditions of Corollary 2.4. Then, one has

ker(1−K) = {u ∈ H1,−s; v := Pu ∈ H−1,s and v =
∑

a∈A

VaRa(0)v}. (2.16)

The null space of P in H1,−s is included in ker(1−K). In particular, if zero is an
eigenvalue of P , its multiplicity is finite.

Corollary 2.5 can be deduced from the equation

1−K(z) = R0(z)(1−
∑

a∈A

VaRa(z))(P − z) (2.17)

by studying the limit z → 0. The finiteness of the multiplicity of zero-eigenvalue
of P follows from the compactness of K. Remark that different from two-cluster
threshold problems ([18]), one can not affirm here whether ker(1 − K) coincides
with the null space of P in H1,−s. Zero is said to be a resonance of P if ker(1−K)
does not coincide with the zero-eigenspace of P . Any nonzero function u ∈ ker(1−
K) which is not an eigenfunction of P is called a zero-resonant state of P . We say
that zero is a regular point of P if ker(1−K) = {0}.

3. Resolvent asymptotics at zero-threshold

In this Section, we give some results on the asymptotics of the resolvent at
the threshold zero and sketch the proof. To be simple, we only study the resolvent
R(z) in the limit z → 0 with z = −λ, λ > 0. The results still hold if z approches
to zero in a sector | arg z − π| ≤ π

2
− ϵ, ϵ > 0. It is known that the assumptions

on two-body Subhamiltonians ensures that P has only a finite number of negative
eigenvalues ([15]) and R(−λ) is well-defined for λ > 0 small enough.

Theorem 3.1. Assume the conditions A and B with ρ > 7/2. Suppose that zero
is a regular point of P . Then for s > 3/2, one has for some σ > 0

R(−λ) = R(0) +O(|λ|σ), λ → 0+, (3.1)
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in L(−1, s; 1,−s). Here R(0) is defined by

R(0) = (1−K)−1F0(1−
∑

a∈A

VaRa(0)) (3.2)

To begin with, remark that the free-resolvent R0(λ) can be expanded in λ as
operator from L2(⟨xa⟩2sdx) to L2(⟨xb⟩−2sdx) for any two-cluster decompositions a
and b.

When a = b, by the partial Fourier transform in xa-variables and the Green-
function for three-dimensional Laplacian, one has for any N ∈ N

R0(−λ) = F0 +
N
∑

k=1

r(λ)nHn +O(|λ|N/2+ϵ) (3.3)

in L(L2(⟨xa⟩2sdx);L2(⟨xa⟩−2sdx)) for s > N + 1. Here F0 is given before and r(λ)
and Hn are defined in terms of (xa, ξa) with ξa the dual variables of xa:

r(λ) :=
λ

√

|ξa|+ λ+ |ξa|
, (3.4)

Hn :=
(−1)n

4πn!
|xa − ya|n−1e−|ξa||xa−ya|, n ≥ 1. (3.5)

Remark that

r(λ)nHn = O(λn/2)

in L(L2(⟨xa⟩2sdx);L2(⟨xa⟩−2sdx)) for s > n+1. In particular, one can deduce that

R0(−λ) = F0 +O(|λ|ϵ), ϵ > 0, (3.6)

in L(L2(⟨xa⟩2sdx);L2(⟨xa⟩−2s′dx)) if s, s′ > 1/2 and s+ s′ > 2.

When a ̸= b, we use the formula of the distributional kernel R0(x, y;−λ) for
R0(−λ)

R0(x, y;−λ) =
1

(4π)3|x− y|4

∫ ∞

0

e−
1
4s

−λs|x−y|2s−3 ds. (3.7)

See formula (6.49) in p. 232 of [14]. It follows that

R0(x, y;−λ) =
1

(4π)3|x− y|4
(τ(0) + λ|x− y|2

∫ ∞

0

e−λs|x−y|2τ(s) ds) (3.8)

where τ ′(s) = e−
1
4s s−3 and τ(s) = O(s−2) as s → +∞. As in Section 3, by

separating high and low energy parts and by making use of the bound

e−λs|x−y|2 ≤ Cσ′(λs|x− y|2)−σ′

, σ′ ∈]
1

2
, 1[,

for |x − y| large, one deduces that if α > 3/2, the Hilbert-Schmidt norm of the
operator with integral kernel

λ

(4π)3|x− y|2
⟨xa⟩−α⟨yb⟩−α

∫ ∞

0

e−λs|x−y|2τ(s) ds



ZERO THRESHOLD IN THREE-BODY PROBLEMS 9

is bounded by O(λσ) with σ = 1− σ′. Therefore, in the case a ̸= b, one has

R0(−λ) = F0 +O(|λ|σ) (3.9)

in L(L2(⟨xb⟩2sdx);L2(⟨xa⟩−2sdx)) for s > 3/2. In the same way, one can show
that the above expansion also holds in L(L2(⟨xb⟩2s⟨xa⟩−2rdx);L2(⟨xa⟩−2s−2rdx)) if
r ∈]0, 1[, s > 3/2 and σ < 1−r

2
. Similarly, one can prove the following results for

Ra(z).

Proposition 3.2. Assume the conditions A and B with ρ > 7/2. Let a, b be
two-cluster decompositions with a ̸= b. The following expansions hold as λ → 0+.

(a). For any s > 3/2 and σ ∈]0, 1/2[, one has

Ra(−λ) = Ra(0) +O(λσ), (3.10)

in L(L2(⟨xb⟩2sdx);L2(⟨xa⟩−2sdx)).
(b). One has

R0(−λ)VaRa(−λ)Vb = F0VaRa(0)Vb +O(λσ), (3.11)

in L(1,−s; 1,−s) for s ∈]1/2,min{1, ρ− 3}[ and σ ∈]0, 1−s
2
[.

Theorem 3.1 follows from Proposition 3.2 and equation (2.6) by noticing that
if s > 3/2, one has for some σ > 0

R0(−λ)(1−
∑

a

VaRa(−λ)) = F0(1−
∑

a∈A

VaRa(0)) +O(|λ|σ) (3.12)

in L(−1, s; 1,−s′) for any s′ > 1/2 and that 1 − K(−λ) = 1 − K + O(λσ) in
L(1,−s′; 1,−s′) for s′ > 1/2 and sufficiently close to 1/2.

Remark. Under some additional conditions, we can give a leading term of the
resolvent R(z) when ker(1 −K) is non trivial. Let dim ker(1 −K) = m ̸= 0 and
{φ1, · · · , φm} a basis of ker(1−K). Assume that all φj are in L2,s for some s > 0
sufficiently large. Then one can study the inverse of the following Grushin problem

K(z) =

(

1−K(z) T

T ∗ 0

)

: L2,−s × C
m → L2,−s × C

m, (3.13)

where s > 1/2, T is defined by

Tc =
m
∑

j=1

cjφj, c =





c1
...
cµ



 ∈ C
m

and T ∗ is the formal adjoint of T . The inverse of K(z) can be explicitly calculated
as in [18]. Set K(z)−1 into the form

K(z)−1 =

(

E(z) E+(z)

E−(z) E−+(z)

)

.

Then one has a representation formula for (1−K(z))−1 when z is away from the
positive real axis:

(1−K(z))−1 = E(z)− E+(z)(E−+(z))
−1E−(z). (3.14)
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The leading terms of E(z) and E±(z) can be computed in the case where zero is a
regular point of P . The calculation of singularities of (1−K(z))−1 is then reduced
to the analysis of the m × m matrices E−+(z). When all φj decays sufficiently
rapidly, one can establish an asymptotics of the form

E−+(z) = zE
(1)
−+ + o(|z|) (3.15)

when z → 0 in a small sector around the negative real axis. If the matrix E
(1)
−+

is invertible, then one can show that the leading singularity of the resolvent R(z)
at zero is of the form Πm

z
where Πm is an operator of rank m. But it is known

that threshold eigenfunctions do not decay rapidly in general and we are unable
to produce an example such that these conditions are satisfied.

Open Questions. As the reader may feel, many questions on the zero threshold
of three-body Schrödinger operators remain open. Here we discuss some of them.

(1) Can one establish a higher order expansion for R(z) when 0 is a regular
point of P under stronger decay assumptions on Va? As seen above, the
difficulty comes from the validity of the expansion for VaR0(z)Vb with a ̸= b.
Other more refined methods, such as microlocal analysis, may be useful.

(2) Does there exist zero resonant states for three-body operators, or more
generally, does ker(1−K) coincide with the null space of P in L2,−s?

(3) What is the leading term of the resolvent R(z) when z → 0 when 0 is
not a regular point of P? If ker(1−K) coincides with the zero-eigenspace
of P , one expects that the leading singularity is of the form 1

z
. Even this

result is not easy to prove without additional decay assumptions on zero-
eigenfunctions. A more important question is if zero-resonant states do
exist, what are their contributions to the singularities of R(z)? The answer
to these questions is crucial to see if three-body zero-eigenfunctions or
zero-resonant states can produce a four-body Efimov effect.
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