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TIME-DECAY OF THE SEMIGROUP OF DISSIPATIVE

SCHRÖDINGER OPERATORS

XUE PING WANG

Abstract. We establish a representation formula for semigroup of contraction in
terms of global limiting absorption principle from the upper-half complex plane. As
applications, we prove time-decay estimates of the semigroup of contractions generated
by −iH where H is a dissipative Schrödinger operator.

1. Introduction

Let H = −∆ + V (x) be the Schrödinger operator with a complex-valued potential V
satisfying V = V1 − iV2, where V1 and V2 are real functions satisfying V2(x) ≥ 0 and
V2(x) > 0 on some non-trivial open set. Suppose that

|Vj(x)| ≤ C〈x〉−ρ0 , x ∈ R
n, (1.1) ass1

for some ρ0 > 1. Here 〈x〉 = (1 + |x|2)1/2. Mild local singularities can be included
with little additional effort. Denote H0 = −∆ and H1 = −∆ + V1. H defined
on D(−∆) is maximally dissipative and the numerical range of H is contained in
{z;ℜz ≥ −R,−R ≤ ℑz ≤ 0} for some R > 0.

2. Some abstract results

Let H1 and V2 be selfadjoint operators on some Hilbert space H, with H1 semi-
bounded from below, V2 ≥ 0 and relatively compact with respect to H1. H = H1 − iV2

is maximally dissipative on H. Let S(t) := e−itH , t ≥ 0, be the strongly continuous
semigroup generated by −iH. In this Section, we give two results on S(t) based on the
existence of a limiting absorption principle for H on the whole real axis. There results
are to be applied in the next Section to a class of dissipative Schrödinger operators on
R

n, n ≥ 2.
Since V2 is H1 compact, one sees that ∀δ0 > 0, ∃R1 > 0 such that the numerical range

of H is contained in the sector

{z ∈ C;ℜz > −R1,−δ0 ≤ arg(z + R1) ≤ 0}.
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Let δ0 < π be fixed. For ǫ0 > 0 small enough and for all ǫ ∈]0, ǫ0], the set {λeiǫ; λ ∈
R, |λ| > R1} is contained in the resolvent set of H. Assume that there exists a dense
subset D ⊂ H such that {f ∈ D ∩ D(H); Hf ∈ D} is dense in H and

• For any λ ∈ R, the limit

〈R(λ + i0)f, g〉 = lim
ǫ→0+

〈R(λ + iǫ)f, g〉 (2.1) ass1

exists for any f, g ∈ D and is continuous in λ ∈ R.
• There exist R > 1, k ∈ N

∗, ρ, σ > 0 with ρ + kσ > 1 such that for any f, g in D,
λ → 〈R(λ + i0)f, g〉 is Ck for |λ| > R and

|
dj

dλj
〈R(λ + i0)f, g〉| ≤ Cf,g〈λ〉

−ρ−jσ, (2.2) ass2

for j = 0, 1, . . . , k and |λ| > R.

Theorem 2.1. Under the conditions (
ass1
2.1) and (

ass2
2.2), one has

〈e−itHf, g〉 =
1

2πi

∫

R

e−itλ〈R(λ + i0)f, g〉dλ, t > 0, (2.3)

for f, g ∈ D.

Proof. Denote Hǫ = e−iǫH, ǫ > 0. Then the numerical range of Hǫ is contained in

Nǫ := {e−iǫz; ℜz > −R1,−δ0 ≤ arg(z + R1) ≤ 0}

for some R1 > 1. Therefore for each ǫ > 0 small enough, Hǫ − iR1ǫ is maximally
dissipative and strictly m-sectorial and −iHǫ generates a semigroup e−itHǫ , t ≥ 0, which
can be represented in a usual way (cf.

k
[12], pp 489-491). For R0 > ǫR1, let Γǫ,R be a

contour in ρ(Hǫ) composed of the segment {ℑz = R0,ℜz ∈ [−R1 − 1, R1 + 1]} and the
two rays (−R1 − 1+ iR0)+ ei(π+ǫ/2)

R+ and (R1 +1+ iR0)+ e−iǫ/2
R+ (running from the

infinity with arg z = −π + ǫ
2

to the infinity with arg z = − ǫ
2
). Then one has

e−itHǫ =
1

2πi

∫

Γǫ,R0

e−itz(Hǫ − z)−1dz := Fǫ(t), (2.4) Uepsilon

for t > 0. In addition, one has the estimate

‖e−itHǫ‖ ≤ etR1ǫ, t ≥ 0. (2.5) norm1

Under the condition (
ass2
2.2), by an argument of perturbation, one can deduce that for

j = 0, 1, · · · , k,

|
dj

dλj
〈R(λeiη)f, g〉| ≤ Cf,g〈λ〉

−ρ−jσ, (2.6)

uniformly in λ ≥ 1 and η > 0 small enough. Making use of techniques of oscillatory
integrals, we deduce from (

ass1
2.1) and (

ass2
2.2) that the integral

〈F (t)f, g〉 :=
1

2πi

∫

R

e−itλ〈R(λ + i0)f, g〉dλ, (2.7)

converges for f, g ∈ D. By the same method, one can show that the integral defining
Kǫ(t) converges uniformly in ǫ > 0 and one has

〈F (t)f, g〉 = lim
R,ǫ→0+

〈Fǫ(t)f, g〉
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for any f, g ∈ D. The bound on ‖Fǫ(t)‖ shows that |〈F (t)f, g〉| ≤ ‖f‖‖g‖. Therefore
F (t) can be extended to a contraction on H, still denoted by F (t) and limǫ→0+ Fǫ(t) =
F (t) weakly for t > 0.

For f ∈ D ∩ D(H) with Hf ∈ D and g ∈ D, one has
∫

Γǫ,R0

d

dt
〈e−itz(Hǫ − z)−1f, g〉dz = −ie−iǫ

∫

Γǫ,R0

〈e−itz(Hǫ − z)−1Hf, g〉dz

converges uniformly in ǫ, R0 > 0 small. It follows that 〈F (t)f, g〉 is differentiable in
t > 0 and

〈
dF (t)

dt
f, g〉 = 〈−iF (t)Hf, g〉 = 〈−iHF (t)f, g〉.

By an argument of density, we deduce that for any f ∈ D(H), t → F (t)f is weakly
differentiable and

dF (t)

dt
f = −iF (t)Hf = −iHF (t)f. (2.8)

To show that F (t) = e−itH , we prove that F (t) → 1 weakly as t → 0+. For each
t ∈]0, 1], take R0 = t−1 ≥ 1. Making a change of variables, we obtain that

Fǫ(t) =
1

2πi

∫

Γǫ,1

e−iζζ−1(Hǫ −
ζ

t
)−1dζ

t
, t ∈]0, 1].

Noticing that
1

2πi

∫

Γǫ,1

e−iζζ−1dζ = −1

for every ǫ > 0, one deduces

〈(Fǫ(t) − 1)f, g〉 =
1

2πi

∫

Γǫ,1

e−iζζ−1〈(H −
ζeiǫ

t
)−1Hf, g〉dζ (2.9)

for f ∈ D(H). For ζ ∈ Γǫ,1, one has |ζ| ≥ 1
2

and |e−iζ | ≤ C uniformly in ǫ > 0 small.
By the condition (

ass2
2.2),

|〈(H −
ζeiǫ

t
)−1Hf, g〉| ≤ Cf,g(

t

|ζ|
)ρ, t ∈]0, 1],

for any f, g ∈ vD with Hf ∈ D, uniformly in ǫ > 0. It follows that

|〈(Fǫ(t) − 1)f, g〉| ≤ C ′tρ, t ∈]0, 1], (2.10)

uniformly in ǫ. Taking the limit ǫ → 0 in the above inequality, we obtain

|〈(F (t) − 1)f, g〉| ≤ C ′tρ. (2.11)

This proves that limt→0+〈(F (t) − 1)f, g〉 = 0 for any g ∈ D and f ∈ D ∩ D(H) with
Hf ∈ D. Since ‖F (t) − 1‖ ≤ 2, an argument of density shows that F (t)f → f weakly
for any f ∈ H as t → 0+.

Now for any f ∈ D(H), let f(t) = F (t)f and u(t) = e−itHf . Then f(t) ∈ D(H) for
any t > 0 and one has

d

ds
〈F (s)e−i(t−s)Hf, g〉 = 〈F (s)(iH − iH)e−i(t−s)Hf, g〉 = 0, 0 < s ≤ t,
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for any g ∈ H. Integrating the above equation gives that 〈f(t), g〉 − 〈u(t), g〉 = c for
some constant c. Since both f(t) and u(t) converge weakly to f as t → 0+, one has
c = 0, hence 〈f(t), g〉 = 〈u(t), g〉 for any g ∈ H. This proves that F (t)f = e−itHf for
any f ∈ D(H). Since D(H) is dense in H, F (t) coincides with the semigroup generated
by −iH. ¤

Another consequence of global limiting absorption principle is the Kato’s smoothness
estimate for semigroup of contractions which is useful for dissipative quantum scattering.
We give below a simple proof, using the theory of selfadjoint dilation. See also

roy
[16] in

some special case.
Let H be maximal dissipative on a Hilbert space H. −iH is generator of a semigroup

of contractions T (s) = e−isH , t ≥ 0. According to the theory of Foiaş-Sz. Nagy
(Masson,1967, Ch.III, § 9), ∃ a Hilbert space G ⊃ H and a unitary group U(t) = e−itG

on G such that

Π0U(s)|H = T (s), s ≥ 0, (2.12)

where Π0 : G → H is the projection. G is called a selfadjoint dilation of H.

th2.2 Theorem 2.2. Assume that there exits A : H → H continuous such that

sup
λ∈R,δ∈]0,1]

‖A(H − (λ + iδ))−1A∗‖ ≤ γ. (2.13)

Then ∫ ∞

0

(‖AT (s)f‖2 + ‖AT (s)∗f‖2)ds ≤ 2γ‖f‖2, f ∈ H. (2.14)

Proof. Let G be a selfadjoint dilation of H. Then

Π0(G − z)−1|H = (H − z)−1, Π0(G − z)−1|H = (H∗ − z)−1,

for ℑz > 0. Therefore

‖(AΠ0)(G − z)−1(AΠ0)
∗‖ ≤ γ, 0 < |ℑz| ≤ 1.

By Kato’s smoothness estimate for selfadjoint operators,
∫ ∞

−∞

‖AΠ0U(s)g‖2 ds ≤ C‖g‖2, g ∈ G,

with

C = sup
0<ℑz≤1

‖(AΠ0)[(G − z)−1 − (G − z)−1)(AΠ0)
∗‖ ≤ 2γ.

For g = f ∈ H, one has
∫ ∞

0

(‖AT (s)f‖2 + ‖AT (s)∗f‖2) ds ≤ 2γ‖f‖2, f ∈ H.

¤
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3. Dissipative Schrödinger operators

Let R(z) = (H − z)−1, z 6∈ σ(H). Let Rj(z) = (Hj − z)−1. Denote L2,s =
L2(Rn; 〈x〉sdx) and ‖f‖s = ‖f‖L2,s . It is well know that if n ≥ 3, the limit

F0 = lim
z→0,z 6∈R+

R0(z) : L2,s → L2,−s

exists if s > 1.

prop1 Proposition 3.1. Assume that n ≥ 3 and ρ0 > 2. Then one has

(a). 1 + F0V is invertible on L2,−s for any s ∈]1, ρ0/2[ and there exists c0 > 0 such
that the limit

R(λ + i0) = lim
ǫ→0+

R(λ + iǫ) : L2,s → L2,−s

exists for s > 1 and λ ∈ [−c0, c0].
(b). Zero is not an accumulating point of the eigenvalues of H and there exists δ0 > 0

such that
σ(H) ⊂ {z;−π + δ0 ≤ arg z ≤ 0}. (3.1)

This result is proved by X.P. Wang 2009.

th1 Theorem 3.2. Assume that n ≥ 3 and ρ0 > 2. Then
(a). For any s > 1

sup
ǫ∈]0,1],λ∈R

〈λ〉
1
2‖〈x〉−sR(λ + iǫ)〈x〉−s‖ < ∞ (3.2) global-resolv

The limit
R(λ + i0) = lim

ǫ→0+

R(λ + iǫ) : L2,s → L2,−s

exists for s > 1 and is continuous on R.
(b) Let k ∈ N. Assume that |(x · ∇)jV (x)| ≤ C〈x〉−ρ0, j = 0, 1, · · · , k, ρ0 > 2. Then

for j = 0, 1, · · · , k + 1 and s > j + 1
2
, one has

‖〈x〉−s dj

dλj
R(λ + i0)〈x〉−s‖ ≤ Cs〈λ〉

− j+1
2 , (3.3)

for λ > 1.

Ideas. For λ > 0, one uses the equation R(z) = (1 + R0(z)V )−1R0(z) by the argument
of S. Agmon (1975) (ρ0 > 1). For more general situations (an abstract Mourre’s theory
for dissipative operators), see J. Royer (Commun. in PDE, to appear). For λ near 0,
we apply Proposition . n ≥ 3 and ρ0 > 2 are needed.prop1

4. Optimal time-decay rate

As an application of the representation of the semigroup, we can show the following
dispersive estimate for dissipative Schrödinger operators.

dispersive Theorem 4.1. Assume n = 3 and |V (x)| + |x · ∇V (x)| ≤ C〈x〉−ρ0, ρ0 > 2. Then one
has

‖e−itHf‖L∞ ≤ Ct−
3
2‖f‖L1 , ∀ f ∈ L1(R3), t > 0. (4.1) dispative-disp
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To prove the Theorem, it suffices to prove

|〈U(t)u, v〉| ≤ C|t|−3/2‖u‖L1‖v‖L1 , u, v ∈ C∞
0 .

Distinguish two regimes: λ ∈ [−R, R] and |λ| > R. Consider only the case λ ≥ 0. By
the change of variable λ → λ2 and an integration by parts, we are led to prove

|

∫
e−itλ2

ρ(λ)〈G′(λ)u, v〉 dλ| ≤ C|t|−1/2‖u‖1‖v‖1. (4.2) est1

Here ρ is an appropriate cut-off and G(λ) = r(λ2) which can be written as G(λ) =
G0(λ)(1 + V G0(λ))−1.

One can calculate

G′(λ) = (1 − G0(λ)V )G′
0(λ)(1 + V G0(λ))−1 (4.3) G

and G′
0(λ) is the operator with integral kernel: i eiλ|x−y|

4π
.

Take ρ with support in ]λ0 − δ, λ0 + δ[, δ > 0 to be adjusted. If one replaces λ by λ0

in (1 − G0(λ)V ) and (1 + V G0(λ))−1 in (
G
4.3), one sees that

|

∫

R3
x

∫

R3
y

∫

R
e−itλ2+iλ|x−y|ρ(λ)ũ(x)ṽ(y)dλdxdy| ≤ C|t|−1/2‖u‖1‖v‖1.

Note that V G0(λ) : L1 → L1 is Hölder-continuous in λ. For λ ∈ supp ρ, one expands

(1 + V G0(λ))−1 =
∞∑

k=0

(−1)k(S0D(λ))kS0

with S0 = 1 + V G0(λ0), D(λ) = V (G0(λ) − G0(λ0)). The integral kernel of D(λ) is

V (x)
eiλ|x−y| − eiλ0|x−y|

4π|x − y|
.

One can prove that

∫

R

‖Fλ→τρ(λ)(S0D(λ))kS0u‖1dτ ≤ (CV δǫ)k‖u‖1.

It follows that

|

∫

R

〈G′
0(λ)e−itλ2

ρ(λ)(S0D(λ))kS0u,A(λ)v〉dλ| ≤ |t|−1/2(CV δǫ)k‖u‖1‖v‖1.

Here A(λ) = 1 − V G0(λ0) or D(λ).

Taking δ s.t. CV δǫ < 1 and summing up in k, we obtain the desired estimate (
est1
4.2)

for each fixed energy.

Little modification is needed when λ0 = 0.
The high energy estimate in the limiting absorption principle implies

‖(V G0(λ))ku‖1 ≤ Ckλ−(k−2)‖u‖1

We also need the following
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Lemma 4.2. Let fk : R → R be a sequence of continuous functions such that

|fk(λ)| ≤ Ck〈λ〉−k+2,

∫

R

〈τ〉ǫ0|f̂k(τ)|dτ ≤ Ck.

Then for χ a cut-off for the interval [R,∞[, one has
∫

|χ̂fk(τ)|dτ ≤ Ck
1 〈R〉

−
(k−2)ǫ0
2(1+ǫ0) .

One uses the series for λ large

(1 + V G0(λ))−1 =
∞∑

k=0

(−1)k(V G0(λ))k

By the decay condition on V , one has
∫

〈τ〉ǫ0‖Fλ→τρ(λ)(V G0(λ))ku‖1dτ ≤ Ck‖u‖1,

uniformly in R. Here ρ is a cut-off for [R,∞[. The Lemma gives
∫

R

‖Fλ→τρ(V G0(λ))ku‖1dτ ≤ CkR
−

(k−2)ǫ0
2(1+ǫ0) ‖u‖1.

For R > 1 large enough,

CkR
−

(k−2)ǫ0
2(1+ǫ0) < ǫk, ǫ < 1.

One can deduce that

|

∫
e−itλ2

ρ(λ)〈G′
0(λ)(V G0(λ))ku,A(λ)v〉dλ| ≤ |t|−1/2Cǫk‖u‖1‖v‖1.

Taking the summation in k, we obtain the desired high energy estimate. ¤

This result is to compare with the dispersive estimate for selfadjoint operator H1

(V2 = 0). Assume that n = 3 and |V1(x)| ≤ C〈x〉−ρ0 , ρ0 > 2 and that 0 is not an
eigenvalue nor a resonance of H1. Then one has

‖e−itH1Pacf‖L∞ ≤ Ct−
3
2‖f‖L1 , ∀ f ∈ L1(R3), t 6= 0, (4.4)

where Pac is the projection onto the absolutely continuous spectral subspace of H1.
As a consequence of Theorem

dispersive
4.1, one has

Corollary 4.3. Under the condition of Theorem
dispersive
4.1, one has for any s ∈ [0, 3/2] and

s′ > s,

‖〈x〉−s′e−itH〈x〉−s′‖L(L2) ≤ C〈t〉−s, t > 0. (4.5)

Proof. For s = 3/2 and s′ > 3/2, it follows from Theorem
dispersive
4.1 that the above estimate

holds. The general case follows from an argument of interpolation. ¤
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Cedex 3 France, E-mail: xue-ping.wang@univ-nantes.fr


