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We establish a representation formula for semigroup of contraction in terms of global limiting absorption principle from the upper-half complex plane. As applications, we prove time-decay estimates of the semigroup of contractions generated by -iH where H is a dissipative Schrödinger operator.

Introduction

Let H = -∆ + V (x) be the Schrödinger operator with a complex-valued potential V satisfying V = V 1 -iV 2 , where V 1 and V 2 are real functions satisfying V 2 (x) ≥ 0 and V 2 (x) > 0 on some non-trivial open set. Suppose that

|V j (x)| ≤ C x -ρ 0 , x ∈ R n , (1.1) ass1 
for some ρ 0 > 1. Here x = (1 + |x| 2 ) 1/2 . Mild local singularities can be included with little additional effort. Denote H 0 = -∆ and

H 1 = -∆ + V 1 .
H defined on D(-∆) is maximally dissipative and the numerical range of H is contained in {z; ℜz ≥ -R, -R ≤ ℑz ≤ 0} for some R > 0.

Some abstract results

Let H 1 and V 2 be selfadjoint operators on some Hilbert space H, with H 1 semibounded from below, V 2 ≥ 0 and relatively compact with respect to H 1 . H = H 1 -iV 2 is maximally dissipative on H. Let S(t) := e -itH , t ≥ 0, be the strongly continuous semigroup generated by -iH. In this Section, we give two results on S(t) based on the existence of a limiting absorption principle for H on the whole real axis. There results are to be applied in the next Section to a class of dissipative Schrödinger operators on

R n , n ≥ 2. Since V 2 is H 1 compact, one sees that ∀δ 0 > 0, ∃R 1 > 0 such that the numerical range of H is contained in the sector {z ∈ C; ℜz > -R 1 , -δ 0 ≤ arg(z + R 1 ) ≤ 0}.
Let δ 0 < π be fixed. For ǫ 0 > 0 small enough and for all ǫ ∈]0, ǫ 0 ], the set {λe iǫ ; λ ∈ R, |λ| > R 1 } is contained in the resolvent set of H. Assume that there exists a dense subset D ⊂ H such that {f ∈ D ∩ D(H); Hf ∈ D} is dense in H and

• For any λ ∈ R, the limit

R(λ + i0)f, g = lim ǫ→0 + R(λ + iǫ)f, g (2.1) ass1
exists for any f, g ∈ D and is continuous in 

λ ∈ R. • There exist R > 1, k ∈ N * , ρ, σ > 0 with ρ + kσ > 1 such that for any f, g in D, λ → R(λ + i0)f, g is C k for |λ| > R and | d j dλ j R(λ + i0)f, g | ≤ C f,g λ -ρ-jσ , ( 2 
e -itH f, g = 1 2πi R e -itλ R(λ + i0)f, g dλ, t > 0, (2.3) 
for f, g ∈ D.

Proof. Denote H ǫ = e -iǫ H, ǫ > 0. Then the numerical range of H ǫ is contained in

N ǫ := {e -iǫ z; ℜz > -R 1 , -δ 0 ≤ arg(z + R 1 ) ≤ 0}
for some R 1 > 1. Therefore for each ǫ > 0 small enough, H ǫ -iR 1 ǫ is maximally dissipative and strictly m-sectorial and -iH ǫ generates a semigroup e -itHǫ , t ≥ 0, which can be represented in a usual way (cf.

k [START_REF] Kato | Wave operators and similarity for some non-selfadjoint operators[END_REF], pp 489-491). For R 0 > ǫR 1 , let Γ ǫ,R be a contour in ρ(H ǫ ) composed of the segment {ℑz = R 0 , ℜz ∈ [-R 1 -1, R 1 + 1]} and the two rays (-R 1 -1 + iR 0 ) + e i(π+ǫ/2) R + and (R 1 + 1 + iR 0 ) + e -iǫ/2 R + (running from the infinity with arg z = -π + ǫ 2 to the infinity with arg z = -ǫ 2 ). Then one has

e -itHǫ = 1 2πi Γ ǫ,R 0 e -itz (H ǫ -z) -1 dz := F ǫ (t), ( 2 

.4) Uepsilon

for t > 0. In addition, one has the estimate e -itHǫ ≤ e tR 1 ǫ , t ≥ 0.

(2.5) norm1

Under the condition ( ass2 2.2), by an argument of perturbation, one can deduce that for

j = 0, 1, • • • , k, | d j dλ j R(λe iη )f, g | ≤ C f,g λ -ρ-jσ , (2.6) 
uniformly in λ ≥ 1 and η > 0 small enough. Making use of techniques of oscillatory integrals, we deduce from ( ass1 2.1) and ( ass2 2.2) that the integral

F (t)f, g := 1 2πi R e -itλ R(λ + i0)f, g dλ, (2.7) 
converges for f, g ∈ D. By the same method, one can show that the integral defining K ǫ (t) converges uniformly in ǫ > 0 and one has

F (t)f, g = lim R,ǫ→0 + F ǫ (t)f, g for any f, g ∈ D.
The bound on F ǫ (t) shows that | F (t)f, g | ≤ f g . Therefore F (t) can be extended to a contraction on H, still denoted by F (t) and lim ǫ→0 + F ǫ (t) = F (t) weakly for t > 0.

For f ∈ D ∩ D(H) with Hf ∈ D and g ∈ D, one has

Γ ǫ,R 0 d dt e -itz (H ǫ -z) -1 f, g dz = -ie -iǫ Γ ǫ,R 0 e -itz (H ǫ -z) -1 Hf, g dz converges uniformly in ǫ, R 0 > 0 small. It follows that F (t)f, g is differentiable in t > 0 and dF (t) dt f, g = -iF (t)Hf, g = -iHF (t)f, g .
By an argument of density, we deduce that for any

f ∈ D(H), t → F (t)f is weakly differentiable and dF (t) dt f = -iF (t)Hf = -iHF (t)f. (2.8)
To show that F (t) = e -itH , we prove that F (t) → 1 weakly as t → 0 + . For each t ∈]0, 1], take R 0 = t -1 ≥ 1. Making a change of variables, we obtain that

F ǫ (t) = 1 2πi Γ ǫ,1 e -iζ ζ -1 (H ǫ - ζ t ) -1 dζ t , t ∈]0, 1]. Noticing that 1 2πi Γ ǫ,1 e -iζ ζ -1 dζ = -1
for every ǫ > 0, one deduces

(F ǫ (t) -1)f, g = 1 2πi Γ ǫ,1 e -iζ ζ -1 (H - ζe iǫ t ) -1 Hf, g dζ (2.9) for f ∈ D(H). For ζ ∈ Γ ǫ,1 , one has |ζ| ≥ 1 2 and |e -iζ | ≤ C uniformly in ǫ > 0 small. By the condition ( ass2 2.2), | (H - ζe iǫ t ) -1 Hf, g | ≤ C f,g ( t |ζ| ) ρ , t ∈]0, 1],
for any f, g ∈ vD with Hf ∈ D, uniformly in ǫ > 0. It follows that

| (F ǫ (t) -1)f, g | ≤ C ′ t ρ , t ∈]0, 1], (2.10) 
uniformly in ǫ. Taking the limit ǫ → 0 in the above inequality, we obtain

| (F (t) -1)f, g | ≤ C ′ t ρ . (2.11)
This proves that lim t→0 + (F (t) -1)f, g = 0 for any g ∈ D and f ∈ D ∩ D(H) with Hf ∈ D. Since F (t) -1 ≤ 2, an argument of density shows that F (t)f → f weakly for any f ∈ H as t → 0 + . Now for any f ∈ D(H), let f (t) = F (t)f and u(t) = e -itH f . Then f (t) ∈ D(H) for any t > 0 and one has

d ds F (s)e -i(t-s)H f, g = F (s)(iH -iH)e -i(t-s)H f, g = 0, 0 < s ≤ t,
for any g ∈ H. Integrating the above equation gives that f (t), gu(t), g = c for some constant c. Since both f (t) and u(t) converge weakly to f as t → 0 + , one has c = 0, hence f (t), g = u(t), g for any g ∈ H. This proves that F (t)f = e -itH f for any f ∈ D(H). Since D(H) is dense in H, F (t) coincides with the semigroup generated by -iH.

Another consequence of global limiting absorption principle is the Kato's smoothness estimate for semigroup of contractions which is useful for dissipative quantum scattering. We give below a simple proof, using the theory of selfadjoint dilation. See also roy [16] in some special case.

Let H be maximal dissipative on a Hilbert space H. -iH is generator of a semigroup of contractions T (s) = e -isH , t ≥ 0. According to the theory of Foiaş-Sz. Nagy (Masson,1967, Ch.III, § 9), ∃ a Hilbert space G ⊃ H and a unitary group 

U (t) = e -itG on G such that Π 0 U (s)| H = T (s), s ≥ 0, ( 2 
A(H -(λ + iδ)) -1 A * ≤ γ. (2.13) 
Then ∞ 0 ( AT (s)f 2 + AT (s) * f 2 )ds ≤ 2γ f 2 , f ∈ H. (2.14) 
Proof. Let G be a selfadjoint dilation of H.

Then Π 0 (G -z) -1 | H = (H -z) -1 , Π 0 (G -z) -1 | H = (H * -z) -1 ,
for ℑz > 0. Therefore

(AΠ 0 )(G -z) -1 (AΠ 0 ) * ≤ γ, 0 < |ℑz| ≤ 1.
By Kato's smoothness estimate for selfadjoint operators,

∞ -∞ AΠ 0 U (s)g 2 ds ≤ C g 2 , g ∈ G, with C = sup 0<ℑz≤1 (AΠ 0 )[(G -z) -1 -(G -z) -1 )(AΠ 0 ) * ≤ 2γ. For g = f ∈ H, one has ∞ 0 ( AT (s)f 2 + AT (s) * f 2 ) ds ≤ 2γ f 2 , f ∈ H. 3. Dissipative Schrödinger operators Let R(z) = (H -z) -1 , z ∈ σ(H). Let R j (z) = (H j -z) -1 . Denote L 2,s = L 2 (R n ; x s dx) and f s = f L 2,s . It is well know that if n ≥ 3, the limit F 0 = lim z→0,z ∈R + R 0 (z) : L 2,s → L 2,-s exists if s > 1.
prop1 Proposition 3.1. Assume that n ≥ 3 and ρ 0 > 2. Then one has (a). 1 + F 0 V is invertible on L 2,-s for any s ∈]1, ρ 0 /2[ and there exists c 0 > 0 such that the limit

R(λ + i0) = lim ǫ→0 + R(λ + iǫ) : L 2,s → L 2,-s exists for s > 1 and λ ∈ [-c 0 , c 0 ]. (b).
Zero is not an accumulating point of the eigenvalues of H and there exists

δ 0 > 0 such that σ(H) ⊂ {z; -π + δ 0 ≤ arg z ≤ 0}. (3.1)
This result is proved by X.P. Wang 2009.

th1 Theorem 3.2. Assume that n ≥ 3 and ρ 0 > 2. Then (a). For any s > 1

sup ǫ∈]0,1],λ∈R λ 1 2 x -s R(λ + iǫ) x -s < ∞ (3.2) global-res
The limit R(λ + i0) = lim

ǫ→0 + R(λ + iǫ) : L 2,s → L 2,-s
exists for s > 1 and is continuous on R.

(b) Let k ∈ N. Assume that |(x • ∇) j V (x)| ≤ C x -ρ 0 , j = 0, 1, • • • , k, ρ 0 > 2.
Then for j = 0, 1, • • • , k + 1 and s > j + 1 2 , one has

x -s d j dλ j R(λ + i0) x -s ≤ C s λ -j+1 2 , (3.3) 
for λ > 1.

Ideas. For λ > 0, one uses the equation R(z) = (1 + R 0 (z)V ) -1 R 0 (z) by the argument of S. Agmon (1975) (ρ 0 > 1). For more general situations (an abstract Mourre's theory for dissipative operators), see J. Royer (Commun. in PDE, to appear). For λ near 0, we apply Proposition . n ≥ 3 and ρ 0 > 2 are needed. 

(x)| + |x • ∇V (x)| ≤ C x -ρ 0 , ρ 0 > 2. Then one has e -itH f L ∞ ≤ Ct -3 2 f L 1 , ∀ f ∈ L 1 (R 3 ), t > 0. (4.1) dispative-
To prove the Theorem, it suffices to prove

| U (t)u, v | ≤ C|t| -3/2 u L 1 v L 1 , u, v ∈ C ∞ 0 . Distinguish two regimes: λ ∈ [-R,
R] and |λ| > R. Consider only the case λ ≥ 0. By the change of variable λ → λ 2 and an integration by parts, we are led to prove

| e -itλ 2 ρ(λ) G ′ (λ)u, v dλ| ≤ C|t| -1/2 u 1 v 1 . (4.2) est1
Here ρ is an appropriate cut-off and G(λ) = r(λ 2 ) which can be written as

G(λ) = G 0 (λ)(1 + V G 0 (λ)) -1 . One can calculate G ′ (λ) = (1 -G 0 (λ)V )G ′ 0 (λ)(1 + V G 0 (λ)) -1 (4.3) G
and G ′ 0 (λ) is the operator with integral kernel: i e iλ|x-y| 4π . Take ρ with support in ]λ 0δ, λ 0 + δ[, δ > 0 to be adjusted. If one replaces λ by λ 0 in (1 -0 (λ)V ) and

(1 + V G 0 (λ)) -1 in ( G 4.3), one sees that | R 3 x R 3 y R e -itλ 2 +iλ|x-y| ρ(λ)ũ(x)ṽ(y)dλdxdy| ≤ C|t| -1/2 u 1 v 1 .
Note that V G 0 (λ) : L 1 → L 1 is Hölder-continuous in λ. For λ ∈ supp ρ, one expands

(1 + V G 0 (λ)) -1 = ∞ k=0 (-1) k (S 0 D(λ)) k S 0 with S 0 = 1 + V G 0 (λ 0 ), D(λ) = V (G 0 (λ) -G 0 (λ 0 )). The integral kernel of D(λ) is V (x)
e iλ|x-y|e iλ 0 |x-y| 4π|x -y| .

One can prove that

R F λ→τ ρ(λ)(S 0 D(λ)) k S 0 u 1 dτ ≤ (C V δ ǫ ) k u 1 . It follows that | R G ′ 0 (λ)e -itλ 2 ρ(λ)(S 0 D(λ)) k S 0 u, A(λ)v dλ| ≤ |t| -1/2 (C V δ ǫ ) k u 1 v 1 .
Here

A(λ) = 1 -V G 0 (λ 0 ) or D(λ).
Taking δ s.t. C V δ ǫ < 1 and summing up in k, we obtain the desired estimate ( Little modification is needed when λ 0 = 0. The high energy estimate in the limiting absorption principle implies

(V G 0 (λ)) k u 1 ≤ C k λ -(k-2) u 1
We also need the following Lemma 4.2. Let f k : R → R be a sequence of continuous functions such that

|f k (λ)| ≤ C k λ -k+2 , R τ ǫ 0 | fk (τ )|dτ ≤ C k .
Then for χ a cut-off for the interval [R, ∞[, one has

| χf k (τ )|dτ ≤ C k 1 R - (k-2)ǫ 0 2(1+ǫ 0 ) .
One uses the series for λ large

(1 + V G 0 (λ)) -1 = ∞ k=0 (-1) k (V G 0 (λ)) k
By the decay condition on V , one has

τ ǫ 0 F λ→τ ρ(λ)(V G 0 (λ)) k u 1 dτ ≤ C k u 1 , uniformly in R. Here ρ is a cut-off for [R, ∞[. The Lemma gives R F λ→τ ρ(V G 0 (λ)) k u 1 dτ ≤ C k R - (k-2)ǫ 0 2(1+ǫ 0 ) u 1 .
For R > 1 large enough,

C k R - (k-2)ǫ 0
2(1+ǫ 0 ) < ǫ k , ǫ < 1.

One can deduce that

| e -itλ 2 ρ(λ) G ′ 0 (λ)(V G 0 (λ)) k u, A(λ)v dλ| ≤ |t| -1/2 Cǫ k u 1 v 1 .

Taking the summation in k, we obtain the desired high energy estimate.

This result is to compare with the dispersive estimate for selfadjoint operator H 1 (V 2 = 0). Assume that n = 3 and |V 1 (x)| ≤ C x -ρ 0 , ρ 0 > 2 and that 0 is not an eigenvalue nor a resonance of H 1 . Then one has

e -itH 1 P ac f L ∞ ≤ Ct -3 2 f L 1 , ∀ f ∈ L 1 (R 3 ), t = 0, (4.4) 
where P ac is the projection onto the absolutely continuous spectral subspace of H 1 .

As a consequence of Theorem 

prop1 4 .

 4 Optimal time-decay rateAs an application of the representation of the semigroup, we can show the following dispersive estimate for dissipative Schrödinger operators. dispersive Theorem 4.1. Assume n = 3 and |V

dispersive 4 . 1 , one has Corollary 4 . 3 .

 4143 Under the condition of Theorem

dispersive 4 . 1 ,

 41 one has for any s ∈ [0, 3/2] and s ′ > s,x -s ′ e -itH x -s ′ L(L 2 ) ≤ C t -s , t > 0. (4.5)Proof. For s = 3/2 and s ′ > 3/2, it follows from Theorem dispersive 4.1 that the above estimate holds. The general case follows from an argument of interpolation.

  .2) ass2 for j = 0, 1, . . . , k and |λ| > R.

	Theorem 2.1. Under the conditions (	ass1 2.1) and (	ass2 2.2), one has
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