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ABSTRACT

In this paper, we focus on planning credible walking paths
in real-time for a potentially highly congested crowd of au-
tonomous pedestrians. For this purpose, we exploit the prin-
ciple of least effort, applied to human navigation, which pos-
tulates that credible behaviours emerge as a function of the
organism’s propensity to minimize metabolic energy expen-
diture with respect to task, environment dynamics, and or-
ganism’s constraints to action [17]. We therefore propose
a consistent problem formulation for the navigation task
where both individual and collective dynamics are taken into
account. Each pedestrian is represented as a situated agent
who tries to reach its destination by following energy efficient
paths. Agents are autonomous, and at the same time, sub-
ject to the environment dynamics. They interact with each
other through the environment in order to estimate their en-
ergy expenditure relatively to their tasks. Our formulation
results in a generic and scalable multi-agent model, capable
of simulating individual and collective behaviours regardless
of the number of agents.

Keywords

pedestrian navigation, multi-agent simulation, interaction,
coordination, traffic.

1. INTRODUCTION

Real-time pedestrian crowds simulation is a complex task
for computer scientists. On the one hand, social studies
on pedestrians’ behaviours show that each pedestrian in
a crowd behaves autonomously, conscientiously interacting
with other pedestrians, while pursuing its own objectives
[4]. On the other hand, empirical observations of pedestri-
ans’ flow in highly congested areas demonstrate some strik-
ing similarities between pedestrians’ behaviours and particle
flow dynamics [7].

Consequently to these apparently contradictory issues, de-
signing philosophies diverge on whether to consider pedes-
trians’ characteristics and local interactions, or to focus on
pedestrians’ flow regardless of individual characteristics, in
order to formulate the underlying modelling principles. In
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the current literature, a naive application of each of these
philosophies is proved to lead to partially satisfying results.
The first one could lead to intractable principles [9], resulting
into models that struggle to reproduce collective behaviours
like the edge effect [23] or the fingering effect [28]. The
second philosophy could be inappropriate for low-density
crowds, since it neglects pedestrian individualities, and might
result into models that produce non-realistic individual be-
haviours [5].

In this paper, we explore the principle of least effort (PLE)
[29] applied to human navigation, for a more generic ap-
proach. According to this principle, credible walking paths
emerge as a function of the organism’s propensity to min-
imize metabolic energy expenditure with respect to task,
environment dynamics, and organism’s constraints to ac-
tion [17]. Several psychological studies on human move-
ment showed that metabolic energy expenditure regulation
is critical enough to explain both individual and collective
behaviours among human beings [10, 29, 22, 17]. Following
this idea, our contribution is:

1. a consistent problem formulation of the naviga-
tion task of autonomous pedestrians, where both indi-
vidual and collective dynamics are taken into account.
Pedestrians are situated agents who try to follow en-
ergy efficient paths towards their destinations. They
use navigable resources, which recover the entire navi-
gable space, to build their paths. Navigable resources
mediates interaction between agents and provide dy-
namic measures that help the agents to estimate their
energy expenditure relatively to their task.

2. a generic multi-agent model, in respect with our
formulation, to perform real-time simulations of a po-
tentially highly congested crowd. We will see that the
environment concept from the multi-agent paradigm
is particularly useful to tackle the complexity of the
navigation task. The environment could be seen as an
independent component that maintains dynamic mea-
sures used by agents to compute energy efficient paths.
Moreover, since agents are situated in the environment
and subjected to physical and dynamical constraints,
an important part of the simulation dynamics could
be delegated to the environment without compromis-
ing agents’ autonomy.

Our work is close to IRM4S [15], continuum crowd [24]
and PLEdestrian [5]. We use the same action theory as de-
veloped in the IRM4S model [15] and we adapt the agent



model in order to fit the specificities of pedestrian naviga-
tion. Like Continuum crowd [24] and PLEdestrian [5], we
use a least effort approach to model agents’ behaviours and
store dynamic information in the environment. However,
the difference with our approach is that we specifically de-
sign the environment as a full component of the model, with
a dedicated dynamics, different from that of agents.

We evaluate our work by submitting an online interview
with videos of our model running on different low-density
scenarios. We also run our model against some well known
collective phenomenon — edge effect and fingering effect —
with encouraging results in terms of credibility and scalabil-
ity.

The rest of the document is organized as follows. In Sec-
tion 2, we present related works on real-time pedestrians
crowd simulation. In Section 3, we introduce our formula-
tion of the navigation task for autonomous pedestrians. We
also give an overview of the global architecture of our generic
multi-agent model, and describe the role of each component.
Sections 4 and 5 are respectively dedicated to the evaluation
and the perspectives of our work.

2. RELATED WORK

Pedestrians crowd simulation is often tackled by using two
types of approaches [21]: microscopic and macroscopic mod-
els.

Microscopic models are built upon pedestrians individ-
ual characteristics and local interactions, assuming that the
combination of local interactions between agents — namely,
collision avoidance mechanisms — and path following tech-
niques, will result in the desired behaviour of the crowd.
Helbing and Molnar [6] introduced the social force model
(SFM) where each pedestrian is subjected to attractive or
repulsive forces. For example, an attractive force could guide
pedestrians toward their objectives, while a repulsive force
keeps them away from obstacle or other pedestrians. The
pedestrian dynamics is assumed to obey conservation laws,
which leads to interesting collective behaviours. Reynolds
[19] developed the concept of steering forces which are guid-
ing forces that correspond to a pedestrian’s preferences. For
instance, a steering force could model the need to reach a
predefined destination, to stay away from a given agent, or
to stay close to a leading agent. Here, the agents dynamics
do not obey any conservation laws, but the application of
steering forces is ruled by a decisional architecture which is
specific to each agent. The steering force paradigm is flexi-
ble and provides believable real-time animation [18]. Fiorini
and Shiller [2] introduced the velocity obstacle paradigm
which reduces the navigation problem of a mobile entity to
the computation of an avoidance manoeuvre that ensures
a collision-free navigation in a dynamic environment. Van
den Berg et al. [26, 25] applied this paradigm and provided
the RVO — Reciprocal Velocity Obstacle — model which is a
robust adaptation for pedestrians real-time navigation.

One of the main challenge for microscopic model is the
management of congestion [9]. Congestion management is
more complex than simple collision avoidance since it in-
volves both time and space considerations. It is also very
critical because it influences the emergence of collective be-
haviours. To handle navigation in a congested area, mi-
croscopic models are often combined with global path plan-
ning techniques or mobile perception fields that helps the
agent to perceive the dynamic features of the environment.

Karamouzas et al. [13] used a dynamic uniform grid and
couple a collision avoidance model with A* path-planning
techniques. The dynamic grid provides density occupation
insights to the agents who can, therefore, plan to avoid oc-
cupied areas. Saboia et al. [20] modified the SFM model
to introduce a mobile grid attached to each agent. The mo-
bile grid allows the agent to change its desired velocity at
reasonable time and to navigate through congested areas.
Similar techniques could be found in [11].

Undoubtedly, using dynamic information on the environ-
ment density and fast global path-planning technique speeds-
up the simulation — when an agent avoids occupied areas,
this automatically reduces the calls to a collision avoidance
algorithm, which is the most expensive operation in such
simulations. Nevertheless, most microscopic models sepa-
rate local collision avoidance from global path planning, and
conflicts inevitably arise between these two competing goals.
Those conflicts tend to be exacerbated in highly congested
areas or highly dynamic environments [24].

Macroscopic models offer a more objective modelling frame-
work, concerning these last issues, by representing the crowd
as a whole. Hughes [9] investigated the analytic properties
of human flow and propose the following hypothesis to define
a continuous human flow model:

1. The walking speed of pedestrians is determined by the
density of surrounding pedestrians, the behavioural
characteristics of the pedestrians, and the ground on
which they walk.

2. Pedestrians have a common sense (potential) of the
task they face to reach their common destination, such
that any two individuals at different locations having
the same potential would see no advantage to exchange
their locations.

3. Pedestrians seek to minimize their estimated travel
time but temper this behaviour to avoid extreme den-
sities.

Treuille et al. [24] managed the resulting equations for real
time simulation and define a dynamic potential function to
formalize the navigation as an optimization problem. The
resulting potential function is exploited to generate a dy-
namic vector field that governs the overall crowd behaviour.

Obviously, the underlying principles of a macroscopic mod-
els leave little room for agents’ autonomy. Myopic colli-
sion avoidance behaviours and difficulty to handle several
agents with different destinations, are among the most rel-
evant drawbacks of such approaches. Nonetheless, it is also
obvious that those models produce much more believable
collective behaviours for highly congested crowd. We argue
that those good performances are due to a more coherent
optimization framework. We believe that it is possible to
reproduce a similar framework while preserving pedestrians
autonomy. Thus, we propose a new framework that uses the
multi-agent paradigm, and develop a consistent formulation
of the navigation task for autonomous pedestrians.

3. COUPLING INDIVIDUAL AND COLLEC-
TIVE DYNAMICS

In this section, we present the formulation of the naviga-
tion task for autonomous pedestrians and the full specifica-
tion of our multi-agent model.



3.1 Formulation

Inspired by the work of Whittle [27], Guy et al. [5] explic-
itly formulated the metabolic energy spent by pedestrians
when they walk:

E = mass - /(eS +ew - |v]?) - dt (1)
Where:
e v is the pedestrian’s instantaneous velocity

e ¢, and e, are individual attributes, respectively equal

to 2.23% and 1.26 22, for an average human®
g-s kg-m

e mass is the pedestrian’s mass.

Kapadia et al. [12] extended this formula to include a
specific collision effort which is the amount of energy that
is expended through collisions:

E:mass~/(es+ewv|v\2+ec-cp(t))-dt (2)
Where:

e ¢, (t) estimates the penetration depth of the collision if
the agent is colliding with another agent at that point
of time.

e c.= IOT:M is a penalty constant for collisions.

We formulate the navigation task of our agents in regards
to this last equation: each agent will try to minimize it, in-
dividually and subjectively, by speculating on its surround-
ing’s dynamics and adapting its walking behaviour accord-
ingly.

3.1.1 Resources and Task

To support the navigation task, we assume a 2D contin-
uous space which is discretized into contiguous triangular
meshes of homogeneous size. Each triangular mesh is a nav-
igable resource that will be used by agents to build their
path.

Figure 1: Structure of the continuous space. Each resource
r; is materialized by a triangular mesh. Each pair of resources
(r;,r;j) represents a discretized movement from r; to r;. The
real-time cost of a discretized movement (r;, ;) is noted Cryrje

Figure 1(a) gives an overview of the topological structure
extracted from the continuous space. We choose triangular
meshes because they allow us to recover the entire space
with no discontinuities.

1J: Joules; kg: kilograms; m? : square meters

Our topological structure induces an oriented graph where
each resource 1; represents a node, and each pair of contigu-
ous resources (r;,r;) represents a discretized movement. We
associate a real time cost Cryr; O each discretized move-
ment (r;,7;), to be valued relatively to an agent: Crirys at
a given time ¢, represents the average metabolic energy that
the agent expects to spend if it travels from r; to r; at ¢
(Figure 1(b)).

Consequently, a first formulation of the navigation task
could be stated as: following the energy most efficient path
available from a given position A towards a destination B,
where the path is represented as a suite of contiguous re-
sources (Ti), <, <5, and the total energy of a path is estimated
as the overall cost of the discretized movements that consti-
tute it. This corresponds to the following decision problem:

find (74);<;<, such as

Aecr

Berg 3)
r; and 7r;_1 are contiguous Vi > 1

. i=k
min ) i ¢r oy

With,
Cri_1 es Dy v+
ew Sy Ve |2+
ec Dr; vt (qn + er) (4)
Where,

° Dri,m is a real time estimation of the mean total travel
time from 7; to r; including the potential delays due
to congestion.

° Sri,rj is a real time estimation of the mean travel time
from r; to r; excluding the delays due to congestion.

® U is a real time estimation of the mean travel speed
from r; to r;.

® ¢, is a real time estimation of the mean number of
agents in r;.

Equation (4) corresponds to our estimation of the metabolic
energy expenditure for a discretized movement, drawn from
equation (2). As stated above, it represents the real time es-
timation of the amount of energy that the agent expects to
spend if it travels from r; to r;. Here, we suggest that the
number of expected collisions is proportional to the mean
number of agents in both resources r; and r;. For sim-
plicity, we have neglected the contribution of the mass and
considered a constant penetration depth for collisions.

Dy, ;5 Srirjy Gris @r; and vp, »; are stochastic measures
that are estimated relatively to an agent. Since they are
closely related to the traffic, we also call them dynamic in-
formation variables. In the next section, we propose an ex-
plicit formulation of those variables. For that purpose, we
introduce an independent traffic module which is in charge of
converting the collective dynamics into individual utilities.

3.1.2 Converting Collective Dynamics into Individ-
ual Utilities

We assert that there is a straight analogy between the traf-
fic within a navigable resource — namely, agents entrances
and exits — and the queueing phenomenon [30]. Queue-
ing theory is sometimes used in pedestrians flow simulation,



especially in evacuation simulation [14]. This theory pro-
vides pragmatic mathematical tools to describe the quality
of the traffic when many client users want to access a service
provider with limited capacity. It is possible to estimate the
quality of the traffic through stochastic measures like, mean
service times, mean delays, mean number of users, etc., if
the probabilities distribution of departure and arrival times
of users are known.

Here, we assimilate a navigation resource to a provider,
agents to users, and discretized movements to services pro-
vided by resources. If an observer watches the entrance and
exit times of transiting agents within navigation resources
during the simulation, we can derive the following measures
relatively to the observer by exploiting the queueing theory
(the exponent “0” means that the estimation is relative to
the observer):

-1
Dri,rj = q'r,i : ()\ri,rj) (5)
o o -1
Str, = (B, (6)
-1
Ugi,rj = LTq‘,,Tj : (Sgi,rj) (7)

® A7, -, and p7, .. represent respectively arrival and de-
parture frequencies of users travelling from r; to r;

e ¢;, is the mean number of users within r; — equation
(5) is derived from Little’s formula [30, p. 85]

e L, ,; is the average length of (r;,7;)

An acceptable parallel would be therefore to associate an
observer to each agent in order to derive the dynamic in-
formation variables relatively to agents. But for a real-time
simulation perspective, this choice is risky in terms of mem-
ory use. This is why we introduce a single instance of a
traffic module, that observes the arrival and departure of
agents for each navigation resource, and compute dynamic
information variables for them when requested. Agents in-
teract with each others through the traffic module, by send-
ing notifications when they enter or exit a navigation re-
source. Notifications are used by the traffic module to his-
torize movements within each resource, and every agent can
access dynamic information variables of resources that are
within its sensor range. Note that it is possible to distribute
several modules over the navigable space in order to process
notifications efficiently.

Finally, we use (8) and (9) to consider agents’ individ-
ual parameters in the explicit formulation of our dynamic
information variables.

ar = q; (8)
For any dynamic variable My, r:
asl Gr; + qr; o 1
My, ry = My 0+ 2 g (Mri,rj - Mri,rj) 9)

° M,‘,’Mj is the value of the variable as computed by the
traffic module

. Mrf,,rj is the value of the variable computed by the
agent as if there was no traffic within r; and r; —

i.e. by considering only its individual parameters and
topological data. Note that if we assume Vjr.5 as the
preferred velocity of an agent from r; to r;, we can

derive:

Lr>7"
D, = 2 10
by = (10)

n _ 1
Sri,rj - D'r,-,'rj (11)

1

Uiy = Vpres (12)

® (maz 1S the maximum possible size of the resource
(number of users)

Note that equation (9) formalizes two intuitive facts:

1. The more relevant the traffic, the more macroscopic is
the measure of the variable

2. The less relevant the traffic the more individual is the
measure.

In the next section, we present the specification of a generic
multi-agent model that performs real-time simulations ac-
cording to our formulation.

3.2 A Generic Multi-Agent Model

A key point for the specification of our model is the ac-
tion theory to be used to implement the situated agents’ be-
haviours. Our approach relies on the influence reaction prin-
ciple proposed in [1], where there is a clear distinction be-
tween influences, which are produced by agents’ behaviours,
and the reaction of the environment. Precisely, our model
specification is inspired from the IRM4S — Influence Reac-
tion Model for Simulation [15] — which is a concretization of
[1]’s theory for real-time simulation. In IRM4S, two distinct
dynamics are coupled: agents generate influences to modify
their representation in the environment, and environment
reacts to all influences according to natural laws, and up-
dates all the agents’ representations. Here, we adapt the
environment architecture to include a physics engine that
updates agents’ representations and a traffic module that
mediate interaction between agents.

Figure 2 represents the global architecture of our frame-
work.

The physics engine is responsible for the dynamics of
agents’ bodies. It updates bodies’ positions and instanta-
neous speeds with respect to influences provided by agents,
and accounts for shocks and collisions.

The traffic module is responsible for the dynamic in-
formation variables maintenance. It defines the topological
structure that represents the continuous space, and mediate
interactions between agents while they navigate.

An agent is a relationship between a mind and a body.
The mind dynamically maintains the energy most efficient
path, relatively to the agent, and influences the body to
follow the path until it reaches the destination.

We now detail the most important features of the model.

3.2.1 Agent

Our agent’s model defines a dynamic search algorithm and
an influences set generation process that guide the body to-
wards the agent’s destination.

The dynamic search algorithm starts from a current path
and iteratively applies elementary moves, that consists in
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(a) Architecture of our generic multi-agent model

(b) Presentation of the descriptive ele-
ments of an agent behaviour : the con-
nected clear meshes represent the path
of the agent. The bold curved arrow is
the set of influences to be applied.

Figure 2: Overview of our generic multi-agent model

replacing links (discretized movements) in the current path,
with alternative links in order to generate a more efficient
path. Links replacement concerns only the resources that
are sensed by the agent at the beginning of the search pro-
cess. We experienced that such a dynamic search could
be implemented efficiently by using an evolutionary search
heuristic with a limited number of iterations [3]. Due to the
lack of space, we do not detail the specification of this algo-
rithm in this paper. We mostly focus on the architecture of
the model.

An influences set could be visualized as a curved line that
links the current agent’s position with the farthest sensed
resource on the path — see Figure 2(b). It formally represents
the preferred velocities that the agent would take to reach
its destination. The influences set computation could be
handled by any linear interpolation algorithm.

To apply an influence to the body, the mind iteratively
executes the algorithm 1. It selects the first influence from
the current influences set and apply it to the body as the
preferred velocity. When the body’s position is updated by
the physics engine, the mind notifies its movement to the
traffic module which notifies back the travelled resources in
order for the mind to update its path and, therefore, the
current influences set.

3.2.2  Physics Engine
The physics engine updates bodies’ positions and instan-
taneous speeds according to the velocity obstacle paradigm.

Algorithm 1: Application of influences

Data:
pos: mind’s current assumed position ;
I: ordered set of influences ;
path: current path ;

1 Select the first influence from I, Vpres ;

2 Set Vprey to the body as the preferred velocity ;

3 Get the new position pos™®” computed by the physics
engine ;

4 Notify the traffic module with (pos, pos™™) to get the
travelled resources ;

5 Update path according to the travelled resources ;
6 Update [ ;
7 Set pos™©” as the mind’s assumed position ;

Given a preferred speed it computes the closest instanta-
neous velocity that allows a collision-free navigation in re-
gards to all the dynamic obstacles.

3.2.3  Traffic Module

The traffic module updates traffic history tables of the re-
sources according to a history time step. A traffic history
table is a sliding window of predefined length that histor-
izes agents’ notifications. Two types of traffic history tables
are associated to resources : size history table, to be used
to estimate the mean number of users within the resource,
and transition history tables, to be used to evaluate arrival
or departure frequencies — a transition history table is as-
sociated to each discretized movement. When the traffic
module is notified by an agent — with the mind’s assumed
position and the body’s new position — it builds back the
travelled resources chain to the agent, and stores them in a
notification list. The notifications list is then processed at
each history time step to maintain the traffic history tables
of the travelled resources. We use a temporary classification
for travelled resourced, labelled “Active”, to process notifica-
tions efficiently. Active resources are resources that contains
non zero values in their respective traffic history tables. At
each history time step, only Active resources are maintained
according to the algorithm 2.

4. EVALUATION

We have implemented our model in C++ on a standard
MS machine — Intel E6550 dual core with a 2.33GHz proces-
sor and 2GB of memory — and carried out some experiments
that highlight the most interesting features of our work,
comparing to classical microscopic models. We have cho-
sen the latest version of the RVO model, optimized for colli-
sion avoidance and CPU performances [25], to run series of
comparative evaluations on selected benchmarks. The RVO
model exploits the velocity obstacle paradigm as the un-
derlying navigation principle, and performs within a multi-
agent framework. We used the same type of collision avoid-
ance algorithms to design a physics engine that matches our
specification. The discretization of the space into triangle
meshes has been realized with the freefem-++ software 2.
Here, agents are physically represented as 2d disks of pre-
defined radius and each resource cannot contain more than
four agents.

2www.freefemplusplus.org



Algorithm 2: Traffic history table maintenance

Data:
Actives: “Active” resources list ;

Notifications : list of the travelled resources ;
1 foreach r € Actives do
2 Set the current history index value to 0 for every
traffic history table of r ;
3 end
4 foreach c € Notifications do
5 Update Actives with the new travelled resources ;
6 if |c| ==1 then /* c has only one resource r.
*/
7 Q(rc) < size history table of r;
8 increment the current history index value of
Qre) ;
9 else /* c¢ has discretized movements (r;, ;) */
10 foreach (r;,r;) € c do
11 T79 (r;) < transition history table of (r;,7;);
12 Q(r;) < size history table of r;;
13 Q(r;) « size history table of r;;
14 decrement the current history index value of
Q(ri) ;
15 increment the current history index value of
T ()
16 increment the current history index value of
Q(ry) ;
17 end
18 end
19 end
20 Ignore non “Active” resources for the next step ;

We conducted two types of evaluations:

1. an online interview: we have invited volunteers to com-
pare the performances of both model on low-density
scenarios.

2. a validation of two well-known collective behaviours
witnessed in highly congested crowds: the edge [23]
and the fingering effects [28]

4.1 Online Interview

We have uploaded an online interview ° to compare both

models on several scenarios among the most frequently men-
tioned — see [12]. For each scenario, a pair of videos showing
the performances of our model (labelled “GMAM”) and RVO
has been uploaded, and participants were invited to assign
a comparative note among the following:

1. “none”: none of the video is credible.

2. “++ credible”: the left/right side video is much more
credible

3. “4 credible™ the left/right side video is more credible
4. “equally credible”: both videos are equally credible

To ensure an objective comparison, the underlying model
for each video has been hidden to participants, and videos
were presented in a random order from one scenario to an-
other. Figure 3 presents the results of the interview for the
following benchmarks :

3

www-desir.lip6.fr/~simokanmeugne /evaluation0.html

1. “Same Direction™ a group of pedestrians walking in
the same direction

2. “Crossing™ a crossing between two groups of pedestri-
ans walking in opposite directions

3. “Fast and Slow™ a fast pedestrian walking behind a
group of slow pedestrians

4. “Narrow Passage™ a group of pedestrians taking a nar-
row passage

140

+ credible =

++ credible ==
equally credible ==
ne mmm

100 ~

80 -

Number of votes

40 |-

20 +~

L
Yo GA’%GA’%Q Yo Sy, o gy, o GA’%%%
2% Ry, 2% 4
Same Direction © Crossing O Fast and Slow © Narrow Passage °

Figure 3: Results of the online interview. Our model is
labelled as “GMAM?”

A total of 140 participants completed the interview. Most
of them (73%) were students or academics from our univer-
sity. Results of the interview show that participants mas-
sively classified our model as the most credible for the given
benchmarks. Hereinbelow, we justify the most relevant fea-
tures of our model comparing to RVO.

1. “Same Direction™ our agents plan away from lateral
and front resources for more efficiency. This results
into emergent V-like patterns that we can witness in
real life [16].

2. “Crossing™ less occupied and more fluid resources offer
a better individual utility according to our formulation
of the navigation task. As result, our agents prefer
such resources in this benchmark and self-organize into
unidirectional lanes.

3. “Fast and Slow™ the fastest agent, in our model, over-
takes as soon as it gets close to the slow pedestrians
group while the RVO agent passes in the middle of the
group. Our agent plans for the surrounding resources,
since they have better utility values relatively to its
preferred speed.

4. “Narrow Passage™ The more agents arrive at the en-
trance of the passage, the more the entrance’s sur-
rounding resources become congested. As result, our
agents steer back to avoid congested areas at the en-
trance of the passage, while RVO agents spread later-
ally on the borders.

Next, we evaluated the performances of both models against
two well-studied collective behaviours:



1. Edge effect: for unidirectional flows of pedestrians,
sides move faster than the center of the crowd [23, 5,
20].

2. Fingering effect: for bidirectional flows, pedestrians
self-organize into unidirectional lanes to limit conflicts
with the oncoming flow [23, 28].

4.2 Collective phenomenon

Figures 4(a) and 4(b) illustrate how our model renders
the fingering effect and the edge effect for low-density sce-
narios. The goal of this second evaluation is to generalizes
the results for highly congested crowds.

(a) Fingering effect

N
.

(b) Edge effect

Figure 4: Illustration of our model performances against
the edge effect (b) and the fingering effect (a) for low-density
scenarios. Agents and their influences sets are coloured ac-
cording to the direction of the movement. Here, the blue
colour is for agents moving from the left to the right and the

red colour, for agents moving from the right to the left.

To reproduce highly congested crowds for this second eval-
uation, we realized four simulations of one thousand agents
in restricted areas : for the edge effect, one thousand agents
moving in the same direction, and for the fingering effect, a
crossing between two groups of five hundred agents moving
in two opposite directions. Figure 5 gives an overview of the
differences between the performances of both models.

We can see that our model (Figures 5(b) and 5(d)) matches
the descriptions of the collective behaviours better than RVO
(Figures 5(a) and 5(c)).

Figure 5(d) illustrates self-organization into unidirectional
lanes. Figure 5(b) shows side agents deviating from the
center of the crowd and a more important concentration
of agents in the middle of the crowd. These are encourag-
ing results which prove that our model can produce credible
results even for highly congested crowds.
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(C) Fingering Effect: RVO

(d) Fingering Effect: GMAM

Figure 5: Validating the fingering effect and the
edge effect

5. CONCLUSION AND PERSPECTIVES

We proposed a generic multi-agent model for real-time
simulation of a potentially highly congested crowd of au-
tonomous pedestrians. We are interested in reproducing
credible walking paths in real-time regardless of the num-
ber of agents. Our model originates from the principle of
least effort applied to human walking behaviours and uses
the influence and reaction principle to implement agents’
behaviours. Agents communicate through a traffic module
to dynamically maintains energy efficient paths, while being
subject to a physics engine which updates their positions
and instantaneous speeds.

The different experiments that we have made show en-
couraging results in terms of credibility. The dynamic plan-
ning algorithm that we used in combination with a traf-
fic module give more insight to the agents and favours the
emergence of complex individual and group behaviours like
overtaking and V-like formations. Moreover, our model per-
forms better than a classic microscopic model (RVO) when
the number of agents increases, and reproduces some well-
known collective behaviours like the fingering and the edge
effect.



As short-term perspectives, we intend to work on the dy-
namics search calibrations in order to evaluate our work in
terms of CPU performances. As mean-term perspectives,
it could be interesting to study resource aggregation tech-
niques to allow hierarchical planning. Deducing dynamic in-
formation for aggregated resources could be done the same
way as for elementary resources, i.e. computed from agents’
notifications. Also, we want to extend our formulation in
order to account for time constraints and emergency sit-
uations. The concept of generalized cost developed in [§]
provides interesting insights for that purpose. A long-term
perspective is to work on the concept of resource policy to
describe complex resource in terms of service quality. A re-
source policy could describe how a resource should be used.
This could be helpful to elaborate richer urban simulations
and integrate complex transports facilities like escalators,
elevators, etc.
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