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ON THE WAVE OPERATOR FOR DISSIPATIVE

POTENTIALS WITH SMALL IMAGINARY PART

XUE PING WANG AND LU ZHU

Abstract. We determine the range of the incoming wave opera-
tor for the pair of operators (−∆,−∆+V1(x)−iϵV2(x)) on L2(Rn)
under the conditions n ≥ 3 and 0 is a regular point of −∆ + V1,
V2 ≥ 0 and ϵ > 0 is small enough. This implies that the dissipative
scattering operator is bijective.

1. Introduction

The quantum scattering for non-selfadjoint operators appears in many
physical situations such as optical model of nuclear scattering ([6]). Its
Hilbert space theory is studied in [8, 9] and [3, 4, 5, 12]. See also
[1, 2, 7]. In particular, one can construct the scattering operator for a
pair of operators (H,H0) where H0 is selfadjoint and H is maximally
dissipative, if the perturbation is of short-range in Enss’ sense. Several
equivalent conditions for the asymptotic completeness of dissipative
quantum scattering are discussed in [4]. However, to our knowledge,
there is still no result on the asymptotic completeness itself in this
framework. The purpose of this work is to give a result in this direc-
tion under some conditions.

Let H = −∆+ V (x) be the Schrödinger operator with a dissipative
potential V , which means that V = V1 − iV2, where V1 and V2 are real
functions satisfying V2(x) ≥ 0 and V2(x) > 0 on some non-trivial open
set. Suppose that

|Vj(x)| ≤ C⟨x⟩−ρ0 , x ∈ R
n, (1.1)

for some ρ0 > 1. Here ⟨x⟩ = (1 + |x|2)1/2. Mild local singularities
can be included with little additional effort. Denote H0 = −∆ and
H1 = −∆+ V1. H defined on D(−∆) is maximally dissipative and the
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numerical range of H is contained in {z;ℜz ≥ −R,−R ≤ ℑz ≤ 0} for
some R > 0. The wave operators

W−(H,H0) = s- lim
t→−∞

eitHe−itH0 (1.2)

W+(H0, H) = s- lim
t→+∞

eitH0e−itH (1.3)

exist on L2(Rn) and on Hac, respectively, where Hac is the closure of
the subspace

M(H) = {f ∈ L2; ∃Cf s.t.

∫ ∞

0

|⟨e−itHf, g⟩|2 dt ≤ Cf∥g∥
2, ∀g ∈ L2}.

See [4, 12]. It is known that Ran W−(H,H0) ⊂ Hac (see Lemma 2 of
[4]). The dissipative scattering operator S(H,H0) for the pair (H,H0)
is then defined as

S(H,H0) = W+(H0, H)W−(H,H0). (1.4)

W+(H0, H) should be compared with the adjoint of the outgoing wave
operator in selfadjoint cases, because for the pair of selfadjoint opera-

tors (H1, H0), the scattering operator S̃(H1, H0) is defined as

S̃(H1, H0) = W+(H1, H0)
∗W−(H1, H0).

A fundamental question for quantum scattering for a pair of selfad-
joint operators is to study the asymptotic completeness of wave opera-
tors which implies that the scattering operator is unitary. In dissipative
quantum scattering, the scattering operator S(H,H0) is a contraction:
∥S(H,H0)∥ ≤ 1. The completeness of dissipative scattering can be
interpreted as the bijectivity of S(H,H0). The equivalence of the fol-
lowing two conditions is due to E. B. Davies (Theorem 7, [4]):

(1) The range of W−(H,H0) is closed;

(2) The scattering operator S(H,H0) is bijective on L2.

In fact, E.B. Davies proves more general results in an abstract set-
ting which can be applied to our case under the assumption (1.1) with
ρ0 > 1.

In this work, we study the dissipative quantum scattering under
the assumption that the imaginary part of the potential is small. Let
H(ϵ) = −∆ + V1(x) − iϵV2(x), where ϵ > 0 is a small parameter and
Vj satisfies the condition (1.1) with V2 ≥ 0 and V2 ̸= 0. Denote

W−(ϵ) = W−(H(ϵ), H0) and S(ϵ) = S(H(ϵ), H0)
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the wave and scattering operators defined as above with H = H(ϵ).

Theorem 1.1. Assume the condition (1.1) with ρ0 > 2 and n ≥ 3.
Suppose that 0 is neither an eigenvalue nor a resonance of H1. Then
one for some ϵ0 > 0

Ran W−(ϵ) = Ran Π′(ϵ), 0 < ϵ ≤ ϵ0, (1.5)

where Π′(ϵ) = 1−Π(ϵ) and Π(ϵ) is the Riesz projection associated with
discrete spectrum of H(ϵ).

Theorem 1.1 can be compared with the asymptotic completeness of
wave operators in the selfadjoint case which says that

Ran W±(H1, H0) = Ran Πac,

where Πac is the projection onto the absolutely continuous spectra sub-
space of H1. Under the condition ρ0 > 2, Π(ϵ) is of finite rank and
Ran Π′(ϵ) = Ker Π(ϵ) is closed. As consequence of Theorem 1.1 and
Theorem 7 of [4], the scattering operator S(ϵ) is bijective for ϵ > 0 small
enough. Consequently, the dynamics of the semigroup of contractions
can be described explicitly as follows. For any f ∈ L2, one can decom-
pose it as f = f1 + f2 with f1 ∈ Ran Π(ϵ) and f2 ∈ Ran Π′(ϵ). Since
H(ϵ) has a finite number of eigenvalues, all with negative imaginary
part, e−itH(ϵ)f1 decreases exponentially as t → +∞. The existence of
the scattering operator S(ϵ) implies that there exists f∞ ∈ L2 such
that

lim
t→+∞

∥e−itH(ϵ)f2 − e−itH0f∞∥ = 0 (1.6)

and the asymptotic completeness of the wave operator W−(ϵ) ensures
that f∞ ̸= 0 if f2 ̸= 0. For any f ∈ L2, t → ∥e−itH(ϵ)f∥ is decreasing in
t > 0. Theorem 1.1 shows that either ∥e−itH(ϵ)f∥ decreases exponen-
tially (when f ∈ Ran Π(ϵ)) or it tends to some non-zero limit as t goes
to the infinity (when f ̸∈ Ran Π(ϵ)).

The proof of Theorem 1.1 is based on a uniform global limiting ab-
sorption principle for the resolvent of H(ϵ) on the range of Π′(ϵ) which
is proved in Section 2. By the technique of selfadjoint dilation for dis-
sipative operators, this gives a uniform Kato smoothness estimate for
the semigroup e−itH(ϵ). The condition that 0 is neither an eigenvalue
nor a resonance of H1 is necessary for such uniform estimates. In Sec-
tion 3, we identify the range of W−(ϵ) for ϵ > 0 small, making use of
the asymptotic completeness of the wave operators for the selfadjoint
pair (H1, H0).
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2. Some resolvent estimates

Let R(z, ϵ) = (H(ϵ) − z)−1, z ̸∈ σ(H(ϵ)) and Rj(z) = (Hj − z)−1,
j = 0, 1. Denote L2,s = L2(Rn; ⟨x⟩sdx) the weighted L2−space and
∥f∥s = ∥f∥L2,s . If no confusion is possible in the context, we denote
∥·∥ both the norm of functions in L2 and the operator norm for bounded
operators on L2.

It is well known that for V1 satisfying (1.1) with ρ0 > 2, H1 =
−∆+V1(x) has only a finite number of eigenvalues. Assume in addition
that n ≥ 3 and 0 is neither an eigenvalue and nor a resonance ofH1, one
can show that the number of eigenvalues (counted according to their
algebraic multiplicities) of H(ϵ) is equal to that of H1 when ϵ > 0 is
small enough. More precisely, let λ1 < λ2 < · · · < λl < 0 be the distinct
eigenvalues of H1, λj being of multiplicity nj. Let N1 =

∑l
j=1 nj be

the number of eigenvalues of H. Then the number of eigenvalues of
H(ϵ) is equal to N1 and are located inside

F = ∪l
j=1Fj

where Fj = {z; |z − λj| < Cϵ,−Cϵ ≤ ℑz ≤ −cϵ} for some C, c > 0
([15]). Denote by Πj the spectral projection of H1 associated with λj

and Πj(ϵ) the Riesz projection of H(ϵ) associated with eigenvalues near
λj:

Πj(ϵ) =
1

2πi

∫

|z−λj |=δ

(z −H(ϵ))−1dz,

where δ > 0 is small enough and is fixed.
Recall that for each fixed ϵ > 0, there are no real eigenvalues of H(ϵ)

and 0 is not a resonance if n ≥ 3 ([15]). The limit

R(λ+ i0, ϵ) = lim
δ→0+

(H(ϵ)− (λ+ iδ))−1

is well defined for any λ ∈ R as operators from L2,s to L2,−s with s > 1.
See [11] for λ > 0 and [15] for λ near 0. The purpose of this Section is
to prove the following

Theorem 2.1. Under the assumptions of Theorem 1.1, one has the
unform global resolvent estimate

∥⟨x⟩−sΠ′(ϵ)R(λ+ i0, ϵ)Π′(ϵ)⟨x⟩−s∥ ≤ Cs⟨λ⟩
−1/2, λ ∈ R (2.7)

uniformly in ϵ. Here Π′(ϵ) = 1−Π(ϵ), Π(ϵ) =
∑

j Πj(ϵ) being the Riesz

projection of H(ϵ) associated to σdisc(H(ϵ)).

Remark that this uniform estimate is not true if 0 is an eigenvalue
or a resonance of H1, because then H(ϵ) will have complex eigenvalues
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near 0 with imaginary part of the order O(ϵ). The resolvent R(z, ϵ)
still blows up even if one projects out the range of the associated Riesz
projection. The proof of Theorem 2.1 is divided into several steps.

Lemma 2.2. For s, s′ ∈ R with s+ s′ ≤ ρ0, one has

∥⟨x⟩s(Πj(ϵ)− Πj)⟨x⟩
s′∥ ≤ Cϵ, 0 < ϵ ≤ ϵ0 (2.8)

Proof. On the circle |z − λj| = δ with δ > 0 small enough, one has
∥R1(z)∥ ≤ δ−1. From the equation R(z, ϵ) = R1(z)(1 − iϵV2R1(z))

−1,
one deduces that

∥R(z, ϵ)∥ ≤ Cδ−1

uniformly for |z−λj| = δ and 0 < ϵ ≤ ϵ0. By a successive commutator
technique, one deduces that for any s ∈ R,

∥⟨x⟩sR(z, ϵ)⟨x⟩−s∥ ≤ Cs,δ (2.9)

uniformly for |z − λj| = δ and 0 < ϵ ≤ ϵ0. (2.8) follows from the
relation

Πj(ϵ)− Πj = −
ϵ

2π

∫

|z−λj |=δ

R(z, ϵ)V2R1(z)dz (2.10)

and the decay assumption on V2. �

Lemma 2.3. Let 0 < c0 < −λl. Under the assumption of Theorem
1.1, one has for any s > 1

∥⟨x⟩−sR(λ+ i0, ϵ)⟨x⟩−s∥ ≤ Cs⟨λ⟩
− 1

2 , λ > −c0, (2.11)

uniformly in ϵ ∈]0, ϵ0]. Here

R(λ+ i0, ϵ) = lim
δ→0+

(H(ϵ)− (λ+ iδ))−1

Proof. Since 0 is a regular point of H1, it is well known that

∥⟨x⟩−sR1(λ+ i0)⟨x⟩−s∥ ≤ C⟨λ⟩−
1

2 , λ > −c0, (2.12)

for any s > 1, where

R1(λ+ i0) = lim
δ→0+

(H1 − (λ+ iδ))−1

Since ρ0 > 2, V2R1(λ+i0) is uniformly bounded on L2,s if 1 < s < ρ0/2.
(2.11) follows from the equation

R(λ+ i0, ϵ) = R1(λ+ i0)(1− iϵV2R1(λ+ i0, ϵ))−1

for ϵ0 > 0 small enough. �

Lemma 2.4. One has

∥R(λ, ϵ)∥ ≤ Cϵ−1⟨λ⟩−1 (2.13)

for λ ≤ −c0 and ϵ ∈]0, ϵ0].



6 XUE PING WANG AND LU ZHU

Proof. To prove (2.13), it suffices to prove the estimate for λ near
some eigenvalue λj of H1. Let Πj denote the spectral projection of H1

associated with the eigenvalue λj. (1−Πj)R1(z)(1−Πj) is holomorphic
in the region |ℜz − λj| ≤ δ for δ > 0 small enough. The resolvent
equation shows that

E(z, ϵ) = (1− Πj)R(z, ϵ)(1− Πj) (2.14)

defined for ℑz ≥ 0 and ℜz ≤ −c0 has a holomorphic extension into the
region |ℜz − λj| ≤ δ and ℑz > −1 and is uniformly bounded in z and
0 < ϵ ≤ ϵ0. One can check the following Feshbach-Grushin identity:

R(z, ϵ) = E(z, ϵ)− (1 + iϵE(z, ϵ)V2)Πj(E−+(z, ϵ))
−1Πj(1 + iϵV2E(z, ϵ))

(2.15)
for z ̸∈ σ(H(ϵ)), where

E−+(z, ϵ) = Πj(z − λj + iϵV2 − ϵ2V2E(z, ϵ)V2)Πj (2.16)

Since V2 ≥ 0 and V2(x) > 0 in a nontrivial open set, ΠjV2Πj is positively
definite on Ran Πj. Let µ1 denote the smallest eigenvalue of ΠjV2Πj

on Ran Πj. One has µ1 > 0. From the estimate

ℑE−+(z, ϵ) = Πj(ℑz + ϵV2 +O(ϵ2))Πj, λ ∈ R,

one deduces that for any c1 < µ1, one has for some c > 0

ℑ⟨E−+(z, ϵ)f, f⟩ ≥ cϵ∥f∥2, f ∈ Ran Πj,

uniformly in ℑz ≥ −c1ϵ, |ℜz − λj| ≤ δ and ϵ ∈]0, ϵ0]. It follows that
for z in this region,

∥(E−+(z, ϵ))
−1Πj∥ ≤ Cϵ−1 (2.17)

Estimate (2.13) follows from (2.15) when λ is near some λj. When
λ < −c0 and |λ− λj| ≥ δ > 0 for all 1 ≤ j ≤ l, estimate (2.13) comes
from the trivial resolvent estimate for H1

∥R1(λ)∥ ≤ C⟨λ⟩−1

in this region and an argument of perturbation. �

Proof of Theorem 2.1. Denote

Πj(ϵ)− Πj = ϵSj(ϵ) (2.18)

Then Lemma 2.2 says that for any s ∈ R, Sj(ϵ) : L2,s → L2,s+ρ0

is uniformly bounded. Let Πac denote the spectral projection of H1

onto its absolutely continuous subspace and Πd =
∑l

j=1 Πj. Since the
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singular continuous spectrum of H1 is absent, one has Πac = 1 − Πd.
In addition,

Π′(ϵ)− Πac = −ϵS(ϵ), where S(ϵ) =
l∑

j=1

Sj(ϵ). (2.19)

With these notations, one has

R(λ, ϵ)Π′(ϵ) = −ϵR(λ, ϵ)S(ϵ)+ (R1(λ)+ iϵR(λ, ϵ)V2R1(λ))Πac. (2.20)

The Spectral Theorem for the selfadjoint operator H1 gives

∥ΠacR1(λ)∥ ≤ C⟨λ⟩−1, λ ≤ −c0.

Here c0 > 0 is fixed as in Lemma 2.3. Lemma 2.4 and Equation (2.20)
show that

∥R(λ, ϵ)Π′(ϵ)∥ ≤ C⟨λ⟩−1, λ ≤ −c0, (2.21)

uniformly in ϵ > 0. By the exponential decay of the eigenfunctions of
H1 associated with the eigenvalues λj < −c0, Πd is continuous from
L2,−s to L2,s for any s ∈ R. Lemma 2.2 shows that for any s, s′ ∈ R

with s+ s′ ≤ ρ0 one has

∥⟨x⟩s
′

Π(ϵ)⟨x⟩s∥ ≤ Cs,s′ (2.22)

Using Lemma 2.3, one obtains for 1 < s ≤ ρ0/2

∥⟨x⟩−sΠ′(ϵ)R(λ+ i0, ϵ)Π′(ϵ)⟨x⟩−s∥ ≤ Cs⟨λ⟩
− 1

2 , λ > −c0, (2.23)

uniformly in ϵ ∈]0, ϵ0]. Estimate (2.7) follows from (2.21) and (2.23).
�

The following Kato smoothness estimate for the semigroup of con-
tractions is the main ingredient to prove Theorem 1.1.

Corollary 2.5. Under the conditions of Theorem 2.1, one has, for
s > 1,

∫ ∞

0

∥⟨x⟩−sΠ′(ϵ)e−itH(ϵ)f∥2 dt ≤ C∥f∥2, ∀f ∈ L2, (2.24)

uniformly in ϵ ∈]0, ϵ0].

(2.24) follows from (2.7) and Proposition 2.2 of [16]. See also [11]
for some special case. In fact, using the high energy estimate in (2.7)
and Proposition 2.2 of [16], one can obtain a slightly better smoothness
estimate: ∀s > 1, ∃ Cs such that

∫ ∞

0

∥⟨x⟩−s⟨Dx⟩
1/2Π′(ϵ)e−itH(ϵ)f∥2 dt ≤ Cs∥f∥

2, ∀f ∈ L2, (2.25)
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uniformly in 0 < ϵ ≤ ϵ0. Since 0 is a regular point of H1, an estimate
similar to (2.24) also holds for H1:∫ ∞

−∞

∥⟨x⟩−sΠace
−itH1f∥2 dt ≤ Cs∥f∥

2, ∀f ∈ L2, s > 1. (2.26)

3. Proof of Theorem 1.1

Proof of Theorem 1.1. To prove Theorem 1.1, one remarks firstly
that since the eigenvalues of H(ϵ) are all of negative imaginary part,
one has

s- lim
t→+∞

Π(ϵ)e−itH(ϵ) = 0,

which implies that Π(ϵ)W−(H(ϵ), H0) = 0. Therefore one has

Π′(ϵ)W−(H(ϵ), H0) = W−(H(ϵ), H0)

Decompose W−(H(ϵ), H0) as

W−(H(ϵ), H0) = Π′(ϵ)(1− ϵK(ϵ))W−(H1, H0),

where

K(ϵ) =

∫ ∞

0

e−itH(ϵ)Π′(ϵ)V2e
itH1Πacdt.

By the asymptotic completeness of W−(H1, H0), one has

Ran W−(H1, H0) = Ran Πac. (3.27)

According to (2.24) and (2.26), one has for s = ρ0/2 > 1

|⟨K(ϵ)f, g⟩|

≤ C

{∫ ∞

0

∥⟨x⟩−sΠ′(ϵ)e−itH(ϵ)g∥2dt

}1/2 {∫ ∞

0

∥⟨x⟩−sΠace
−itH1f∥2dt

}1/2

≤ C ′∥f∥ ∥g∥

uniformly in ϵ > 0 small. This proves that K(ϵ) is uniformly bounded
on L2. Recall that Π′(ϵ)− Πac = −ϵS(ϵ). Since

Π′(ϵ)Πac = Π′(ϵ)(1 + Πac − Π′(ϵ)) = (1 + Π′(ϵ)− Πac)Πac,

one has

Π′(ϵ)(1− ϵK(ϵ))Πac

= Π′(ϵ)(1 + ϵS(ϵ)− ϵK(ϵ)Πac)

= (1− ϵS(ϵ)− ϵΠ′(ϵ)K(ϵ))Πac.

1 + ϵS(ϵ) − ϵK(ϵ)Πac and 1 − ϵS(ϵ) − ϵΠ′(ϵ)K(ϵ) are invertible on L2

with bounded inverse for ϵ > 0 small enough. We claim that

Π′(ϵ)(1− ϵK(ϵ))Πac : Ran Πac → Ran Π′(ϵ) (3.28)
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is bijective for ϵ > 0 small enough. In fact, if g ∈ Ran Πac such
that Π′(ϵ)(1 − ϵK(ϵ))Πacg = 0, then (1 − ϵS(ϵ) − ϵΠ′(ϵ)K(ϵ))g = 0,
therefore g = 0. This proves Π′(ϵ)(1− ϵK(ϵ))Πac is injective for ϵ > 0
small enough. For f ∈ Ran Π′(ϵ), take

g = (1 + ϵS(ϵ)− ϵK(ϵ)Πac)
−1f.

Then
Π′(ϵ)(1− ϵK(ϵ))Πacg = Π′(ϵ)f = f.

This proves that

Π′(ϵ)(1− ϵK(ϵ))Πac : Ran Πac → Ran Π′(ϵ)

is surjective, hence bijective for ϵ > 0 small enough. Since

Ran W−(H1, H0) = Ran Πac,

it follows that Ran W−(H(ϵ), H0) = Ran Π′(ϵ) for ϵ > 0 small enough.
�

According to [4], S(ϵ) is bijective if and only if Ran W−(H(ϵ), H0)
is closed. In our case, Π′(ϵ) = 1 − Π(ϵ) and Π(ϵ) is a projection of
finite rank. So Ran Π′(ϵ) = Ker Π(ϵ) is closed. Consequently, under
the conditions of Theorem 1.1, the dissipative scattering operator S(ϵ)
is invertible on L2 for ϵ > 0 small enough.

Remark. Since S(ϵ) is bijective, W−(ϵ) is bijective from L2 onto
Ran Π′(ϵ), therefore invertible with bounded inverse. The intertwining
relation W−(ϵ)H0 = H(ϵ)W−(ϵ) gives a relation between the charac-
teristic functions of H0 and H(ϵ) ([14]). Since the spectrum of H0 is
purely absolutely continuous, one may guess that under the conditions
of Theorem 1.1, the range of Π′(ϵ) coincides with the absolute contin-
uous spectral subspace as defined in [14]. This would mean that the
singular continuous spectrum of H(ϵ) is absent. See [13] for a result in
one dimensional case without the smallness condition on the imaginary
part of the potential, but under the assumption of absence of spectral
singularities.
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Inst. H. Poincaré, Commun. Math. Phys., 71(1980), 277-288.



10 XUE PING WANG AND LU ZHU

[5] E. B. Davies, Non-unitary scattering and capture. II. Quantum dynamical
semigroup theory, Ann. Inst. H. Poincaré, Vol. XXXII(4) (1980), 361-375.
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