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Abstract

This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic 

database.  The new edition is the first official public release since the 2004 edition, although a 

number of crucial updates had been made available online since 2004.  The HITRAN compilation 

consists of several components that serve as input for radiative-transfer calculation codes: 

individual line parameters for the microwave through visible spectra of molecules in the gas 

phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in 

which the individual lines are not resolved; individual line parameters and absorption cross-

sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general 

properties associated with the database; and database management software.  The line-by-line 

portion of the database contains spectroscopic parameters for forty-two molecules including 

many of their isotopologues.

Keywords:  HITRAN; Spectroscopic database; Molecular spectroscopy; Molecular absorption; 

Spectroscopic line parameters; Absorption cross-sections; Aerosols
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1.  Introduction

This article describes the data that have been added, modified, or enhanced in the HITRAN

(High Resolution Transmission) compilation since the previous update of 2004 [1] (hereafter 

called HITRAN2004 in the text).  The compilation encompasses the HITRAN line-transition 

parameters, infrared cross-sections, UV line-by-line parameters and cross-sections, aerosol 

refractive indices, and documentation.  The file structure for the compilation remains the same as 

the previous edition and can be seen in Fig. 1 of Ref. [1].  The compilation is available on an 

anonymous ftp site.  Instructions for accessing the database can be found in the HITRAN web site 

(http://www.cfa.harvard.edu/HITRAN).

The HITRAN database is the recognized international standard, used for a vast array of 

applications including terrestrial and planetary atmospheric remote sensing, transmission 

simulations, fundamental laboratory spectroscopy studies, industrial process monitoring, and 

pollution regulatory studies.  An international HITRAN advisory committee, composed of a 

dozen experts in the field of spectroscopy, has been established under the auspices of NASA.  

This committee reviews and evaluates new data and makes recommendations for updates and 

replacements in the compilation.

Many recent developments have pushed the requirements of HITRAN in terms of accuracy 

and degree of completeness.  Among these developments one can cite the retrievals that various 

satellite remote-sensing missions are now capable of due in part to the high signal-to-noise ratio 

of the spectra and to advances in retrieval algorithms.  Notable satellite spectrometer 

instrumentation include MLS (Microwave Limb Sounder) [2] and TES (Tropospheric Emission 

Spectrometer) [3] on the Aura platform, MIPAS (Michelson Interferometer for Passive 

Atmospheric Sounding) [4] on ENVISAT, ACE-FTS (Atmospheric Chemistry Experiment) [5]
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on SCISAT, AIRS (Atmospheric Infrared Sounder) [6] on Aqua, IASI (Infrared Atmospheric 

Sounding Interferometer) [7] on MetOP-A, OCO (Orbiting Carbon Observatory) [8], and 

GOSAT (Greenhouse gases Observing SATellite) [9].  These satellite instruments have put 

demands on HITRAN that include increased accuracy (by almost an order of magnitude in some 

cases) for the basic parameters: line position in vacuum wavenumbers,  (in cm-1), intensity of 

the line, S (in cm-1/(molecule cm-2)), and line-shape parameters.1  They also require more 

species, additional molecular bands, and weak lines throughout the spectral region covered by 

HITRAN (microwave through UV).  In fact, the remote-sensing experiments have demonstrated 

that the basic Lorentz line-shape parameter for collisional broadening used in HITRAN, from 

which it is possible to calculate the Voigt line profile, is not satisfactory in many cases.  To 

reduce the residuals between observation and simulation, it has often been necessary to invoke 

more sophisticated non-Voigt line shape functions such as Rautian or Galatry [10] and line 

mixing.

Section 2 of this paper presents the most significant of the improvements featured in this 

newly updated edition of HITRAN as it relates to the line-by-line parameters.  Note that the line 

lists described here either include or supersede intermediate updates that were placed on the 

HITRAN web site after HITRAN2004.  The status of the infrared cross-sections, sets of 

ultraviolet data, and the aerosol refractive indices of aerosols, are discussed in sections 3 through 

5.

                                                
1 The HITRAN database does not adhere to SI units for both historical and application-specific reasons.  We also 
employ the symbol  throughout for line position in cm-1, thereby dropping the tilde ( ~ ) that is the official 
designation of wavenumber. We normally express the HITRAN unit for intensity as cm-1/(molecule cm-2) rather 
than simplifying to the equivalent cm/molecule.  In this way we emphasize the quantity as wavenumber per column 
density, which is consistent with the viewpoint of atmospheric radiative-transfer codes.
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2.  Line-by-line parameters

This edition of HITRAN contains three new entries, methyl bromide (CH3Br), methyl 

cyanide (CH3CN), and tetrafluoromethane (CF4).  It is worth repeating that the number of 

transitions included in the database is limited by: (1) a reasonable minimum cutoff in absorption 

intensity (based on the sensitivity of instruments that observe absorption over extreme terrestrial 

atmospheric path lengths), (2) lack of sufficient experimental data, or (3) lack of calculated 

transitions.

The format for the line-by-line portion of the compilation remains the same as in the 

previous edition (see Table 1 of Ref. [1]), except that the self-broadened half-width parameter 

has now been written in a Fortran format of F5.3 rather than F5.4.  The latter distinction is not 

significant unless the user employs the Fortran write function.

The molecules for which data are included in the line-by-line portion of HITRAN are mostly 

composed of small numbers of atoms and have low molecular weights.  Large polyatomic 

molecules have many normal modes of vibration and “heavy” species have fundamentals at very 

low wavenumbers.  For three of the molecules in this edition of HITRAN, SF6, ClONO2, and 

CF4, we have kept the parameters for this edition in a supplemental folder (see Fig. 1 of Ref. [1]).  

The rationale for this is that the line-by-line parameters represent only a few bands, and neglect 

many significant hot bands for the “heavy” species.  For most applications, the IR cross-sections 

of these molecules in the HITRAN compilation provide a better simulation.

The user of the HITRAN line-by-line data and the cross-section data is encouraged to 

consult and cite the original sources of the data.  In the case of the line-by-line parameters, there 

are indices pointing to the sources of six parameters: the transition wavenumber, ; the intensity, 

S; the air- and self-broadened half-width parameters, γair and γself; the exponent for the 
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temperature dependence of the air-broadened half-width parameter, n; and the air-pressure shift

parameter, δ.  The sources are contained in a separate file in the compilation.

The following sub sections cover all molecules whose parameters have been updated since 

the last edition of HITRAN [1].  The descriptions are generally ordered by increasing 

wavenumber region, and we have attempted to describe the improvements in the line positions 

and intensities prior to those in the other parameters, when feasible.  Future improvements are 

also mentioned where necessary.

2.1. H2O (molecule 1)

Water vapor spectroscopy is of paramount importance to many applications.  Not only are 

the spectroscopic parameters needed for studies of the climate and energy budget of the Earth, 

but also for the atmospheres of stars (see for example Ref. [11]) and now even exoplanets [12].  

The recommended line list for water remains in a state of continued evolution. Substantial 

changes to the half-width parameters for the main isotopologue H2
16O and the addition of new 

data for isotopically-substituted species are among the prominent recent modifications.

The 2004 edition of HITRAN [1] featured a major update in line positions and line intensities 

for all HITRAN water-vapor isotopologues between 500 and 8000 cm-1 based on the work of 

Toth [13], with the exception of the principal isotopologue which had calculated values from 

Coudert [14] up to 800 cm-1.  However, recently reported measurements of transitions in the ν

band in the 1000 to 2000 cm-1 range [15] suggest that Toth's data systematically underestimated

the intensities of the strongest transitions in this region by between 5 and 10%.  This conclusion 

is supported by independent ab initio calculations [16].  The intensities of the unblended strong 

lines have therefore been replaced using the new measurements; for four blended strong lines, 

those located at 1512.30732, 1539.05857, 1539.06079, 1684.83515 cm-1, the theoretical results 
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are from variational calculations using an ab initio dipole surface [17].  There have been other 

recent measurements at shorter infrared wavelengths [15, 18, 19] as well as a comprehensive ab 

initio analysis of the line intensities [20].  The issue of whether or not adjustments are also 

needed for the line intensities at these wavelengths is currently being studied with a view to 

coming up with recommendations for a future edition of the database.

The region 9500 to 14500 cm-1 for the main isotopologue has been updated using the new 

analysis by Tolchenov and Tennyson [21] who employed a novel fitting technique to reanalyze a 

series of Fourier transform absorption spectra of pure water vapor recorded by Schermaul et al

[22, 23].  However, any data attributed to Brown et al [24] that were in HITRAN2004 have been 

retained.  Analogously, the 14500- to 26000-cm-1 region has been updated using the work of 

Tolchenov et al [25] replacing the data from Coheur et al [26] in HITRAN2004.  Comparisons 

with previous studies on water-vapor absorption in this region suggest that the new parameters 

give a more consistent representation of the spectrum.

An update has also been made for the parameters of H2
17O and H2

18O isotopologues in the 

near-IR and visible region based on the work of Tanaka et al [27].  This work is a reanalysis of 

long-path length Fourier transform spectra originally recorded at Kitt Peak by Chevillard et al 

[28] and analyzed initially by Tanaka et al [29].  The lines listed previously in this region for 

both isotopologues have been removed and replaced by 1087 lines of H2
18O spanning the range 

12400 to 14520 cm-1 and 891 lines of H2
17O in the range 11365 to 14475 cm-1.  In addition, some 

misidentified lines that have now been attributed to oxygen, have been removed from the water-

vapor line list.

A major addition has been made with 3528 monodeuterated water-vapor (HDO) transitions 

in the near infrared and visible, specifically 11600 to 23000 cm-1.  Previous editions of the 
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database did not contain any HDO transitions in this region.  The data are due to a re-analysis by 

Voronin et al [30] of the long-path Fourier transform spectrum recorded by Bach et al [31].

The pressure-broadened half-width parameters for the three most abundant isotopologues of 

water, H2
16O, H2

18O, and H2
17O, have been completely updated.  Air-broadened half-widths were 

updated in 2006 (an interim update) using an algorithm based on physical principles and 

statistics developed by Gordon et al [32], which set a new criterion for the best available air-

broadened half-width parameters using a mixture of measurements, calculated, and semi-

empirical data.  These new parameters have been tested for different remote-sensing applications 

and were found to give improved profiles for atmospheric constituents.  The algorithm has been 

improved for the current release of HITRAN: additional measurements of γair and δ [18, 33-39]

and γself [18, 38-45] have been added to the measurement databases.  Additional data [46, 47]

have been added to the theoretical database of γair, n, and δ.   The database of calculations of γself

for water vapor now contains the data of Antony et al [48, 49] and Cazzoli et al [44].

The temperature dependence of the air-broadened half-widths has now been added to all 

water-vapor transitions via an algorithm that first seeks values from CRB (Complex Robert-

Bonamy) calculations [46, 47, 50].  If a CRB value for a transition is not found, the n values as a 

function of rotational quantum numbers from Table 7 of Ref. [1] are used.

2.2. CO2 (molecule 2)

High-resolution spectroscopic monitoring of the evolution of carbon dioxide in the terrestrial 

atmosphere is obviously one of great importance for policy makers.  Carbon dioxide is also 

prevalent in the atmospheres of some rocky planets, such as Venus and Mars.  With its many 

bands of very different intensity throughout the spectrum, carbon dioxide is also an excellent tool 

for probing atmospheres to different depths.
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Since the last edition of the HITRAN database [1], there have been a large number of 

experimental and theoretical investigations of carbon dioxide spectra.  A notable effort is the set 

of extensive Fourier transform spectroscopy (FTS) experiments carried out by the Jet Propulsion 

Laboratory (JPL) [51-58] in order to support the upcoming Orbiting Carbon Observatory (OCO) 

mission [8].  The results of these efforts for the 4300 to 7000 cm-1 region have been compiled 

into a HITRAN-like database [57] with parameters for nine different isotopologues (including 

13C18O2 which was not previously tabulated in HITRAN).  The parameters listed in Ref. [57]

cover a wide dynamic range (410-30 to 1.2910-21 cm-1/(molecule cm-2) at 296 K) which is 

substantially larger than the FTS experimental detection limit, i.e. parameters for some high-J

lines as well as for lines of weak unobserved bands were theoretically extrapolated.  Parallel 

experiments featuring the cavity ring down spectroscopy (CRDS) technique [59-64] in the 5851

to 7045 cm-1 region have shown that theoretical extrapolations of the FTS data in Ref. [57]

deviate seriously from the CRDS line positions and line intensities for some of the higher-J lines, 

while some of the weaker bands, observed to be above 410-30 cm-1/(molecule cm-2) are missing 

completely from the predicted line list (see discussion in Refs. [62, 65, 66]).  These discrepancies

are thought to have a reliable basis because the CRDS technique allows the detection of lines 

with much weaker intensities than those with the FTS, although CRDS spectra are inferior to 

FTS spectra in terms of overall accuracy of determining line positions.

Simultaneously, great progress has been made in the global effective Hamiltonian (EH) 

model developed at the Université Pierre et Marie Curie (Paris, France) and the Institute of 

Atmospheric Optics (Tomsk, Russia) [67-70], which was used in the calculation of the 

theoretical Carbon Dioxide Spectroscopic Databank (CDSD) [71], significantly improving and 

extending the previous version [72] and achieving a pronounced agreement with the CRDS 
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experiments. The improvement and extension of the CDSD databank have been achieved due to 

incorporating new measurements performed during the last five years into the global modeling. 

The above mentioned CRDS measurements in Grenoble and FTS measurements at JPL have had 

an especially strong impact on the quality of the modeling.

The present atmospheric version of CDSD consists of 419610 lines belonging to 12C16O2, 

13C16O2, 
16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, and 12C18O2 covering a wavenumber 

range of 5 to 12784 cm-1. The intensity cutoff of CDSD was set to 10-30 cm-1/(molecule cm-2). 

On average, the residuals between CDSD calculated line positions and those observed are two

times larger than measurement uncertainties. CDSD calculated line intensities are almost always 

within their measurement uncertainties.

The current atmospheric version of the databank is available via an anonymous ftp site 

ftp.iao.ru in the folder /pub/CDSD-2008/296. The same site also contains two other dedicated 

versions of the databank: a version for high-temperature applications (/pub/CDSD-2008/1000) 

and a version for studying the atmospheres of Venus and Mars (/pub/CDSD-2008/Venus).

The need for a sensible mixing of the experimental and theoretical data is obviously required 

in the 4300 to 7000 cm-1 region in order to support atmospheric remote sensing of the earth-like 

planets (Earth, Mars and Venus).  In order to do that one has to consider the following caveats:

1. The database [57] (hereafter referred to as the OCO dataset) is based on FTS measurements 

that are very accurate and, besides line positions and intensities, allow measurements of collision 

broadening parameters.  However, theoretical extrapolations applied in the OCO dataset for 

transitions weaker than 10-26 cm-1/(molecule cm-2) for the principal isotopologue and 10-27

cm-1/(molecule cm2) for the other isotopologues have led to some very large deviations from 

subsequent observations in predicting line positions and especially intensities.
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2. The data collected in the cavity ring down laser experiments (hereafter referred as CRDS 

data) is nearly complete for the lines stronger than 510-29 cm-1/(molecule cm-2).  However, the 

typical accuracy of these line positions (110-3 cm-1) is inferior to that of FTS experiments 

(410-5 cm-1).  Finally, CRDS measurements do not provide data below 5851 cm-1 and do not 

provide pressure-induced parameters. Note that the dataset for 13C16O2, 
16O13C18O, 16O13C17O, 

13C18O2 and 18O13C17O compiled in Ref. [65] provide experimental line positions supplemented 

with intensities calculated using the Effective Hamiltonian model and effective dipole moment 

parameters for completeness (13C18O2 and 18O13C17O isotopologues have not been tabulated in 

HITRAN before).  For 12C16O2, 
16O12C17O and 16O12C18O [62] only line positions are provided, 

although parameters for 12C16O2 are also tabulated in Ref. [61] where the experimental line 

positions and intensities are supplemented with the CDSD intensities.

3. The theoretical CDSD databank is quite complete, with intensities down to 110-30

cm-1/(molecule cm-2), at least for the majority of the HITRAN isotopologues.  It has excellent 

predictive capabilities for line positions and intensities, although it is, of course, not as good as 

the accuracy achieved by experiment.  In addition, a minor limitation of the EH method occurs 

when there are interpolyad anharmonic couplings.  Four such occurrences have been observed

for the asymmetric isotopologues, namely 16O12C18O [62], 16O13C17O [65] and 16O13C18O [64, 

65]. Although these resonance interactions are not common for carbon dioxide, small deviations 

in the values of predicted line positions and line intensities values from their real values cannot 

be ruled out completely.

With this information in mind, a procedure, shown in a schematic diagram in Fig. 1, was 

developed in order to keep only the best parameters from the OCO, CRDS and CDSD datasets 

for compiling the HITRAN2008 CO2 line list in the 4300 to 7000 cm-1 region, which completely 



12

replaces HITRAN2004 data in this wavenumber range.  In this procedure, the CO2 transitions 

that are critical for the OCO mission are always assumed to have superior quality within the FTS 

detection limit (lines stronger than 10-26 cm-1/(molecule cm-2) for the principal isotopologue and 

10-27 cm-1/(molecule cm-2) for the other isotopologues.  For the weaker lines in the 5851 to 7045 

cm-1 region, the CRDS line positions are taken, wherever available, and supplemented with 

CDSD intensities.  For the weak lines not present in the CRDS dataset (this especially concerns 

lines below 5851 cm-1 and blended lines unobserved by CRDS due to overlapping with stronger 

lines), the CDSD line parameters were taken. The line positions and intensities for two rare 

isotopologues, 17O12C18O and 18O13C18O, which are absent in CDSD, have been taken from the 

CO2 list generated for OCO.

Finally, the γair, γself, n, and δ parameters, available in the OCO dataset, have been included 

in this combined line list.  Note that these parameters are slightly different from those listed in 

the supplementary file of Ref. [57], due to improvements accomplished through the newer work 

of Predoi-Cross et al [73].

All combined (mixed) datasets are relatively new.  The procedure suggested above is a 

temporary but necessary solution that has to be tested against atmospheric retrievals.  As new, 

highly-accurate measurement datasets become available, this procedure will have to be refined 

for future updates of the HITRAN database.

For the spectral regions below 4300 cm-1 and above 7000 cm-1 the following improvements 

have been made to the HITRAN database: (1) The four bands above 9650 cm-1 that were added to 

HITRAN2004 were found to have an error associated with an incorrect account of nuclear spin 

statistics.  These bands have now been replaced with the lines from the CDSD databank above 

9650 cm-1, which includes several other additional bands.  These data are important for the 
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studies of the Venus atmosphere [74].  (2) In HITRAN2004 some of the bands of the principal 

isotopologue in the 2.8-m region were based on extrapolations of limited experimental data.  

For example, the 23301-02201 band (centered at 3555 cm-1) contained 188 lines which were 

extrapolated from 16 measured lines and the interaction between the vibrational levels 23301 and 

12212 was not well accounted for at higher-J values.  An analogous problem occurs in the 

40012-11102 band (centered at 5802 cm-1).  Thus, the line positions and intensities for these 

bands were replaced with the ones from the CDSD databank.  (3) Recent FTS measurements [75]

of the line intensities for the 11112-01101 band of the 13C16O2 isotopologue (centered at 3499 

cm-1) have shown differences up to 100% compared to HITRAN2004 (the error code in the 

former HITRAN indeed indicated problems for this band).  The intensities of this band were 

previously calculated by the DND method of Wattson and Rothman [76], which did not fully 

account for perturbations.  Therefore, the parameters for this band have been replaced with the 

ones from CDSD.  (4) As was noted by Wang et al [77], the HITRAN2004 line positions of the 

30003-00001 band (at 3857 cm-1) for 16O12C18O differ from new experimental ones by -0.1 to 0.1 

cm-1, while positions of the 21112e-01101e subband (at 4965 cm-1) differ in the range of 0.002 to 

0.257 cm-1.  These line positions have now been replaced with line positions calculated using the 

EH method.  (5) Although at this point the high-quality experimental data from Toth et al [58]

have not yet been included into HITRAN, we note the remark in that work that experimental line 

intensities of the 10012-00001 band for 16O13C18O (at 3490 cm-1) differ from those in 

HITRAN2004 by amounts from -8% to 31%.  Now the intensities of these lines have been 

replaced with those from CDSD, which agree very well with Ref. [58].  (6) In the 11112-11102 

band of the principal isotopologue (at 2315 cm-1), all HITRAN2004 line positions with 

uncertainty code 0 were replaced with the line positions and intensities from CDSD.  (7) The 
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intensity cutoff that was applied to earlier editions of the HITRAN database for CO2 has been 

lowered and is now 410-30 cm-1.  Therefore weak bands from the CDSD databank that did not 

appear previously in HITRAN [1] have been included in the new edition.

Finally, the parameters for broadening coefficients available from the OCO dataset have

been applied to all the bands, even outside the OCO spectral region.  Although the line-shape 

parameters have been improved throughout the database, the improvements are only within the 

formalism of the Voigt line-shape profile, which is known to be inadequate to model the line 

shape given the precision of modern instruments used in atmospheric retrievals.  In addition, the 

line mixing parameters have not been updated or extended in HITRAN, and this is one of the 

major issues that will be addressed in future updates.

2.3. O3 (molecule 3)

Monitoring ozone in the atmosphere has been a major issue for two different respects: its 

deleterious effects in the troposphere as a pollutant and its protective effect in the upper-

atmosphere layer.  Furthermore, detection of ozone in the atmospheres of exosolar planets might 

be an indicator of oxygen, which is more difficult to observe spectroscopically.

A major update has been made for the first three isotopologues of ozone, 16O16O16O, 

16O16O18O, and 16O18O16O.  The line positions, intensities, and lower-state energies correspond to 

the S&MPO (Spectroscopy and Molecular Properties of Ozone) databank [78].  These results are 

based on the analyses of the absorption spectra recorded by the GSMA (Groupe de Spectrométrie 

Moléculaire et Atmosphérique) using the FTS of Reims University [79].  All these data have 

been published previously and are briefly described below.  The list of the bands included in 

HITRAN for the first time is shown in Table 1.  The updated bands are listed in Table 2.
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Calculation of the line positions of all bands was made by using Hamiltonian parameters for 

the lower energy levels from Ref. [96] for the (000), (100) and (001) vibrational states, from Ref. 

[87] for the (010) state, and from Ref. [88] for the (020) state.

The references for the newly included bands are given in Table 1 for the line positions 

(column 5) and for the line intensities (column 6).  An additional detailed description of the 

improvements in the 2550 to 2900 cm-1 spectral region is given in a recent paper [100].

The upper-state energies of 24 bands listed in Table 2 (except 22 + 23 - 22 and 

1 + 22 + 3 - 22) were calculated using Hamiltonian parameters [89].  The transition moment 

parameters for the cold bands listed in this table (2590 - 3400 cm-1 spectral range) are given in 

Ref. [89].  Calculation of the hot-band line intensities was made with the transition moments of 

Refs. [92] and [95].  The main term of the dipole transition moment of the 33 - 1 band was 

estimated to be 1
(003)←(100) = -1×10-3 Debye [97].  The upper-state energies and line intensities of 

the 22 + 23 - 22 and 1 + 22 + 3 - 22 bands were calculated using Hamiltonian parameters 

from Ref. [90] and transition moments from Ref. [95].

The least known part of the mid-infrared ozone (16O3) absorption spectrum is now in the 

range of 2.45 - 2.78m (3600 - 4080 cm-1).  First of all, the 2 + 33 and, especially, 

1 + 2 + 23 bands must be updated in a future edition by the data reported by Bouazza et al [94]

for the 3600 - 3830 cm-1 region.  Secondly, the 1 + 43 - 3 hot band must be taken into account 

for the 3865 - 3895 cm-1 region.  The line positions of this band have been used by Flaud et al 

[112] for determination of the rotational energies of the (104) vibrational state, but the line 

intensities have not been analyzed.  According to an estimate of Barbe and Mikhailenko, the total 

band intensity Sv(1 + 43 - 3) can be of the order of 20% of Sv(21 + 2 + 3) (see Table 1).  
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Thirdly, the region of the 1 + 33, 43, and 31 + 2 bands (3900 - 4080 cm-1) analyzed by 

Perrin et al [108] must be revisited.  In particular, the RR branch of the 43 band (4033 - 4065 

cm-1) is not reproduced by current data.

The lower-state energies of both 18O enriched species have been calculated using the 

Hamiltonian parameters of Ref. [117].  The upper-state energies were calculated with 

Hamiltonian parameters of Refs. [118] and [119] for 16O16O18O and 16O18O16O, respectively.  

Transition moment parameters reported by Barbe and De Backer-Barilly [120] were used for 

calculations of the line intensities of both species.  Tables 3 and 4 list the updates for 16O16O18O 

and 16O18O16O, respectively.

The new data cover bands in the spectral range 593 to 5786 cm-1, thereby extending the 

short wavelength coverage of HITRAN as well (from 2.5 µm to 1.7 µm).  The total number of 

transitions has increased significantly, from 311481 to 409686.  In addition, an improved 

algorithm for incorporating the ozone line-shape parameters has been used for all ozone bands 

throughout the compilation.

The majority of HITRAN2004 air-broadened half-width parameters of ozone lines and their 

temperature dependences were calculated using polynomials derived by Wagner et al [121]

separately for the 1/2 and 3 bands.  The polynomials derived for the 3 band were applied for 

all the bands in the database except the 1 and 2 bands.  This has been revised now and the 1/2

polynomials from Wagner et al [121] were used for all B-type bands and the ones from the 3

band were used for all A-type bands.  For instance, the pure rotational band is a B-type band and 

the coefficients derived from the 1/2 polynomials agree better with the values measured in the 

pure rotational band (for example with measurements in Ref. [122]) than those from 3
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polynomials.  In addition, a new polynomial was derived for γair in the B-type bands for the cases 

where J = Ka by fitting the data from Refs [123, 124].  This polynomial was applied to B-type 

transitions with J  12.  In HITRAN2004 a polynomial derived by Flaud et al [125] was used to 

calculate γair for the transitions outside the range of applicability of the Wagner et al polynomials

[121].  These coefficients have been scaled by a factor of 1.05, as it was found that they are 

underestimated at higher J.

There is still a long way to go in order to improve the broadening parameters of ozone.  This 

especially concerns the temperature exponents where the experimental measurements rarely 

agree with each other or with the theoretical calculations.

2.4. N2O (molecule 4)

Concerning nitrous oxide, it was discovered that two strong P(1) lines (at 578.5261 and 

1167.2943 cm-1) were absent from the HITRAN2004 edition.  These lines have been restored.  In 

addition, 6 lines of a weak, highly perturbed band (0600-1000) around 4.6 µm have been added.  

Energy levels as well as the lower state levels of the perturbed state, 0600, were computed from the 

coefficients given in Ref. [126] and the interaction parameters for intensities are presented in Ref. 

[127].  Only the strongly perturbed transitions were considered around and including J = 47.

2.5. CO (molecule 5)

The line parameters of carbon monoxide have not undergone a revision and remain the same 

as in HITRAN2004.

2.6. CH4 (molecule 6)

The need for reliable high-resolution methane parameters throughout the spectrum is driven 

by many applications.  Besides being a major greenhouse gas and absorber in the terrestrial
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atmosphere, it is a major component of the giant gas planets, (Jupiter, Saturn, Uranus, Neptune) 

and of the atmosphere of Saturn's main satellite, Titan [128].  It is also prominent in the 

atmospheres of brown dwarf stars, and has recently been identified by Swain et al [129] in the 

atmosphere of an exosolar planet.

The parameters of 12CH4 have been updated, and a few new bands of CH3D were added, but 

no changes were made in the 13CH4 parameters.  The minimum intensity limit was set to 10-29

cm-1/(molecule cm-2) at 296 K to account for increasing sensitivity in remote-sensing 

instrumentation.  Significant changes were made for γair between 5800 and 6180 cm-1.

The 12CH4 line positions and intensities were revised from 0 to 3300 cm-1 using calculated 

values from the new global analysis by Albert et al [130] for the three lowest polyads (ground

state, dyad from 900 to 1900 cm-1 and pentad from 1900 to 3400 cm-1).  Figure 2 shows the 

polyad scheme for 12CH4 and also demonstrates the increasing complexity as one progresses to 

higher wavenumber.  In the far-IR, the intensities of ground-state transitions were adjusted by 

16% to match the results of Wishnow et al [131], but no change was required for the dyad-dyad 

hotbands. Some predicted pentad positions were replaced by semi-empirical upper-state energy 

levels obtained by adding calculated lower-state energies to observed positions.  Because further 

intensity analyses are needed to meet required atmospheric remote-sensing accuracies, the semi-

empirical HITRAN [1] parameters were retained for the hot bands in the dyad and pentad regions 

(900 to 3500 cm-1); in the latter interval, a minimum intensity limit of hot bands was 10-27

cm-1/(molecule cm-2) at 296 K.  For similar reasons, no change was made for the octad (3200 to 

4900 cm-1).

A number of improvements were made to the empirical linelist near 6000 cm-1.  First, the 

intensities and half-widths retrieved by Frankenberg et al [132] replaced existing values for the 
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5860 to 6180 cm-1 region.  During the format conversion for HITRAN 2004 [1], the empirical 

lower-state energies of Margolis [133, 134] given previously were corrupted. These values have 

been restored, and additional values from Gao et al [135] were added. Misaligned fields in the 

near-IR quantum numbers were corrected, but only a few new assignments were entered to 

existing entries.  However, weak lines with intensities less than 10-24 cm-1/(molecule cm-2) at 296 

K are still missing between 5500 and 6180 cm-1.

For broadening parameters, if there were no direct measurements of half-widths and 

pressure shifts [136, 137], then estimated default values for γair, γself, n, and δ (similar to those 

used in HITRAN 2000 [138] and 2004 [139]) were used for most of the transitions up to 5860 

cm-1; the exceptions were approximately 4000 measured or theoretically-predicted broadening 

coefficients inserted on a line-by-line basis.  For the dyad, new measurements of γair, γself, n, and 

δ of about 500 transitions were taken from Smith et al [140, 141].  For the pentad, about 500 

prior measurements [138] were used along with approximately 3800 predicted values for γair, n, 

and δ of the ν3 transitions from Antony et al [142].  Scaled N2-broadening from Frankenberg et al

[132] were inserted from 5860 to 6184 cm-1 and a few hundred values for γair, were entered 

between 5560 to 5860 cm-1 [143].  The value for the parameter n was set either to a default

constant (0.75 below 5860 cm-1 or 0.85 above 5860 cm-1) unless direct measurements were 

available (Lyulin et al [143]).

There are a number of ongoing and recent studies [143, 144] which can further improve the 

near-IR parameters (4800 to 7700 cm-1). It is expected that an interim update of this region and a 

new semi-empirical list of the octad will be available within one year.  Finally, the list described 

here is tailored for Earth remote sensing and will be inadequate to interpret high-temperature 

spectra (e. g. Thievin et al [145]).  More extensive calculation of weaker transitions and partition 
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functions [146] can be found at http://icb.u-bourgogne.fr/OMR/SMA/SHTDS.  As usual, the 

predicted values beyond the range of measurements are expected to become very inaccurate 

because of extensive ro-vibrational interactions.

Most of the parameters for the monodeuterated form of methane, CH3D, were retained from 

HITRAN2004.  For the 2008 modifications, the positions and intensities of the far-IR (rotational) 

transitions were replaced with improved predictions, and a total of nine new bands were added at 

three different wavelengths (8, 2.9 and 1.56 μm).  The far-IR prediction, based on the frequency 

analysis of Lattanzi et al [147], was obtained from the JPL and Cologne Molecular Spectroscopy 

databases [82, 148, 149]. Because 13CH3D was detected in Titan’s atmosphere [150], this 

species was added to the database for the first time.  The prediction of the 13CH3D triad (ν6, ν3

and ν5) near 8 μm used a program written for C3v molecules by Tarrago and Delaveau [151].  

This prediction was based on the position analysis by Ulenikov et al [152] and employed the 

transition-moment parameters of the 12CH3D isotopologue from Brown et al [153].  Six new 

12CH3D vibrational bands were also added in the near –IR, using the analyzed positions and line 

intensities of ν2 + ν3, ν2 + ν5, ν2 + ν6, ν3 + 2ν6 and 3ν6 at 2.9 μm by Nikitin et al [154] and  

empirical measurements of 3ν2 at 1.56 μm reported by Boussin et al [155].  The values for γair

and γself were generally obtained using empirical formulae obtained from 12CH3D triad 

measurements [1, 156].  However, γair, γself, and δ values observed by Boussin et al [155] were 

used for 3ν2.  The temperature dependence of the half-widths, n, was crudely estimated in all 

bands using CH4 values averaged by J [1].  The new mid- and near-IR parameters are considered

to be preliminary and so rather conservative accuracies were set; this certainly indicates that 

additional laboratory and theoretical studies are needed.

2.7. O2 (molecule 7)
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The line positions, intensities, and pressure-broadening parameters (γair, γair, and δ) of the 

oxygen A-band ( 1 3
g gb X    ) near 13100 cm-1 were modified for all three isotopologues (16O2, 

16O18O, and 16O17O).  The 16O2 line positions and pressure shifts in HITRAN2004 in this region 

were replaced with values from Robichaud et al [157] and intensities and the self- and air-

broadened half-widths from Robichaud et al [158]; these measurements obtained for the P 

branch using cavity ringdown spectroscopy [159] were extrapolated to the R branch.  The value 

of the temperature dependence of half-widths from Brown and Plymate [160] was retained, 

however.  The positions and intensities of the two minor oxygen species were taken from 

Robichaud et al [161].  For all three species, the half-widths were computed with the empirical 

formula derived from Yang et al [162],

2 4
1 2 31

B
A

c J c J c J
  

    
(1)

using the 16O2 constants from Table 6 of Robichaud et al [158].  The measured values of δ of the 

1 3
g gb X    band were taken from Robichaud et al [157] for the P Branch, but averages of 

shifts from Predoi-Cross et al [163] were used for the R branch.

These modifications improve the accuracies of the parameters in several different aspects.  

The positions are now referenced to atomic potassium calibration standards [164], resulting in 

accuracies of 0.00006 cm-1 or better for 16O2 and 16O18O, and 0.0005 cm-1 for 16O17O.  The 

differences between HITRAN2004 and new positions are relatively small for the main and least 

abundant species (0.0007 cm-1 for 16O2 and 0.002 cm-1 for 16O17O), but much larger for 16O18O 

(up to 0.20 cm-1); counter to the description given for HITRAN2004, the 16O18O positions were 

not updated in that edition, and the 16O18O upper-state levels were still based on results from 

1948 [165].  Line intensities are only slightly different: -0.8% for 16O2, +1% for 16O18O, and 
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± 5% for 16O17O (depending on the rotational quanta) [161].  The accuracies for intensities are 

thought to be ± 1% or better for the first two species, but more analysis is needed for 16O17O.  

For the half-widths, the values at high quantum numbers (J > 22), previously in error by more 

than 40% near J = 30, are now thought to be accurate to ±2%.  Pressure shifts, however, are still 

rather uncertain (± 0.003 cm-1) because values from different studies do not agree (e.g. see Fig. 4 

in Robichaud et al [157] and the discussions in Predoi-Cross et al [163, 166]).

It should be emphasized that even with these improvements, the line parameters are not 

sufficient to reproduce atmospheric observations at 13100 cm-1 because Voigt line shapes are 

inadequate.  Tran and Hartmann [167] and Predoi-Cross et al [163, 166] have demonstrated the 

need to apply line mixing (and perhaps speed dependence) to the A-band.  It is thus 

recommended that these improved line parameters be combined and tested with line-mixing 

results from Refs. [163, 166, 167].

The 1
ga  ← 3

g
-

X  band at 1.27 µm has not been updated in some time.  This band is very 

important partly because it is being used as a benchmark in some remote-sensing applications.  A 

new line list is described in Washenfelder et al [168] which is based on laboratory measurements 

published by Newman et al [169, 170].  These data will be considered for an impending update.

Finally, it was discovered that due to a programming error, the Einstein A-coefficients and 

statistical weights in HITRAN2004 were in error; they have been recalculated for the entire 

oxygen line list.

2.8. NO (molecule 8)

The Einstein A-coefficients and statistical weights were recalculated for the three 

isotopologues in HITRAN, due to a programming error in HITRAN2004.  In the process, it was 
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noted that hyperfine splitting for the microwave and far infrared lines was not included in the 

HITRAN2004 edition.  To include hyperfine spitting for the principal isotopologue, 14N16O, we 

have adapted data generated in the course of work summarized in Goldman et al [171].  These 

data also include magnetic-dipole transitions between spin components of the ground electronic 

state, previously absent in HITRAN.  The magnetic-dipole transitions obey different parity 

selection rules and have been identified by the letter “m” in the first field for upper-state 

rotational quantum numbers in the HITRAN database.

In addition, we included lines with resolved hyperfine structure from the JPL catalog [148]

if these lines were not available from Ref. [171].

2.9. SO2 (molecule 9)

Because of its presence in interstellar clouds and in the atmosphere of Venus, sulfur dioxide 

is well known to be both of astrophysical and planetary importance.  In the terrestrial 

atmosphere, SO2 is produced by both anthropogenic and natural sources, and is responsible for 

the production of acid rain.  Strong volcanic eruptions, such as the Mount Pinatubo eruption in 

the Philippines in June 1991, can deposit a large amount of SO2 in the atmosphere.  Once in the 

stratosphere, sulfur dioxide is converted into sulphate aerosols which affect both stratospheric 

chemistry and climate.  The HITRAN2004 database [1] provided SO2 parameters in seven 

different spectral regions, which correspond to transitions within the ground vibrational state, 

and the 19.3- , 8.6- , 7.3- , 4- , 3.7- and 2.5-µm spectral regions.  However, as stated in Ref [1],

there were considerable differences in the 19.3-, 8.6- and 7.3-µm spectral regions between 

HITRAN2004 and published papers [172-175].  The 8.6- and 7.3-µm regions are important for 

atmospheric detection of SO2.  The 7.3-µm region corresponds indeed to the strongest SO2

infrared band but unfortunately it has the disadvantage of being overlapped with the strong ν3
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band of water vapor, preventing measurements of SO2 in this infrared region from the ground.  

On the other hand, the ν1 band, although about nine times weaker than ν3, corresponds to a rather 

clear atmospheric window.  Finally the 19.3-µm region can be used for retrieving SO2 in the 

atmosphere of planets.

For all these reasons it was decided to generate a new line list based on the recent published 

results.  It includes not only the cold bands ν2, ν1, and ν3 but also the corresponding hot bands 

2ν2 - ν2, 3ν2 - 2ν2, ν1 + ν2 - ν2 and ν3+ ν2 - ν2 as well as the ν3 band of 34SO2.

As far as the air-broadened parameters are concerned, a survey of the literature [176-178]

has shown that it was only possible to estimate an average value for this parameter.  In fact no 

variation of this parameter with respect to the lower quantum numbers J or Ka of the transitions

could be determined.  As an example, Fig. 3 shows the measured parameters with respect to the 

lower quantum numbers Ka of the transitions.  It is clearly difficult to derive any clear variation 

(the same is true when these parameters are plotted versus the quantum number J) so only an 

average value of 0.1025 cm-1atm-1 could be determined.

The situation is completely different for the self-broadening parameters since many 

measurements spanning a wide range of quantum numbers J and Ka are available [176, 177, 179-

182].  While no variation with respect to the quantum number J could be determined, a clear 

variation with respect to the quantum number Ka could be observed as shown in Fig. 4.  

Following these results, it was decided to include in the database the following values for γself (in 

HITRAN2004 in general a fixed value of 0.4 cm-1atm-1 was used): γself = 0.4 cm-1atm-1 for 

Ka ≤ 5, γself = 0.156 cm-1atm-1 for Ka ≥ 21, and γself calculated through a linear interpolation for 

6 ≤ Ka ≤20.
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The accuracy for line positions is estimated to be better than 0.001 cm-1.  For line intensities, 

it is estimated to be on the order of 2 to 3%, degrading up to about 15% for high J or Ka

transitions.  Finally, an accuracy of 10 to 15% for γair and γself seems a reasonable estimate.  Note

that for consistency the new broadening parameters have been used for all the SO2 lines included 

in the HITRAN database since in the previous version different values, the origin of which is not 

immediately transparent, were used.  Also a “standard” value of 0.75 has been used for the 

temperature-dependence of the air-broadened half-width parameter, n.

It is worth noticing that recently a series of papers [183-185] has been devoted to the high-

resolution study of the absorption of the 34SO2 isotopologue in the infrared.  They will provide in 

the future much better spectral parameters which should be included in a future HITRAN

database.

2.10. NO2 (molecule 10)

Unchanged.

2.11. NH3 (molecule 11)

Unchanged.

2.12. HNO3 (molecule 12)

Using new and accurate experimental results concerning line positions and line intensities as 

well as sophisticated theoretical methods, it has been possible to generate an improved set of line 

positions, line intensities, and line-shape parameters for the nitric acid molecule in the infrared 

spectral region.  The present update was performed in two steps described in Refs. [186] and 

[187], respectively.
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The first study [186] was performed in the 820 to 1770 cm-1 spectral range covered by the 

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument and the results 

of this first update are summarized in Table 5 of Ref. [186].  The line positions have been 

improved for the 5 and 29 cold bands and the 5 + 9 - 9 hot band around 11.2 µm, and for the 

8 + 9 and 6 + 7 bands around 8.3 µm (see details in Refs. [186, 188] and in the references 

therein).  In addition, the line intensities were updated in the 11.3-, 8.3- and 7.6-µm spectral 

ranges by making use of the cross-section measurements performed in Ref. [189].  Finally the 

air-broadened half-width parameters were updated using an empirical law describing the 

rotational dependence of these parameters.

The results of the second update are described in Table 1 of Ref. [187].  At 11.3 µm, 

approximate parameters for the 5 + 7 - 7 and 5 + 6 - 6 hot bands have been added for the 

first time to the line list.  The intensities for the 6 and 8 bands centered at 646.826 and 763.154 

cm-1 respectively were decreased by about 20–30% as compared to the previous HITRAN version

[1].  Also following recent line-broadening calculations [190], a complete update of the γair

parameters was performed in the 11-µm region. It is to be noticed that the γair parameters

implemented in the narrow Q branches of the 8 and 5 + 9 - 9 bands at 763.154 and 885.425 

cm-1 respectively account empirically for line-mixing effects as evidenced by laboratory 

measurements.

The validation of these updates in the new line list was performed during several satellite, 

ground-based or balloon-borne measurement of atmospheric HNO3 [186, 191, 192].  

Furthermore, the microwave line intensities, which were overestimated by ~30% [191], have 

been updated using the newer HNO3 listing in the JPL catalog [148].
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Future studies should concentrate on the improvements of HNO3 line parameters in several 

spectral regions:

1. The far infrared region needs a revision.  Indeed the present line list which is derived from 

a 2004 version of the JPL catalog includes only transitions within the ground vibrational state.  

The updated line list should also include rotational transitions within the first vibrational states of 

HNO3 [193, 194].

2. In HITRAN2004 [1], the 5-9 and 29-9 hot bands were added to the existing 9 line list 

in the 22-µm region.  In Ref. [194], the hot bands intensities were scaled with respect to the 9

intensity from Sirota et al [195].  The net result is that there could be an inconsistency between 

the intensities of these two hot bands and the intensity of the 9 band since this last band 

intensity was scaled using the work of Goldman et al [196].  Indeed, the 9 intensities in Ref. 

[195] are about 28% weaker than the intensity reported in Ref. [196].  Therefore it is clear that 

new line intensity data are needed for HNO3 in the 22-µm region.

3. The 7.6-µm region, which corresponds to the 3 and 4 bands located at 1325.7354 and 

1303.5182 cm-1 respectively, needs significant updates in term of line positions and intensities. 

The previous studies in this region [197] did not consider resonances due to several dark states 

which perturb the 31 and 41 energy levels.

Future updates in the 11-µm region should include the linelist for the H15NO3 isotopologue 

of nitric acid [198], which is the second-most abundant isotopic variant with a concentration of 

3.7 ‰ in relative concentration.  This isotopologue was first detected in MIPAS/ENVISAT 

atmospheric spectra [199]; it has significance in the determination of the atmospheric profile of 

the nitrogen isotopes.



28

2.13. OH (molecule 13)

Following the work of Colin et al [200], Bernath and Colin [201] have reanalyzed all the 

published experimental data for the electronic ground state of the hydroxyl radical, to which they 

added a pure rotational constants of the v = 4 level determined from a solar spectrum [201].  

They produced a new set of term values for v = 0, ... ,10, extrapolated to five J values above the 

last observed one.

These results were used to revise all the OH transitions (where hyperfine structure was not 

resolved) in the HITRAN database with updated positions and ground-state energy values.  

However, the line list has been reduced to lower Jmax values, thus eliminating high-J

extrapolations used in the work [202] upon which HITRAN was previously based (see Table 5).  

The new (unextrapolated) term values [201] agree with the observed data within the 

experimental error.  All the other line parameters were kept the same.

A small format change for the quantum numbers has been made that now shows both the 

upper and lower Λ-doubling e and f parity labels instead of only the lower label (we found that in 

some publications only the upper state is listed, not the lower state as used in HITRAN).  The 

lines with hyperfine splitting listed in HITRAN remain unchanged.

Due to a programming error in HITRAN2004, the Einstein A-coefficients and statistical 

weights have been recalculated for all OH lines in the new database.  Also, it was found that 

there were mistakes in parity assignments (e and f) in the pure-rotation bands in HITRAN2004; 

these have now been corrected.

2.14. HF (molecule 14)

Unchanged.
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2.15. HCl (molecule 15)

It was mentioned quite some time ago by Rinsland et al [203] that the hydrochloric acid line 

positions in previous editions of HITRAN were lacking accuracy, especially when compared to 

experiments at higher rotational lines.  The line positions of all HCl bands in HITRAN have now 

been recalculated using the most recent complete set of constants from Coxon and Hajigeorgiu

[204].  The new line positions are in excellent agreement with available experimental 

measurements.  An effort is planned to extend the number of bands of HCl in HITRAN and 

increase the coverage in J.

2.16. HBr (molecule 16)

Unchanged.

2.17. HI (molecule 17)

Unchanged.

2.18. ClO (molecule 18)

The Einstein A-coefficients in the HITRAN2004 dataset for chlorine monoxide were found 

to be ¼ of the correct values; this is now corrected.

The microwave region has been updated with the latest data from the JPL catalog [148], 

which includes rotational transitions within the first vibrational state, v = 1, for both isotopes 

ofchlorine, previously unavailable in HITRAN.  The total number of lines of ClO is now 11,501, 

as compared to 7230 in HITRAN2004.

The parameters γair and n for the pure-rotational transitions have been revisited.  In 

HITRAN2004, the default values of 0.085 cm-1atm-1 for γair and 0.5 for n were used for all pure 

rotational transitions.  We have now adopted values based on the J′ = 5.5 ← J″ = 4.5, 
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J′ = 13.5 ← J″ = 12.5, and J′ = 17.5 ← J″ = 16.5 transitions measured by Oh and Cohen [205]

and Bauer et al [206].  For all other transitions with J″ < 20.5, we used linear extrapolation of the 

above measurements:

γair = 0.09206 - 0.00111 J″ (2)

n = 0.5259 + 0.01768 J″ (3)

Although this represents a rough approximation, it was deemed better than a constant value, 

especially for the case of temperature dependence where the previous default value of 0.5 was 

somewhat low.  For all transitions with J″ ≥ 20.5, default values of 0.075 cm-1atm-1 and 0.6 were 

used for γair and n, respectively.

2.19. OCS (molecule 19)

In the HITRAN2004 edition, the intensities of the 3 band of the principal isotopologue (the 

region around 5 µm) were increased by 15.79 % to match the average of the measurements 

reported by Régalia-Jarlot et al [207] and Vander Auwera and Fayt [208].  However, for the sake 

of consistency, such a scaling should also have been applied to the other v3 = 1 transitions.  

They are the hot bands of ν3 involving ν1, ν2 and 2ν2 of the 16O12C32S, 16O12C34S, 16O12C33S, and 

18O12C32S isotopologues (622, 624, 623, and 822 in the old AFGL abbreviation), and the ν3 band 

of 16O12C34S, 16O12C33S, and 18O12C32S.  This situation has been corrected in the current edition.  

The line intensities of the ν3 fundamental of 16O13C32S in HITRAN2004 were found to agree 

within 5% with the measurements of Vander Auwera and Fayt [208].  They were therefore not 

changed.

Compared to the HITRAN2004 database, which gave about 1100 OCS transitions in the 

3800 to 4200 cm-1 region for seven bands (2v3 of the five isotopologues and the v2 + 2v3 - v2 of 

16O12C32S and 16O12C34S), substantial updates were made for 2008. The new database now 
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includes 10,425 transitions of 51 bands involving the five isotopologues 16O12C32S, 16O12C34S, 

16O13C32S, 16O12C33S, and 18O12C32S. Of these, two are forbidden bands, 15 are allowed cold 

bands arising from the ground state, and the remaining 34 are hot bands arising from various 

vibrational states.

The line positions in this region were calculated using the effective rovibrational energy 

constants based on the global analysis [209-213]. Although the accuracy in line position was

reported to be 5×10-5 cm-1 [209], conservative values for the HITRAN uncertainty criteria were 

assigned, depending on J value and line intensity.

Intensities were taken from new FTIR measurements [214, 215] performed at JPL to support 

Venus studies. Sung et al [214] measured line intensities of the 2v3 band at 4101.387 cm-1, 

v1 + 2v2 + v3 at 3937.421 cm-1, and 4v2 + v3 at 4141.212 cm-1 of 16O12C32S. The new 2v3 band 

intensity of 6.315(13)×10-19 cm-1/molecule·cm-2 for 100% abundance of 16O12C32S was within 

1.3% of the average of two earlier measurements, 6.528(96)×10-19 and 6.27×10-19

cm-1/molecule·cm-2, respectively, by Bermejo et al. [216] and Näim et al [209].  The band 

intensities corresponding to 100% abundance of isotopologue 16O12C32S for the v1 + 2v2 + v3 and 

4v2 + v3 bands were also in similar agreement (1%) with those from Näim et al [209]. Intensities 

of all the other 43 bands of the five isotopologues in this region were taken from the exhaustive 

work by Toth et al [215], in which many bands were measured for the first time. Uncertainties 

of the line intensities in this region were adopted from measurement precisions, which range 

from 1 to 6% depending on the bands.  However, conservative values coupled with evaluation 

depending on the line intensities were assigned for the HITRAN uncertainty criteria.  The line 

intensities vary through five orders of magnitude, but very weak unassigned features were 

omitted from the database pending further analysis.
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The γself in the pure-rotation band have been updated using a recent improvement [217] to 

the work of Matton et al [218], while γair and γself in the rest of the database have been updated 

using a Padé approximation from Ref. [219].  Air-pressure induced frequency shifts, δ, for OCS 

were given for the first time based on the 2v3 work of Domenech et al [220].

A separate file, with CO2-broadened half-widths rather than γair, based on the measurements 

of Bouanich et al [221] in the v1 band of OCS, is available from the authors [214, 215] on 

request.  This second database is intended to support remote sensing of Venus at 2.5 μm.

2.20. H2CO (molecule 20)

For formaldehyde, the major update in the infrared region for the line positions and line 

parameters involved the complete replacement of the line list at 3.6 µm and the addition of a list 

at 5.7 µm [222].  Indeed both spectral regions are now used for the infrared measurements of this 

molecule in the atmosphere [223, 224]. The 5.7-µm region corresponds to the 2 band together 

with three dark bands. In the 3.6-µm region, the lines belong to the 1 and 5 bands together 

with nine dark bands.

The line positions were generated using the models and the parameters described in detail in 

Refs. [225-227] for the 5.7-µm and 3.6-µm regions, respectively. In addition, a consistent set of 

line intensity parameters was generated [222] for both the 5.7- and 3.6-µm spectral regions using 

high-resolution Fourier transform spectra recorded for the whole 1600 to 3200 cm-1 spectral 

range. The calculated band intensities derived for the 5.7- and 3.6-µm bands are in excellent 

agreement with the values achieved recently by medium resolution band intensity measurements

[228-230].
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Details giving the description of the new database which involves 3713 and 31796 

transitions at 5.7 and 3.6 µm, respectively, are given in Table 9 of the accompanying paper

[222]. As compared to the HITRAN2004 line list, which involves only 1161 lines at 3.6 µm, the 

quality of the line parameters is significantly improved in terms of the positions and intensities.

A subsequent and complementary study dealing with measurements and calculations of 

formaldehyde self- and N2-broadened half-width parameters is in progress.

2.21. HOCl (molecule 21)

Unchanged.

2.22. N2 (molecule 22)

Improvements to the HITRAN molecular nitrogen line parameters include intensities and 

half-widths.  The new intensities are based on the work of Goldman et al [231], which used a 

semi-empirical Herman-Wallis formulation of the vibration-rotation effects on the intensities

with a final scaling based on observed spectra, and the work by Li and LeRoy [232] who used ab 

initio methods.  The values derived by Li and LeRoy [232] are very similar to those of Goldman 

et al [231].  However, it can be expected that the Herman-Wallis formulation of Goldman et al

yields less accurate values with increasing J, and thus the ab initio matrix elements of Ref. [232]

have been adopted for the HITRAN line listing.  It should also be noted that the HITRAN

database is presently limited to only the (1 - 0) N2 band; Li and LeRoy [232] can provide line 

parameters for other bands that may be of atmospheric importance.  Li and LeRoy estimate that 

their intensities have an absolute accuracy of about 1% and their new values are still being 

validated.
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The new half-widths are based on available experimental and theoretical studies as 

described in Ref. [231].  Further extensions are anticipated in the near future [231].

2.23. HCN (molecule 23)

The air-broadened half-width parameters have been recalculated using a polynomial 

expression derived in Ref. [233] by fitting together parameters from 1 [234], 2 [235] and pure 

rotational [233] bands.  This polynomial provides better prediction of γair for the lines involving 

higher-lying rotational states.  The new polynomial was applied for all the lines with |m|  40 

(the previous polynomial used in HITRAN2004 was applicable only up to m = 29).  The lines 

with |m| > 40 were assigned a constant half-width parameter of 0.0518 cm-1 atm-1, which 

corresponds to the new polynomial value at |m| = 40.

2.24. CH3Cl (molecule 24)

In the region from 650 to 2650 cm-1 HITRAN2004 data have been completely replaced with 

lines from the work of Nikitin et al [236].  The line positions in this list are based on the 

significantly larger (than previously used) experimental information from cold and hot bands.  

The standard deviation of about 3 ×10-4 cm-1 is close to the experimental precision including 

perturbed series which were treated separately in previous works.  The use of monoisotopic 

samples synthesized in Ref. [236] was a major advantage.  The line intensities are based on the 

approximate dipole moment parameters as no precise analyses on the transition intensities have 

been carried out yet. Further intensity work is desirable. However, the most pressing need for 

ground-based observations is a complete analysis of the 3.3 μm region where weak CH3Cl 

features are routinely encountered.
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Note that there are four duplicate lines present in the new dataset.  These are in fact different 

lines but in some cases (perturbed hot-band levels) the traditional quantum assignments based on 

approximate quantum numbers become ambiguous. The line-shape parameters were filled in the 

same way as in HITRAN2004.

2.25. H2O2 (molecule 25)

The earlier hydrogen peroxide data previously reported in HITRAN for the 6 band in the 

7.9-µm region have been completely replaced, leading to improved line positions and intensities.  

The previous version of the H2O2 line list in the spectral range of the 6 band involved only the 

two main torsional components of the 6 band (in the n = 0, τ = 1 and n = 0, τ = 3 torsional 

quantum numbers), and the line positions were not always accurate. The new list is more precise 

in terms of line positions because the numerous resonances coupling the energy levels from the 

6 ↔ 2, 6 ↔ 3, and 6 ↔ ground interacting torsion-vibrational states have now been taken 

into account [237].  The present linelist is also more complete since it includes several hot 

torsion-vibration subbands of the 6 band (up to the n = 2 torsional quantum numbers), together 

with contributing lines from the dark 2 and 3 torsion-vibration bands.  As a result, the new 

linelist contains many more lines (126983 instead of 100781) than the previous one.

In addition, the line intensities of the 6 band have been determined more accurately than the 

torsion-rotation bands [238].

2.26. C2H2 (molecule 26)

In the period after the release of HITRAN2004, new bands of acetylene were added to 

HITRAN in the 2.5- and 3.8-µm regions.  The parameters (line positions and intensities) are from 

the work of Lyulin et al [239] and Jacquemart et al [240], respectively.
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Updates have also been included for the 12C2H2 isotopologue: spectroscopic data have been 

noticeably enhanced in nine spectral regions, namely, in the regions around 3, 2.2, 1.9, 1.7, 1.5, 

1.4, 1.3, 1.2, and 1 µm.  Among these regions, only those data at 3 and 1.5 µm were partially 

reported in the HITRAN database.  The new line lists are described in detail in Refs. [241, 242].  

Corrections of the updates of HITRAN for the 2.5- and 3.8-µm spectral regions of 12C2H2 have 

also been performed and described in Ref. [241].  Table 6 summarizes the number of bands and 

transitions of the spectral regions now available in the new HITRAN database, together with the 

intensity ranges and spectral domains.  Figure 5 is a plot of the 12C2H2 lines now available in 

HITRAN and illustrates the noticeable improvement the new data bring to the database, 

especially in extending the coverage of the database towards shorter wavelengths.

These data summarize the improvements in current experimental spectroscopic knowledge 

on acetylene.  Several of the spectral regions involved are of atmospheric, planetary, 

astrophysical, and metrology interest (e.g., at 3, 2.2, 1.5, and 1 µm).  A study of the 7.7-µm

region, very useful for astrophysics applications, is in progress.  For example, the acetylene 

molecule has been observed in the circumstellar envelopes of carbon-rich stars.  Using the 

Infrared Spectrograph (IRS) on board the Spitzer Space Telescope (SST), Matsuura et al [243]

detected acetylene bands at 7 and 14 µm in carbon-rich asymptotic giant branch stars in the 

Large Magellanic Cloud.  Around 7 µm, HITRAN only contains line positions and intensities that 

Vander Auwera calculated from his absolute measurements in the (4 + 5)
0

+ band [244], for the 

rotational quantum number J up to 35.  But intensities measured in Ref. [244] for some lines of 

the (4 + 5)
2 band are not reported in the database.  The temperature of interest for applications 

being around 500 K [243], the knowledge of intensities in the remaining hot bands is also 
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important.  In the quoted paper [243], Matsuura et al could not reproduce the spectra that they 

observed in their IRS-SST observations around 7 µm because of the lack of data in HITRAN.

In addition, some values of the temperature-dependence exponents that were inadvertently 

set to zero in HITRAN2004 have been set to a default value of 0.75.  The total number of lines 

for C2H2 has more than tripled, increasing from 3517 to 11340.

2.27. C2H6 (molecule 27)

The data for the ν9 fundamental band of 12C2H6 in the 12-µm region, introduced with the 

1982 edition of HITRAN [245], have been completely replaced with a new line list including the 

ν9, 3ν4, ν9 + ν4 - ν4, and ν9 + 2ν4 - 2ν4 bands.  It was generated by Vander Auwera et al [246]

using a spectrum of the ν9 band recorded at the Pacific Northwest National Laboratory [228], and 

results from a global analysis of data involving the four lowest vibrational states of ethane [247]

and measurements of pressure-broadening parameters [248, 249].  Note that the quantum number 

notation for representing rotation-torsion states has been converted to HITRAN formalism.  In 

Ref. [246], the levels are identified by the quantum numbers J, associated with the total angular 

momentum of the molecule, K, its projection along the top 3-fold symmetry axis, , the 

vibrational angular momentum associated with the degenerate mode ν9, and σ = 0–3, the 

torsional index.  In HITRAN, the latter is replaced by the symmetry species A1s (6), A2s (10), A3s

(6), A4s (10), E1s (4), E2s (4), E3s (2), E4s (6), and Gs (16) in the G36
+ extended permutation-

inversion group (the nuclear-spin statistical weights are given in parentheses).  Because the 

symmetry occupies 3 characters only, the letter ‘s’ is omitted (all the allowed species are s-

species): for instance, E1s symmetry is given as ‘ E1’, and A1s+A2s is given as ‘A12’.
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With this edition, estimated line parameters for the ν12 band of 13C12CH6 have also been 

added.  The line positions, intensities and assignments (J, K, , and symmetry in the G18
+

extended permutation-inversion group; see above) are from the work of Kurtz et al [250] and 

Weber et al [251-253].  Since no line-shape parameter measurements have been reported for this 

isotopologue, γair, γself, and n have been set to the values used for the main isotopologue [246].

In the HITRAN2004 edition, the empirical parameters for a number of Q branches were 

inadvertently excluded from the 7 band around 3.3 µm while updating one of the branches.  The 

missing Q branches have now been restored.  In addition, in this update numerous multiplets 

(due to internal rotation tunneling) have been uniquely identified.  Note that this band is sorely in 

need of improvement, especially since the incorporation of the one Q branch in the v7 band 

around 3.3 µm in HITRAN2004 was inconsistent with the intensities of the rest of the band.

However, similar to the situation for CH3Cl, there are weak C2H6 features of P and R branch 

lines that should be included in future updates to support tropospheric monitoring

2.28. PH3 (molecule 28)

Phosphine is a constituent of the lower troposphere at very low and highly variable 

concentrations.  Its sources could be bacterial reduction of phosphate in decaying organic matter, 

its use as a fumigant, and processes related to corrosion of metals containing phosphorus 

impurities.  It is a significant contributor to the continuum opacity in the 5-µm window in the 

atmosphere of Jupiter, which can be used as a means of probing the deeper atmospheric structure

[254].

Spectral line parameters for new bands of PH3 have been added in the region from 2724 to 

3602 cm-1, based on the work of Butler et al [255].  In addition, the collision-broadened 
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parameters of the previously existing data in HITRAN from 770 to 2472 cm-1 have been updated 

using Ref. [255]. A recent global study of PH3 [256] has confirmed the need to improve and 

normalize the calculated intensities for the bands at 5 and 3 μm.

2.29. COF2 (molecule 29)

Unchanged.

2.30. SF6 (molecule 30)

A totally new line list for sulfur hexafluoride has been created.  This line list not only 

replaces the former v3 band that was in HITRAN, but includes the v4 band and the v4 + v6 - v6 hot 

band.

The new 32SF6 line list has been calculated based upon the effective Hamiltonian parameters 

resulting from the latest analyses.  The intense 3 stretching fundamental has been the subject of 

numerous studies (see Ref. [257] for a review).  The best fit results are from the simultaneous 

analysis of various high-precision data (FTIR but also saturated absorption and IR–IR double 

resonance).  The resulting accuracy for line positions is estimated to be better than 0.001 cm-1 up 

to J = 100.  Measurements of hot bands in this region, although of great importance to

atmospheric applications, are still to be investigated.  The high line density and only partial 

knowledge of the inactive 6 fundamental have thus far prevented a reliable analysis of the main 

hot band, namely 3 + 6 - 6.  The 4 and 4 + 6 - 6 bending region has been investigated in 

detail in Ref. [258].  Its much lower line density allows an easier analysis compared to the 

crowded 3 region.  For the 4 fundamental, the accuracy for line positions is ~0.001 cm-1 up to 

J = 100 and for the 4 + 6 - 6 hot band it is ~0.002 cm-1 up to J = 65 (highest assigned lines). 
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The accuracy may decrease quickly when extrapolating to higher J values, although this is 

difficult to estimate quantitatively.

The determination of reliable dipole-moment parameters, allowing an accurate calculation of 

line intensities, is a difficult problem in the case of heavy molecules like sulfur hexafluoride.  In 

fact, most spectra do not show any isolated lines but rather unresolved clusters of many 

transitions (up to several tens for high J values).  The present calculation uses the best known, 

although rather old, dipole-moment derivatives for the 3 and 4 fundamentals taken from Refs.

[259, 260].  In the case of the  fundamental, the intensities of those lines that were listed in the 

previous HITRAN edition have been checked and confirmed to be the same.  The new calculation

extends the measurements to somewhat higher J values for 3 and also includes the 4 and 

4 + 6 - 6 bands and clearly represents a significant improvement.  However, the accuracy in 

intensities should be considered with some caution and may not be better than 20 %, especially 

for the high-J regions.

Analyses and calculations have been performed with the Highly-Spherical Top Data System 

(HTDS) software [261].  The new line list for SF6 contains 2,889,065 transitions (actually 

reasonably reduced from the University of Burgundy original list by applying an intensity cutoff 

of 10-30 cm-1/(molecule cm-2) at 296 K), and covers the spectral range 580 to 996 cm-1.  Since SF6

has low-lying vibrational modes, most applications will require hot bands that are not present in 

this list.  Therefore it is the HITRAN policy to relegate this list to a supplemental folder, similar 

to what was done for SF6 and ClONO2 in the 2004 edition of HITRAN.

2.31. H2S (molecule 31)

Unchanged.
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2.32. HCOOH (molecule 32)

This edition of HITRAN constitutes a major update of the information provided for formic 

acid: the 9-μm region has been completely replaced [262, 263], and there is the first inclusion of 

the 5.6-μm region [264].  These regions correspond to the strong ν6 and ν3 bands, respectively.  

They are both used to probe this species in the troposphere [265, 266].  The line parameters for 

the ν6 band of H12C16O16OH near 1105 cm–1 available in the editions of HITRAN earlier than 

2004 [1] originate from the work of Goldman and Gillis [267].  The sum of the line intensities 

was equal to 1.757  10–17 cm–1/(molecule cm–2) at 296 K, determined using a Fourier transform 

laboratory spectrum recorded at the University of Denver [267].  With the 2004 edition of 

HITRAN, the ν6 band line positions and intensities were improved according to the work of 

Perrin et al [268].  However, absolute line intensities were still derived by scaling the calculated 

total band intensity to the sum of line intensities obtained in Ref. [267].  Recently, Vander 

Auwera et al [262] reported absolute line intensities measurements for the ν6 and ν8 bands using 

Fourier transform spectroscopy, taking the dimer (HCOOH)2 into account in the analysis.  They 

showed that the intensities reported by Goldman and Gillis [267], and therefore in HITRAN, were 

a factor of about 2 lower than the average of the other existing laboratory measurements, and 

also lower than theoretical calculations.  Relying on results of that work, Perrin and Vander 

Auwera generated a new list of line parameters and showed that it provides a vastly improved 

modeling of the 9-μm spectral region of formic acid [263].  In the present edition of HITRAN, 

this list completely replaces previous information for that spectral range of HCOOH.

Using high-resolution Fourier transform spectra of trans-HCOOH recorded at 5.6 μm, Perrin 

et al [264] carried out an extensive analysis of the strong ν3 fundamental band at 1776.83 cm–1, 

significantly perturbed by resonances due to numerous dark bands.  That work also involved the 
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determination of absolute line intensities with an accuracy estimated to 15 %.  A list of line 

parameters was generated for the first time for this spectral region of trans-formic acid.  Details 

can be found in the accompanying article [264].  This line list has been incorporated into the 

present edition of HITRAN, constituting the first inclusion of the 5.6-μm spectral region of 

formic acid into the database.

2.33. HO2 (molecule 33)

Unchanged.

2.34. O (“molecule” 34)

Unchanged.

2.35. ClONO2 (molecule 35)

Unchanged.

2.36. NO+ (molecule 36)

As was pointed out in López-Puertas et al [269], there were significant inaccuracies in the 

line positions in HITRAN2004 when compared against MIPAS spectra.

Therefore new line positions corresponding to J" ≤ 40 for all vibration bands of the nitric 

oxide ion in the database have been generated using constants derived from a global fit of 

microwave [270], infrared [269, 271, 272], and UV spectra [273].  The excited electronic state in 

the UV data was fit to individual term values because of the perturbations.  The resultant 

Dunham constants are given in Table 7.  The fit was performed using the DParFit program of 

LeRoy [274].
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Lines with J" greater than 40 were left untouched as the new constants cannot predict 

accurate frequencies for high-J values.  One should keep in mind that the HITRAN data above 

J" = 40 will still be of mediocre accuracy.  Note that the spectrum of this molecule is often used 

for upper atmospheric research and hence there is a large dynamic range in intensities in the line 

list.

2.37. HOBr (molecule 37)

Hypobromous acid is formed in the Earth’s atmosphere by gas-phase reactions (e.g. 

HO2+BrO) [275] and also by heterogeneous chemistry on aerosol particles (e.g. BrONO2+H2O)

[276, 277].  It is an important reservoir for active bromine and is particularly important in the 

lower stratosphere where it can contain a significant part of the total bromine [277, 278]. It also 

plays an important role in the marine troposphere [279, 280].  For atmospheric detection of 

HOBr, the far-infrared is probably the most promising spectral region [281].  HOBr exists in two 

main isotopic species (HO79Br and HO81Br) with nearly the same natural abundance and mass.

Recent high-resolution studies in the far- and mid-infrared [282, 283] have been used to 

produce a new line list, including (for the far-infrared region) the rotational dependence of the 

molecular dipole moment and also the rotational transitions in the v3 = 1 state.  This line list was 

not available in time for the new edition of HITRAN; it will be included as an update.  A high-

resolution line-by-line analysis of the near-infrared 2ν1 bands of HO79Br and HO81Br is currently 

in progress [284].

2.38. C2H4 (molecule 38)

Spectral line parameters for two isotopologues of ethylene, 12C2H4 and 13C12CH4, have been 

included in HITRAN as of the 2000 edition [285].  Recently, Rotger et al [286] carried out an 

experimental and theoretical study of the ν12 band of 12C2H4 near 6.93 m.  Experimental line 
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positions and intensites obtained using Fourier transform spectroscopy were analyzed with a 

tensorial formalism developed in Dijon, and a list of line parameters was generated for that band.  

The line positions, intensities, and lower state energies are calculated using the results of that 

work.  The values of γair, γself, and n are based on Refs. [287-290] (see [286] for details).  This ν12

band line list has been added to the present edition.

2.39. CH3OH (molecule 39)

A misassignment of the vibrational levels for the pure-rotation lines of methanol has been 

fixed (the levels previously labeled as 1 are now correctly assigned to 12).  At the same time, 

some corrections were made to the list by Xu [291].  These corrections include deleting two 

duplicate lines, and updating two unresolved doublets.

2.40. CH3Br (molecule 40)

Methyl bromide is the major contributor to bromine in the stratosphere and the main 

organobromide in the lower atmosphere.  This molecule contributes significantly to ozone 

depletion since it is dissociated by UV radiation producing Br radicals that catalyze the 

destruction of ozone [292]. These bromine atoms are 50-60 times more destructive of ozone 

than the chlorine atoms coming from the chlorofluorocarbon compounds (CFCs) [293]. For this 

reason, since 2005 the use of CH3Br is being phased out under the Montreal protocol.

CH3Br spectroscopic line parameters have been included for the first time in the 2008

HITRAN edition.  Methyl bromide is composed of 50.099% of 12CH3
79Br and 48.743% of 

12CH3
81Br in natural abundance.  Isotopologue numbers 1 and 2 have been assigned for these two

isotopologues, respectively.  Two line lists of both isotopologues have been generated, one 

around 10 µm for the ν6 band, and the other around 7 µm for the interacting ν2 and ν5 bands.  
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Several works published recently for this molecule have been used to build these line lists.  The 

works of Kwabia Tchana et al have been used for the line positions [294] and intensities [295] in 

the 7-µm spectral region.  In the 10-µm spectral region, line positions, intensities, self- and N2-

broadened half-width parameters have been studied in Ref. [296].  The line list now present in 

HITRAN is the one provided as supplementary material of Ref. [296].  The model for self- and 

N2-broadened half-width parameters obtained in Ref. [296], showing a J and K rotational 

dependence, has been used both for the 10- and 7-µm spectral regions.  Because atmospheric 

needs are concerned with air-broadened half-width parameters, we deduced γair by scaling γN2 by 

a factor of 0.96.  Similar approximations have been done for many molecules in the various 

editions of the HITRAN database.  For the H2O molecule, air-broadened half-width parameters 

could be estimated by multiplying N2-broadened half-width parameters by the value 0.9 as 

suggested in Refs. [297-299]. For CH3Cl, the ratio is found to be around 0.96 due to the ratio 

2N /
2O = 1.25 obtained by averaging measurements of CH3Cl from Refs. [300, 301].  Note that 

this result is quite similar to what has been proposed for ozone in Ref. [302].  Because CH3Br is 

similar to CH3Cl, the scaling factor air /
2N = 0.96 has been used. This procedure, although 

approximate since 
2N /

2O varies from line to line, is expected to be precise within a few 

percent.  Also, the temperature-dependence parameter n has been added in both spectral regions, 

based on the N2-width temperature dependence measurements of Jacquemart and Tran [303] (see 

Eq. (5) of Ref. [303]).  Accuracies or details for the line-parameter calculation can be found in 

Refs. [294-296, 303].  Note also that line mixing has been observed and analyzed in the strong 

Q-branches between 220 and 300 K [304, 305]; line mixing parameters are available on request 

to the authors [304, 3054].

2.41. CH3CN (molecule 41)
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Line parameters of methyl cyanide (also called acetonitrile) have been included in HITRAN

for the first time.  A total of 3572 features between 890 and 946 cm-1 has been given for the ν4

region near 920 cm-1. Published line positions and intensities from Rinsland et al [306] have 

been supplemented by unpublished measurements from the same dataset, as well as selected 

values from preliminary Hamitonian calculations. Only lines with intensities greater than 10-24

cm-1/(molecule cm-2) at 296 K have been included. The spectral region from 918.5 to 920.3 cm-1

(containing the Q branch and the P1 and P2 manifolds) proved too dense to measure directly and 

so these parameters are represented by 326 calculated transitions of ν4.  Some 2243 lines are 

given without quantum identifications; many are thought to be hot band lines involving as yet 

unanalyzed upper-state levels of ν4 + ν8.  The lower state energy of these unidentified lines is set 

to 410.0000 cm-1.  It should be noted that a number of hot-band lines are not included in the list; 

this is most noticeable at the hot band Q branch near 924 cm-1.

Measured self-broadened half-width parameters were available [306], and identified lines 

with the same K quantum number and the same or very close m were assigned approximately the 

same or interpolated values.  The total number of lines with self broadening assigned in this 

manner is 2185.  The air-broadened half-width parameters were estimated using the reported N2

broadening [306] and extension to unmeasured identified lines in the same manner as self 

broadening for a total of 2279.  Previously, Fabian et al [307] reported N2 and O2 broadening of 

11 microwave lines and the mean ratio of their O2-broadened to the N2-broadened half-width 

parameters was 0.67.  Assuming the standard 79% N2 and 20% O2 in air, this implies that γair is 

0.93 times the corresponding N2-broadened value, and so this factor was applied for the database.  

For the lines lacking measured Lorentz half-width parameters for air and self broadening, default 

values of 0.14 and 1.5 cm-1atm-1 at 296 K were used, respectively (obtained as an approximate 
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average of measured values).

The measured N2 shifts [306], where available, were inserted for air shifts.  Unmeasured 

pressure shifts have been set to zero, the approximate average of the measured values.  There are 

no measurements of the temperature dependence of the Lorentz half-width in air and only one in 

N2 [308], so the default n was set to the single measured N2 value of 0.72.

The error codes have been set based upon an uncertainty of five times the formal fitting 

uncertainty.  The one exception is the air-broadened Lorentz half-width parameter for which an 

additional 2% was added to account for the uncertainty in the air-to-N2 ratio of these parameters.  

Furthermore, a calculation of the total internal partition function sum has been performed for 

four isotopologues, 12CH3
12CN, 13CH3

12CN, 12CH3
13CN, and 13CH3

13CN, and those results have 

been made available for the HITRAN compilation.

2.42. CF4 (molecule 42)

Tetrafluorocarbon (CFC-14) is a strong greenhouse gas of both anthropogenic and natural 

origin [309, 310].  It has been increasing in the atmosphere [311, 312].  Its infrared spectrum is 

dominated by the intense ν3 band at 1282 cm-1 [313].  However, high-resolution infrared 

spectroscopy of this molecule has received only a limited interest up to now with its atmospheric 

identification first reported from balloon-borne measurements [313].  The previous editions of 

the HITRAN database for CF4 were only represented by cross-sections (referenced as CFC 14)

[314], but contained no line list.

The strongly absorbing 4 (around 15.8 μm) and 24/3 regions (around 7.3 μm) have been 

recently reinvestigated, thanks to several new Fourier transform infrared spectra recorded at a 

resolution of 0.003 cm−1.  Following the previous work of Gabard et al [315], a simultaneous 

analysis of the ground state, 4, 3, 24 and 3 - 3 bands was performed, making use of the 



48

XTDS and SPVIEW programs [316] developed by the Dijon group.  Compared to Ref. [310], the 

present work extends the analysis to much higher J values (70 instead of 40 for 4 and 63 instead 

of 32 for the 24/3 dyad).  Absorption intensities were used to fit the 4 and 3 dipole-moment 

derivatives and the results compare very well to the calculated values of Papoušek et al [317].  

The details of this new analysis will be given in a forthcoming paper [318].

The analysis allowed for the first time the generation of a reliable line list for 12CF4 that is 

included in the present HITRAN edition, tetrafluorocarbon becoming molecule number 42.  The 

estimated precision for line positions is 0.001 cm-1, up to J = 60.  The accuracy of intensities, 

however, should be considered with some care and may not be better than 20 %, especially for 

the high-J regions.  The list covers the spectral ranges 600 to 670 cm-1 (4) and 1276 to 1290 

cm-1 (24/3).

The γair parameter was fixed to a constant value 0.078 cm-1atm-1 (at 296 K) based on the 

averaged value from tunable diode laser experiments [319].  Note that at higher J values the air-

broadened half-width parameters will most likely be lower than this fixed value; further 

experiments are desirable.  The temperature dependence of the air-broadened half-width

parameter, n, was set to 0.66 also based on Ref [319].  There is no experimental (or theoretical) 

information about the self-broadened half-width parameter; this parameter was estimated to be 

0.08 cm-1atm-1.

Just as for SF6 (Section 2.30 above), CF4 has low-lying vibrational modes and, as most 

applications will require hot bands that are not present in this list, this line list has been placed 

into the supplemental folder.
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3.  Infrared cross-sections

Infrared cross-sections for this edition of the HITRAN compilation are listed in Table 8.  

This portion of the database supplies cross-sections of molecules for which line-by-line spectral 

parameters are not yet available or are incomplete.  With the exception of the HFC-143a and 

HFC-125 cross- sections, all of the cross-sections are similar to those discussed by Rothman et al 

[1] and Massie and Goldman [320].  The cross-sections of each molecule are specified in 

separate files, labeled with the chemical symbol of the molecule followed by an underscore and 

IRxx, where xx stands for the edition that the data was introduced or updated.  A file extension 

of .xsc is used.  Files may have many temperature-pressure sets for different spectral regions, as 

indicated by headers throughout the file.  Headers indicate the molecule name, the range of 

wavenumber for the band, number of data points, temperature (K) and pressure (torr) of the 

laboratory measurements, the maximum cross-section in the band (cm2), and the resolution 

(cm-1) of the measurements.

In previous editions, the cross-sections from the original laboratory data sets were set to zero 

if they were negative.  Wavelength ranges were chosen such that there are positive valued cross-

sections in the far wings of the various bands at all of the measurement temperatures.  In 

HITRAN2008 we also provide complete original laboratory data.  Original files of HFC125 and 

HFC143a (discussed below) are included in a new subdirectory called “Original Data”.  Using 

these data requires special care since there are instrumental distortions and wide intervals of 

oscillating values near zero that are present in the data files.

Di Lonardo and Masciarelli [321] measured HFC-143a cross-sections at six temperatures 

between 203 and 293 K, similar to those of Smith et al  [322], and at a similar resolution of 0.03 

cm-1.  Integrated band intensities at room temperature and at 203 K differ by 6 and 16%,  
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respectively, while the maximum cross-sections near the 1281 cm-1 Q branch differ by 30%.  

This difference points out the need for additional measurements, especially of the strong Q-

branch features of molecules that play a predominant role in atmospheric remote sensing.  The 

data of Smith et al [322] are currently in the main directory, while those of Di Lonardo and 

Masciarelli [321] are in the Original Data subdirectory.  Both data sets should be consulted until 

the differences are resolved.

Di Lonardo and Masciarelli [321] also measured HFC-125 cross-sections at six temperatures

between 203 and 293 K and pressures between 50 and 800 hPa at a resolution of 0.03 cm-1.  

Integrated band intensities of the Clerbaux et al [323] and Di Lonardo and Masciarelli [321]

measurements agree to 3.4% when the same molecular bands are intercompared.

Infrared cross-section data for methyl cyanide (CH3CN) became available soon after the 

release of HITRAN2004, and were first placed in the update section of the HITRAN web site.  

The source of the data is Rinsland et al [324].  This molecule is emitted from incomplete 

combustion of plant matter, for example in forest fires.  It is relatively nonreactive in the 

troposphere and is thus a tracer of troposphere-stratosphere transport.

Infrared cross-section data for peroxyacetyl nitrate - PAN (CH3C(O)OONO2 ) also became 

available after the release of the HITRAN2004 database.  The source of the data is Allen et al

[325, 326].  This organic compound is formed in photochemical smog, for example. It is 

thermally quite stable, and can contribute to pollution in areas away from its source.  It is an 

irritant to the eyes and breathing. HITRAN cross-sections have been used for measurements of 

short-lived organic compounds including PAN and acetone in a biomass burning upper 

tropospheric plume measured by MIPAS-B limb emission spectra [327] and in ACE Fourier 

transform spectrometer solar occultation spectra as reported by Coheur et al. [265].
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Pressure-broadened (1 atm N2) laboratory spectra of benzene vapor (in natural abundance) 

were recorded at 278, 298, and 323 K, covering 600-6500 cm-1 [328] and added to HITRAN.  

The spectra were recorded at a resolution of 0.112 cm-1 using a commercial Fourier transform 

spectrometer.  The pressure of each benzene vapor sample was measured using high precision 

capacitance manometers, and a minimum of nine sample pressures were recorded for each 

temperature.  The samples were introduced into a temperature-stabilized static cell (19.94(1) cm 

pathlength) that was hard-mounted into the spectrometer. From these data, a fitted composite 

spectrum was calculated for each temperature.  The number density for the three composite 

spectra was normalized to 296 K.  The spectra give the absorption coefficient (cm2 molecule-1, 

naperian units) as a function of wavenumber.  From these spectra, integrated band intensities (cm 

molecule-1 and atm-1 cm-2) for intervals corresponding to the stronger benzene bands were 

calculated and were compared with previously reported values. Error sources and estimated 

systematic (NIST Type-B) errors were found to be 3% for the stronger bands. The measured 

absorption coefficients and integrated band intensities are useful for remote sensing applications 

such as measurements of planetary atmospheres and assessment of the environmental impact of 

terrestrial oil fire emissions.
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4.  Ultraviolet data sets

4.1. Line-by-line data

4.1.1. O2

A new line list has been created for the oxygen Herzberg bands.  Corrections have also been 

made to the Schumann-Runge line list.

The line list for the Herzberg bands ( 3 +
uA  ← 3

g
-

X  , 1 -
uc  ← 3

g
-

X  , 3
uA'  ← 3

g
-

X  ) is

based on the data from Mérienne et al [329].  Figure 6 shows an overall view of the bands.  The 

file was created in a format different from former oxygen line lists in HITRAN in order to 

distinguish different spin-components of the 3
uA'  state of the Herzberg III band.  The only 

difference is in the presentation of the “global” quanta identification which is closer now to Class 

3 of Table 3 in Ref. [1].  The new format (in FORTRAN descriptors) is shown in the bottom of 

Table 9.  The description of all the oxygen electronic energy levels that are now in HITRAN, and 

their presentation in the new format, is also illustrated in Table 9.

In addition, the assignments of lines in the Schumann-Runge bands ( 3 -
uB  ← 3 -

gX  ) have 

been corrected from previous editions of HITRAN.  The associated parameters such as Einstein 

A-coefficients and statistical weights were recalculated.  The uncertainty and reference indices 

were fixed as well.  The self-broadened half-width parameter field is used for predissociation 

widths at zero pressure.  In the previous editions of HITRAN, FWHM (full width at half 

maximum) was listed for the Schumann-Runge bands, where now it has been changed to 

HWHM (half width at half maximum) to make it consistent with the rest of HITRAN.  The 

Schumann-Runge bands employ the new format for the “global” quanta identifications.



53

The spectral range covered by the Herzberg bands is 34014 to 41261 cm-1, while the 

Schumann-Runge bands cover 44606 to 57028 cm-1.  The total number of lines in the combined 

UV file is 15466.

4.2. UV cross-sections

UV cross-sections for a number of molecules were introduced in the 2004 edition of 

HITRAN [1]. They were intended to represent the most useful data for analysis of atmospheric 

measurements, including ground-based and satellite-based spectroscopic measurements of the 

atmosphere [330]. Several updates are included in the present version of HITRAN, as presented 

here. Several current studies with potential implications for near-future updates are also 

discussed.

4.2.1. O3

The Hartley-Huggins bands of ozone, adopted from Bass and Paur [331], with wavelength 

correction as discussed in [1] remain the HITRAN2008 choice. There is now substantial 

indication that shifting to new cross-sections will soon be warranted [332], with the likely choice 

being those from Ref. [333].

4.2.2. BrO

Bromine oxide cross-sections have been re-measured in the ultraviolet at five different 

temperatures between 203 and 298 K [334]. At present, these are being evaluated by research 

groups analyzing satellite spectra to see whether they present an improvement over those 

currently used [335].

4.2.3. H2CO
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It has recently been demonstrated [229] that the ultraviolet cross-sections for H2CO 

implemented in HITRAN  may be as much as 20% too low, leading to overestimates of 

atmospheric H2CO by up to 20%. Other cross-section measurements currently in use include 

those of Meller and Moortgat [336].  These data, however, are at lower spectral resolution and in 

air wavelengths.  For the present, corrections may be made to fitted atmospheric concentrations

when the cross-sections of Ref. [337] are used. We recommend, however, that the cross-sections 

be systematically re-measured, simultaneously with infrared line parameters using Fourier 

transform spectroscopy.

4.2.4. IO

Cross-sections for iodine oxide [338], which have recently been successfully measured in 

the visible in both ground-based and satellite spectra [339], have now been added to HITRAN.

4.2.5. SO2

Sulfur dioxide absorption cross-sections have already been extensively investigated in the 

250 to 345 nm region at room temperature [340-354].  The temperature dependence was mainly 

investigated by looking at temperatures lower than room temperature [349, 350, 353].  Only a

couple of measurements have been performed at higher temperatures [343, 344]. Recently, 

Danielache et al. [355] investigated the effect of the isotopes of S on the absorption cross-

sections of SO2.  Measurements of the SO2 absorption cross-sections above 345 nm are scarce: 

Manatt and Lane [348], who did a compilation of absorption cross-sections existing in the 

literature, have digitalized the data of Sidebottom et al [356] from the figures in their paper.  

However they introduced some modifications to the original data by shifting them by 0.67 nm to 

the red after comparison with peak positions from measurements performed by Clements [357]

and by correcting for the sinking baseline at the short wavelength side of the Sidebottom et al 
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data [356].  Sprague and Joens [358] report measurements of SO2 in the 320 to 405 nm region at 

a temperature of 298 K and a resolution of 0.1 nm.

Recently, the SO2 absorption cross-sections were investigated in the 225 to 425 nm region 

with Fourier transform spectroscopy [359, 360].  This study provides cross-sections at relatively 

high spectral resolution (2 cm-1) with high wavelength accuracy at several temperatures (298, 

318, 338, and 358 K).  At room temperature, these data compare fairly well with the previous 

measurements of Vandaele et al [341], Bogumil et al [353] and of Rufus et al [347].  At higher 

temperatures, there are very few literature data to compare with.  These data, which cover a wide 

spectral interval and include temperature dependence, have now been included in HITRAN.

4.2.6. Aromatic species

Aromatic hydrocarbons in the atmosphere are mainly of anthropogenic origin with major 

emissions due to motor vehicles and solvent use.  Minor sources are biomass burning and 

biogenic emissions.  They play an important role in the chemistry of tropospheric ozone and in 

urban air pollution problems because of their carcinogenic and mutagenic properties [361, 362]. 

However, the quality of atmospheric detections is not very good and is partly attributed to the 

poor spectral resolution of reference absorption cross-sections [363].  These species are also of 

importance for astronomical studies: Benzene has been detected in the north polar auroral region 

of Jupiter [364] and in the stratospheres of Jupiter and Saturn [365] as well as in Titan’s 

atmosphere [366]. The need for laboratory spectroscopic data to study organic chemistry in 

planetary atmospheres was highlighted in Refs. [367-369], in particular the low-temperature 

dependence in the UV range.

Benzene (C6H6) is a planar oblate symmetric top molecule with D6h point group symmetry.  

Such a high symmetry allows a total of thirty normal modes of vibration among which ten are 
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doubly degenerate.  The UV absorption spectrum of benzene is attributed to the S1 (1B2u) ← S0

(1A1g) electronic transition which is electronically forbidden but vibrationally induced, and it is 

dominated by the 61
0 vibronic progression involving the symmetrical ring-breathing vibration 1.  

This band system becomes more allowed and therefore more intense as the D6h symmetry is 

broken in methyl and dimethyl-substituded benzene, i.e toluene and xylene respectively. The

UV bands of benzene have been studied in the past by high-resolution spectroscopy and their

rotational structure has been completely analyzed by Okruss et al [370].

Measurements of the absorption cross-sections of gaseous benzene (C6H6), toluene (C7H8), 

ortho-, meta-, and para-xylene (or the 3 isomers of dimethyl-benzene C6H4(CH3)2) have been 

performed with a Fourier transform spectrometer at the resolution of 1 cm-1 (MOPD = 0.9 cm) 

over the 30 000-42 000 cm-1 spectral range (238-333 nm) and at temperatures ranging from 253 

to 293 K.  This systematic study of five organic molecules is presented in detail in Fally et al 

[371].  The complete dataset comprises the absorption cross-sections of (i) benzene at 253, 263, 

273, 283 and 293 K, (ii) toluene at 263, 273, 283 and 293 K, (iii) the 3 isomers of xylene at 273, 

283 and 293 K. Wavenumbers are given by increments of 0.2 cm-1 and the non-systematic error 

of the absorption cross-section (to which a total systematic uncertainty of 8% must be added) is 

also reported in a separate column.

Compared to recent studies in the same UV region [372-374], this work provides absorption 

cross-sections (cm2 molecule-1) at several atmospheric temperatures with a better spectral 

resolution and an accurate wavelength scale.  It also proposes a parameterization for the 

temperature effect in support of tropospheric and astronomical studies.  These data, which appear 

in HITRAN for the first time, are also available in digital form from the web site of the Belgian 

Institute for Space Aeronomy (http://www.aeronomie.be/spectrolab/).
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5.  Aerosol refractive indices

Refractive indices of water, ice, aqueous sulfuric and nitric acid, solid hydrates (i.e. nitric 

acid mono-, di-, and tri- hydrate), organic nonvolatile aerosol, and crustal material (e.g. quartz, 

hematite, and sand) in the previous version of HITRAN are discussed by Rothman et al [1] and 

Massie and Goldman [320].  There is a separate ASCII file for each refractive-index data set.  

The header of each file describes the data, cites a journal reference, specifies an email contact, 

and provides the format specification of the tabulation.  Additions to HITRAN2008 include 

indices of supercooled water, ice, and ternary H2SO4/HNO3/H2O droplets at low temperatures.

Real and imaginary indices of supercooled water at 238, 252, 258, and 269 K from 1101 to 

4503 cm-1 are tabulated by Wagner et al [375].  These data are based upon expansion 

experiments conducted in the Karlsruhe AIDA coolable aerosol chamber, followed by a Mie 

inversion technique.  The influence of temperature on the optical constants was analyzed 

previously only down to 274 K.  The supercooled optical constants are notably different from 

room temperature indices.  Figure 7 compares room temperature indices of Downing and 

Williams [376] and the supercooled indices.  Notable differences are apparent in the O-H 

stretching mode near 3400 cm-1.  These indices will help to improve retrievals of the ratio of 

supercooled water droplets to ice crystals in mixed phase clouds.

Warren and Brandt [377] have updated the 1984 Warren [378] compilation of ice indices.  

Indices from 0.044 to 2×106 µm at 266 K are specified.  There are notable differences in the two 

data sets. Imaginary indices in the 1.4- to 5-µm range are larger or smaller than those in Ref. 

[378] by a factor up to two, depending upon the specific wavelength.  In the 7- to 10-µm range,

the new imaginary indices are 30% lower than those in Warren [378].  Temperature dependence 

is strong in the 15 to 30 µm range.  While HITRAN includes the Clapp et al [379] indices of ice 
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from 2.5- to 12.5-µm in 10 K steps from 130 to 210 K, there is a need for new measurements in 

the 8 to 30 µm range from 200 to 273 K.  The far-infrared 45 µm peak in Ref. [377] is stronger 

than in the 1984 compilation.  Warren [377] recommends that researchers should consult the 

formulas of Matzler [380] if they require microwave indices at temperatures other than 266 K.

Ternary H2SO4/HNO3/H2O indices at low temperature are important in the interpretation of 

infrared spectra of Polar Stratospheric Clouds (PSCs) since ternary solution droplets are 

observed in PSCs.  Lund Myhre et al [381] measured indices between 12 and 81 weight percent 

H2SO4 from 220 to 300 K.  Lund Myhre et al [382] measured indices of HNO3/H2O (at 30, 54, 

and 64 weight percent HNO3) and three mixtures of H2SO4/HNO3/H2O between 183 and 293 K.  

Prior to Ref. [381], only two other sets of measurements of the ternary indices, Norman et al 

[383] and Biermann et al [384], have been made, both of which are included in the HITRAN

database.  HITRAN2008 contains all of these data sets since the measurement temperatures 

differ, and because there are important differences in the indices of the various data sets.  The 

specification of the indices of the ternary mixture is considered incomplete, since there is not yet 

available a definitive way to combine (i.e. mix) the binary HNO3/H2O and H2SO4/H2O indices to 

derive ternary indices for PSC studies.

6.  Global data and software

There are some data that are needed to accompany HITRAN that are of a global nature.  One 

such file, called molparam.txt, is included with the compilation.  It is a table listing the 

abundances, partition sum at 296 K, and the molecular weight of each of the isotopologues 

contained in HITRAN.  There is also a file of all the sources used for the parameters in 

HITRAN, as well as a file giving the partition sums at temperatures from 70 to 3000 K.
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As in previous editions, there is software, called JavaHAWKS, included in the compilation 

that provides a functional and flexible set of tools for managing the database.  This software can 

be installed on a wide set of platforms, running for example Windows, UNIX, Solaris, LINUX, 

and Mac OS.  However, the JavaHAWKS software has not yet been updated to be able to 

completely work on the newest additional molecules (beyond molecule 39).  Likewise there are 

some new bands of molecules that have not been implemented in the band selection feature.

In the future we plan to restructure the whole of the HITRAN compilation into an internet-

based browsing platform.  A possible prototype for this system is the W@DIS database being 

produced by the IUPAC (International Union of Pure and Applied Chemistry) Water Vapor task 

group [385].

7.  Conclusions

The details of the updates and enhancements of the new HITRAN2008 compilation have 

been described.  The compilation consists of several parts: (1) the traditional high-resolution, 

line-by-line portion where fundamental spectroscopic parameters required for calculation of 

radiative transfer are archived; (2) files of infrared cross-sections primarily for large or heavy 

polyatomic molecules; (3) UV line-by-line parameters and cross-sections; (4) tables of aerosol 

refractive indices; and (5) generalized tables and references that relate to HITRAN.

In addition to adding some new molecules, many vibration-rotation bands for the previously 

included species have been updated or extended.  One can highlight the vast improvement for 

H2O, CO2, O3, CH4, O2, and most of the trace-gas species.  Emphasis has been on increased 

accuracy and completeness of line positions, intensities, and line-shape parameters.  Recent 

atmospheric remote-sensing experiments have placed very demanding requirements on the 

accuracy of intensities and broadening parameters.  Indeed, various field experiments have now 
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demonstrated the need (by lowering the residuals between observed and simulated spectra) for 

more sophisticated models of line shape beyond the Voigt profile currently accessible through 

HITRAN.  This extension will be the topic of future editions of HITRAN.

Continuing efforts to improve and extend the database are ongoing.  As critical new data 

become available, they will be evaluated by the international HITRAN committee.  These 

approved data will be posted as interim updates on the internet before a total new edition is 

released.  The compilation is free; access instructions can be obtained at 

http://www.cfa.harvard.edu/HITRAN.
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Appendix A.  Converting Intensities from the JPL or CDMS Catalogs to HITRAN 

Intensities

This appendix provides users with the steps needed for the conversion of intensities between 

the HITRAN database [1] and the Jet Propulsion Laboratory (JPL) [148] or Cologne Database for 

Molecular Spectroscopy (CDMS) [149] spectral databases. The JPL and CDMS lists, which are 

identical in their intensity formalisms, provide base-10 logarithms of the integrated intensity at 

300 K (in nm2MHz), while HITRAN gives the intensity at 296 K (in cm-1/(molecule cm-2)) Apart 

from these differences, there are certain differences in the formalism of intensities and this 

appendix provides steps for the most accurate conversion.  If accuracy better than 2% is not 

required, it is fairly safe to use an approximation given in Section A.5 below.  Some other 

intensity unit conversions are described in the textbook of Bernath [386].  Appendix B gives 

definitions of some of the quantities in the databases.

A.1  Unit conversion

The JPL [148] and CDMS [149] catalogs use nm2MHz as units of intensity.  In order to 

convert to HITRAN [1] units (cm-1/(molecule cm-2)), one has to divide the JPL intensity (not its 

logarithm) by a factor related to the speed of light, namely 2.99792458×1010 cm s-1.  It should be 

recalled that the HITRAN units were constructed with application to atmospheric transmission 

calculations in mind, hence the emphasis on writing the units as wavenumber per column density

and not simplifying it to the equivalent cm/molecule:
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A.2  Isotopic abundance
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The JPL and CDMS catalogs assume 100% abundance of every isotopologue, whereas the 

HITRAN database incorporates a terrestrial abundance scaling.  Therefore one has to multiply the 

JPL (CDMS) intensity by the isotopologue abundance value (Ia) adopted by HITRAN.  For the 

isotopic abundances used in HITRAN, see for example Table 1 in Ref. [387].
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A.3  Scaling of the partition sum

After conversion to cm–1/(molecule cm-2) and scaling by isotopic abundance, one needs to 

consider the intensity defined in the JPL catalog, SJPL, which is given by:
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where g′ is a statistical weight of the upper level and Q(T) is a total partition sum.  The other 

terms in Eq. (A.3) are defined in the appendix of Ref. [388].  The labels “JPL” refer to the fact 

that in some cases in the JPL and CDMS catalogs the common factors are factored out in g′ and 

Q(T).  This common factor is a state-independent statistical weight gi, which is not ignored in the 

HITRAN database.  Nevertheless it is obvious that

.
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The use of the “≈” refers to the fact that partition sums are not calculated exactly the same 

way in the JPL catalog and HITRAN.  Unlike HITRAN, the partition sums in the JPL catalog do 

not include the “vibrational” contribution in most cases.  However this contribution may be 

significant for molecules possessing low vibrational modes.  Therefore it is recommended that 

one should scale the intensities obtained at JPL to HITRAN formalism in the following manner:
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Since 300 K is the reference temperature in both the JPL and CDMS databases,
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It is not always immediately obvious whether or not g′JPL= g′HIT.  Therefore it is always 

useful to obtain a ratio between partition sums in JPL and HITRAN at the same temperature and 

then round that ratio to an integer, which will be the ratio between statistical weights in HITRAN

and JPL.

The partition sums for HITRAN database are available in the file parsum.dat that is 

distributed with the database.  The partition sums for 296 K are also listed in Table 1 of Ref.

[387].  The partition sums (or their logarithms) for the JPL and CDMS catalogs are provided in 

the following websites:

http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.cat

and

http://www.ph1.uni-koeln.de/vorhersagen/catalog/partition_function.html

A.4. Temperature adjustment

All intensities in the JPL and CDMS catalogs are calculated at 300 K, whereas HITRAN

gives intensities at 296 K.  By definition:
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and
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Combining the last two equations one obtains
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or using Eq. (A.5):
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A.5.  Approximate temperature adjustment

It should be noted that in the majority of cases in the literature, step 3 is omitted and the last 

equation in step 4 can be approximated by
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where n = 1 for linear molecules and n = 3/2 for nonlinear molecules.  Sometimes an even 

coarser approximation is used:
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Appendix B.  Definitions and Units used in HITRAN

The HITRAN database does not strictly use the International System of Units (SI).  The units 

have been chosen for historical, transmission-algorithm structure, and/or instrument-related 

reasons.  Table 10 gives the units for the spectroscopic parameters and related constants in 

HITRAN.
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Figure Captions

Fig. 1.  Flow diagram outlining the assembly of the CO2 HITRAN2008 line list in the 4300 to 

7000 cm-1 region.

Fig. 2.  Polyad energy-level structure for 12CH4.

Fig. 3.  32SO2 air-broadened half-width parameters.

Fig. 4.  SO2 self-broadened half-width parameters: (a) for Ka ≤ 5; (b) for Ka ≥ 6.

Fig. 5.  Extension of data now available in HITRAN for the 12C2H2 isotopologue of acetylene.

Fig. 6.  Line intensities of the O2 Herzberg bands now in HITRAN.

Fig. 7.  Temperature dependence of the supercooled water imaginary indices of Wagner et al

[375].  The 300 K indices are from Downing and Williams [376].
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Table 1.  New ozone bands for the principal isotopologue 16O16O16O.

Band Spectral range
(cm-1)

Number 
of lines

Sum of line intensities
(10-22 cm-1/(mol×cm-2))

References for 
line positions

References 
for line 

intensities
030 – 020 593 – 813 2897 19.640 [80], [81] [82]
121 – 021 956 – 991 15 0.004 [83-85] [86]
030 – 010 1329 – 1480 804 0.403 [87], [80] [88]
102 – 011 1330 – 1378 210 0.057 [89], [90] [91]
111 – 020 1346 – 1409 221 0.090 [81], [89] [91]
201 – 110 1367 – 1406 71 0.016 [89], [90] [91]
022 – 011 1619 – 1687 660 0.396 [83], [90] [92]
121 – 110 1622 – 1678 297 0.096 [83], [90] [92]
031 – 020 1632 – 1711 1109 1.734 [81], [93] [92]
130 – 020 1722 – 1875 443 0.220 [81], [89] [92]
121 – 011 1735 – 1754 42 0.013 [83], [90] [92]
112 – 110 1886 – 2034 104 0.039 [90], [94] [95]
130 – 001 1992 – 2061 3 0.005 [96], [89] [97]
130 – 100 2040 – 2102 10 0.025 [96], [89] [97]
211 – 011 2043 – 2149 62 0.017 [90], [98] [95]
003 – 010 2255 – 2360 1809 11.908 [87], [89] [84]
102 – 010 2270 – 2407 479 0.400 [87], [89] [99]
201 – 010 2281 – 2325 11 0.003 [87], [89] [99]
031 – 010 2333 – 2407 742 0.474 [87], [93] [90]
130 – 010 2424 – 2552 487 0.185 [87], [89] [84]
013 – 100 2529 – 2607 659 0.394 [96], [94] [100]
013 – 001 2602 – 2724 775 0.455 [96], [94] [100]
022 – 010 2603 – 2769 1629 1.729 [87], [83] [89]
112 – 001 2630 – 2720 1432 4.414 [96], [94] [100]
112 – 100 2658 – 2718 68 0.025 [96], [94] [89]
131 – 020 2666 – 2741 899 0.828 [81], [101] [89]
221 – 110 2673 – 2727 311 0.102 [90], [102] [89]
121 – 010 2678 – 2774 1851 16.465 [87], [83] [89]
211 – 100 2681 – 2764 1242 2.522 [96], [98] [89]
211 – 001 2713 – 2768 48 0.014 [96], [98] [89]
202 – 100 3009 – 3093 365 0.155 [96], [103] [89]
031 – 000 3032 – 3111 689 0.417 [96], [93] [93]
202 – 001 3035 – 3117 662 0.392 [96], [103] [89]
211 – 010 3078 – 3166 876 0.878 [87], [98] [89]
130 – 000 3133 – 3249 384 0.126 [96], [89] [89]
022 – 000 3256 – 3511 1826 1.225 [96], [83] [83]
121 – 000 3286 - 3480 1764 7.430 [96], [83] [83]
131 – 010 3369 – 3440 910 0.689 [87], [101] [83]
113 – 100 3506 – 3566 466 0.195 [96], [104] [94]
014 – 001 3525 – 3605 992 1.306 [96], [104] [94]

Table(s)
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014 – 100 3534 – 3538 9 0.002 [96], [104] [105]
113 – 001 3547 – 3605 11 0.004 [96], [104] [94]
212 – 001 3704 – 3755 326 0.102 [96], [106] [107]
221 – 010 3751 – 3821 895 0.772 [96], [102] [107]
211 – 000 3768 – 3866 1762 12.815 [96], [98] [107]
113 – 010 3864 – 3968 1466 4.367 [87], [104] [108]
014 – 010 3875 – 3968 183 0.076 [87], [104] [109]
320 – 010 3888 – 4000 279 0.173 [87], [104] [109]
202 – 000 4034 – 4207 1387 1.100 [96], [103] [103]
131 – 000 4065 – 4145 714 0.460 [96], [101] [101]
301 – 000 4179 – 4264 1213 2.471 [96], [110] [110]
230 – 000 4195 – 4263 14 0.009 [96], [110] [110]
221 – 000 4444 – 4525 1066 1.034 [96], [102] [102]
014 – 000 4522 – 4700 1998 1.626 [96], [104] [104]
123 – 010 4531 – 4600 783 0.649 [87], [111] [111]
330 – 010 4554 – 4602 47 0.018 [87], [111] [111]
113 – 000 4562 – 4668 1599 8.751 [96], [104] [104]
320 – 000 4586 – 4700 587 0.432 [96], [104] [104]
212 – 000 4700 – 4845 924 0.412 [96], [106] [106]
141 – 000 4760 – 4794 4 0.001 [96], [106] [106]
104 – 000 4805 – 4979 977 0.730 [96], [112] [112]
005 – 000 4807 – 4957 1579 5.350 [96], [112] [112]
311 – 000 4808 – 4952 1203 3.561 [96], [112] [112]
203 – 000 4997 – 5085 1086 1.255 [96], [113] [113]
132 – 000 5028 – 5085 27 0.014 [96], [113] [113]
123 – 000 5216 – 5301 784 0.586 [96], [111] [111]
401 – 000 5244 – 5319 896 0.809 [96], [111] [111]
330 – 000 5252 – 5302 43 0.015 [96], [111] [111]
024 – 000 5271 – 5316 2 0.001 [96], [111] [111]
015 – 000 5444 – 5526 947 0.975 [96], [114] [114]
213 – 000 5625 – 5705 622 0.344 [96], [115] [115]
420 – 000 5663 – 5706 10 0.003 [96], [115] [115]
312 – 000 5753 – 5786 14 0.004 [96], [116] [116]

Total 51781 124.407
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Table 2.  Updated ozone bands for the principal isotopologue 16O16O16O.

Band Spectral range
(cm-1)

Number of 
lines

Sum of line intensities
(10-21 cm-1/(mol×cm-2))

111 – 100 1613 – 1849 1271 0.267
012 – 001 1617 – 1826 1581 0.640
111 – 001 1629 – 1854 1557 0.130
012 – 100 1637 – 1706 85 0.004
210 – 100 1701 – 2051 1663 0.197
210 – 001 1719 – 2066 388 0.015
003 – 100 1848 – 2104 1920 1.175
003 – 001 1867 – 2098 2847 1.313
102 – 100 1869 – 2071 2206 0.426
012 – 010 1872 – 2120 3794 3.198
201 – 100 1888 – 2243 2831 10.902
201 – 001 1896 – 2289 2165 0.328
102 – 001 1901 – 2085 2965 15.675
022 – 020 1921 – 2067 1046 0.740
121 – 020 1984 – 2079 1817 1.424
111 – 010 1918 – 2220 3520 42.815
300 – 100 2021 – 2288 2508 0.472
210 – 010 2006 – 2353 3050 0.838
300 – 001 2012 – 2313 1804 0.915
012 – 000 2590 – 3025 3886 3.293
111 – 000 2626 – 3020 3604 24.909
210 – 000 2704 – 3156 3327 0.806
003 – 000 2906 – 3202 4512 140.140
201 – 000 2919 – 3274 2706 7.854
102 – 000 2924 – 3196 4646 12.683
300 – 000 2955 – 3398 2445 0.467
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Table 3. New ozone bands for the 16O16O18O isotopologue.

Band Spectral range
(cm-1)

Number of 
lines

Sum of line intensities
(10-22 cm-1/(mol×cm-2))

002 – 000 1903 – 2143 6004 3.217
111 – 010 2010 – 2085 2413 1.334
101 – 000 2004 – 2182 8284 44.610
200 – 000 2020 – 2266 6117 1.660
111 – 000 2694 – 2768 2337 1.023

Total 25 155 51.845

Note: The 101-000 band is an update.
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Table 4.  New ozone bands for the 16O18O16O isotopologue.

Band Spectral range
(cm-1)

Number of 
lines

Sum of line intensities
(10-22 cm-1/(mol×cm-2))

002 – 000 1854 – 2082 3175 1.503
111 – 010 1962 – 2049 1375 0.749
101 – 000 1898 – 2149 3074 22.771
200 – 000 2020 – 2225 2450 0.378
111 – 000 2654 – 2739 1300 0.452

Total 11 374 25.853

Note: The 101-000 band is an update.
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Table 5.  Jmax values for OH term values

vibrational
level

Jmax

Ref. [201]
Jmax

HITRAN2004
Jmax

HITRAN2008
0 49.5 45.5 45.5
1 47.5 45.5 45.5
2 46.5 44.5 44.5
3 44.5 44.5 44.5
4 36.5 44.5 36.5
5 22.5 44.5 22.5
6 23.5 44.5 23.5
7 23.5 42.5 23.5
8 17.5 40.5 17.5
9 18.5 38.5 18.5

10 16.5 35.5 16.5
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Table 6. Summary of the bands and transitions now available for the 12C2H2 molecule.

Spectral 
region

Number of bands a Number of transitions a Spectral
range

Intensity range
(cmmolecule1)

(μm) cold hot cold hot  (cm1) at 296K
13.6 b 1 5 150 1038 604-870  1018 - 1026

7.7 b 1 0 71 0 1248-1415 1019 - 1022

5 b 3 15 283 1212 1810-2255 1022 - 1025

3.8 c 2 3 90 331 2499-2769 1021 - 1025

3 b 2 0 125 0 3204-3359 1019 - 1021

3 d 0 18 77e 1971 3139-3398 1020 - 1026

2.5 c 4 5 450 720 3762-4226 1021 - 1027

2.2 d 4 4 254 392 4421-4798 1022 - 1025

1.9 d 7 0 539 0 5032-5567 1024 - 1026

1.7 d 2 4 175 350 5692-6032 1023 - 1026

1.5 b 2 2 129 224 6448-6685 1020 - 1024

1.5 d 4 16 200 1443 6277-6865 1023 - 1028

1.4 d 4 0 347 0 7042-7476 1022 - 1025

1.3 f 1 0 51 0 7671-7791 1025 - 1024

1.2 f 2 0 132 0 8407-8612 1026 - 1023

1.0 f 3 1 193 108 9516-9890 1025 - 1022

a 12C13CH2 data are not in this table.
b HITRAN2004.
c HITRAN updates of 2007.
d New data from Ref. [241].
e New high J lines added to the two cold bands already present in HITRAN2004.
f New data from Ref. [242].
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Table 7. Dunham constants (in cm-1) for the X 1Σ+ ground electronic state of NO+.

Dunham
Coefficient

Value
(cm-1)

Y1,0 2376.5568(85)
Y2,0 -16.2603(46)
Y3,0 -0.00480(55)

Y0,1 1.997365(33)
Y1,1 -0.018804(22)
Y2,1 -4.90(53) ×10-5

Y0,2 -5.580(99) ×10-6

Y1,2 6(3) ×10-8

Note: Number in parentheses is approximately 2σ.
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Table 8.  Summary of molecules represented by IR cross-section data in HITRAN

Molecule Common Name
Temperature
Range (K)

Pressure
Range
(torr)

Number
of T,P

sets

Spectral
Coverage

(cm-1)

SF6 Sulfur hexafluoride 180-295 20-760 32 925-955

ClONO2 Chlorine nitrate
189-297 0-117 25 750–830
189-297 0-117 25 1260-1320
213-296 0 2 1680-1790

CCl4
Carbon 
tetrachloride

208-297 8-760 32 750-812

N2O5
Dinitrogen 
pentoxide

205-293 0 5 540-1380

HNO4 Peroxynitric acid 220 0 1 780-830

C2F6
Hexafluoroethane, 
CFC-116

181-296 25-760 43 1061-1165
181-296 25-760 43 1220-1285

CCl3F CFC-11
190-296 8-760 55 810-880
190-296 8-760 55 1050-1120

CCl2F2 CFC-12
190-296 8-760 52 850-950
190-296 8-760 52 1050-1200

CClF3 CFC-13
203-293 0 6 765-805
203-293 0 6 1065-1140
203-293 0 6 1170-1235

CF4 CFC-14 180-296 8-761 55 1250-1290

C2Cl2F3 CFC-113
203-293 0 6 780-995
203-293 0 6 1005-1232

C2Cl2F4 CFC-114

203-293 0 6 815-860
203-293 0 6 870-960
203-293 0 6 1030-1067
203-293 0 6 1095-1285

C2ClF5 CFC-115
203-293 0 6 955-1015
203-293 0 6 1110-1145
203-293 0 6 1167-1260

CHCl2F HCFC-21 296 1 1 785-840

CHClF2 HCFC-22

181-297 0-765 29 760-860
181-296 22-761 31 1070-1195
253-287 0 3 1060-1210
253-287 0 3 1275-1380

CHCl2CF3 HCFC-123
253-287 0 3 740-900
253-287 0 3 1080-1450

CHClFCF3 HCFC-124
287 0 1 675-715
287 0 1 790-920
287 0 1 1035-1430

CH3CCl2F HCFC-141b
253-287 0 3 710-790
253-287 0 3 895-1210
253-287 0 3 1325-1470

CH3CClF2 HCFC-142b
253-287 0 3 650-705
253-287 0 3 875-1265
253-287 0 3 1360-1475

CHCl2CF2CF3 HCFC-225ca
253-287 0 3 695-865
253-287 0 3 1010-1420

CClF2CF2CHClF HCFC-225cb 253-287 0 3 715-1375

CH2F2 HFC-32
203-297 0-750 17 995-1236
203-297 0-750 17 1385-1475
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CHF2CHF2 HFC-134 203-297 0-750 9 600-1700

CFH2CF3 HFC-134a

253-287 0 3 815-865
190-296 20-760 32 1035-1130
190-296 20-760 33 1135-1340
253-287 0 3 935-1485

CF3CH3 HFC-143a
203-297 0-750 9 580-630
203-297 0-750 9 750-1050
203-297 0-750 9 1100-1500

CH3CHF2 HFC-152a
253-287 0 3 840-995
253-287 0 3 1050-1205
253-287 0 3 1320-1490

SF5CF3
Trifluoromethyl 
sulfur pentafluoride

213-323 760 5 599-624
213-323 760 5 676-704
213-323 760 5 740-766
213-323 760 5 860-920
213-323 760 5 1150-1280
213-323 760 5 1280-2600

New or modified data added after the HITRAN2004 edition

CH3C(O)OONO2
PAN (Peroxyacetal 
nitrate)

295 0.08 1 550-1450
295 0.08 1 1650-1901

CH3CN
Acetonitrile
(methyl cyanide)

276-324 760 3 624-784
276-324 760 3 867-1159
276-324 760 3 1175-1687
276-324 760 3 2217-2343
276-324 760 3 2786-3261
276-324 760 3 3881-4574

CHF2CF3 HFC-125 203-293 0-600 16 494-1503

Note: These data are in the main directory.  Additional redundant data for CFC-11,
CFC-12, HFC-125, and HFC-143a are stored in a supplemental sub-directory.
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Table 9.  Energy levels for oxygen currently in HITRAN with their vibrational range and 

descriptors.

Electronic
State

X Ω
υ

(range)
3

g
-

X  X 0 - 2
1

ga  a 0 - 1
1 -

gb  b 0 - 2
3 +

uA  A 0 - 12
1 -

uc  c 2 - 19
3

uA'  A΄ 1, 2, or 3 2 - 12
3 -

uB  B 0 - 19

FORTRAN
Descriptor

A8 A3 I4

Note: X is the character describing the electronic state, Ω are values defining the spin 

components, and υ is an integer specifying the vibrational level.  Note that the Ω-value is given 

only for states with Λ ≠ 0.



108

Table 10.  Definitions and units associated with the HITRAN database

Variable Definition Units Comments
Mol Molecule number Unitless Chronological assignment

Ia Isotopologue number Unitless
Ordering based on terrestrial values 
of atoms given in Ref. [389]

ν Transition wavenumber cm-1 Line position in vacuum

S Intensity
cm-1/

(molecule/cm2)
At 296 K

A
Einstein
A-coefficient

s-1 See Ref. [387]

γair
Air-broadened
half-width

cm-1/atm HWHM at 296 K

γself
Self-broadened
half-width

cm-1/atm HWHM at 296 K

E″ Lower-state energy cm-1 Referenced to zero for lowest 
possible level

nair

Temperature-
dependence coefficient 
of γair

Unitless

δair
Air pressure-induced 
shift

cm-1/atm At 296 K

v′,v″
Upper- and lower-state 
“global” quanta

Unitless See Table 3 of Ref. [1]

q′,q″
Upper- and lower-state 
“local” quanta

Unitless See Table 4 of Ref. [1]

ierr Uncertainty indices Unitless See Table 5 of Ref. [1]
iref Reference indices Unitless Pointers to sources in HITRAN

g′,g″
Upper- and lower-state 
statistical weights

Unitless
Includes state-independent factors in 
HITRAN, see Ref. [387]

Other properties or constants
Q Partition sum Unitless Function of temperature
h Planck constant erg s 6.62606896(33) × 10-27

c Speed of light cm s-1 2.99792458 × 1010

kB Boltzmann constant erg K-1 1.3806504(24) × 10-16

T Temperature K
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