
HAL Id: hal-01005705
https://hal.science/hal-01005705v1

Submitted on 22 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing co-NL by a group action
Clément Aubert, Thomas Seiller

To cite this version:
Clément Aubert, Thomas Seiller. Characterizing co-NL by a group action. Mathematical Structures
in Computer Science, 2014, First View, pp.1–33. �10.1017/S0960129514000267�. �hal-01005705�

https://hal.science/hal-01005705v1
https://hal.archives-ouvertes.fr


Under consideration for publication in Math. Struct. in Comp. Science

Characterizing co-NL by a group action

C L É M E N T A U B E R T† and T H O M A S S E I L L E R‡ 1

† Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030), F-93430, Villetaneuse, France

aubert@lipn.fr

‡ I.H.É.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France

seiller@ihes.fr

Received 15 September 2012 ; Revised 15 November 2013

In a recent paper, Girard (2012) proposed to use his recent construction of a geometry of
interaction in the hyperfinite factor (Girard 2011) in an innovative way to characterize
complexity classes. We begin by giving a detailed explanation of both the choices and the
motivations of Girard’s definitions. We then provide a complete proof that the complexity
class co-NL can be characterized using this new approach. We introduce the
nondeterministic pointer machine as a technical tool, a concrete model to compute
algorithms.

1. Introduction

Traditionally, the study of complexity relies on the definition of programs based on some
abstract machines, such as Turing machines. In recent years, a new approach to complex-
ity stemmed from the so-called proofs-as-program – or Curry–Howard – correspondence
which allows to understand program execution as a cut-elimination procedure in logic.
This correspondence naturally extends to quantitative approaches that made it possible
to work on complexity with tools coming from logic. Due to its resource-awareness, linear
logic (LL) is particularly suitable to treat computational questions, and many bridges have
been built between complexity classes and this formalism. To name a few, elementary lin-
ear logic (ELL) (Danos & Joinet 2003), soft linear logic (Lafont 2004) and bounded linear
logic (Dal Lago & Hofmann 2010) characterize complexity classes, but only deterministic,
sequential and equal to P (polytime) or above. New directions have recently been explored
to characterize other complexity classes: SBAL (Schöpp 2007) characterizes L (logarith-
mic space), boolean proof nets (Aubert 2011, Terui 2004), was the first success toward a
characterization of parallel classes.

1 This work was partly supported by the ANR-10-BLAN-0213 Logoi, the ANR-08-BLAN-0211-01 Complice and
the GDR-IM’s ‘visiting PhD student’ Program.

mailto:aubert@lipn.fr
mailto:seiller@ihes.fr


C. Aubert and T. Seiller 2

All those attempts belong to the field of implicit computational complexity (ICC). One
of the main advantages of the ICC approach is that it does not refer to a particular model
or an external measuring condition. We only have to consider language restrictions (for
instance by limiting the primitive recursion) or to infer the complexity properties of a pro-
gram, for instance with techniques like quasi-interpretations. Linear logic offers a particu-
larly nice framework to study complexity questions since the decomposition of implication
into a linear implication and a duplication modality allows some fine tuning of the rules
that govern the latter. All the previously quoted attempts are implicit characterization
of complexity classes, as those logical system rest on the limitation of the computational
power of LL. Next to the restrictions of recursion and the rewriting system with quasi-
interpretation, this approach exhibits several interesting results as there is no need to
perform the computation to know the space or time needed.

The geometry of interaction program (Girard 1989b) was introduced by Girard a few
years after the introduction of LL. In a first approximation, it aims at giving an interpre-
tation of proofs –or programs– that accounts for the dynamics of cut-elimination, hence
of computation. Since the introduction of this program Girard proposed several construc-
tions1 to fulfill this program (Girard 1989a, Girard 1989b, Girard 2011). Due to the fact
that they are centered around the notion of computation, these constructions are particu-
larly adapted to study computational complexity (Baillot & Pedicini 2001, Dal Lago 2005).

The approach studied in this paper, which was proposed recently by Girard, differs from
the previous works on complexity. Indeed, though it uses the tools of Girard’s geometry of
interaction in the hyperfinite factor (Girard 2011), its relation to the latter is restricted
to the representation of integers which is, in this particular setting, uniform2: each in-
teger is represented as an operator Nn in the hyperfinite type II1 factor R. By using an
operator-theoretic construction —the crossed product— it is possible to internalize some
isomorphisms acting on R. These internalized isomorphisms can be understood as sort
of ‘basic instructions’ one can use to define a sort of abstract machine. Such an abstract
machine is thus an operator constructed using these basic instructions: the operators in
the algebra generated by the internalizations of the isomorphisms. One can then define
the language accepted by such an operator φ: the set of natural numbers such that the
product φNn is nilpotent. We will only refer to co-NL and won’t use the famous result
that it is equal to NL (Immerman 1988, Szelepcsényi 1987), because it is more natural to
think of our framework as capturing complementary of complexity classes.

In this paper, we present in detail a first result obtained from this approach: considering
the group of finite permutations of the natural numbers, we can obtain a characterization
of the complexity class co-NL. To ease the presentation and proofs of the result, we will
introduce non-deterministic pointer machines, which are a new characterization of co-NL

in terms of abstract machines.

1 The interested reader can find a more unifying approach in the second author’s ‘Interaction Graphs’ (Seiller
2012a).

2 All (size of) inputs are represented as object in a unique space, whereas the naive GoI interpretation of
integers as matrices (see Section 2) would yield matrices of varying sizes, hence not all elements of a single
algebra.



Characterizing co-NL by a group action 3

Outline

We start (Section 2) by explaining in detail, with numerous examples, how the proofs rep-
resenting binary integers are represented by graphs in the setting of Geometry of Interac-
tion, graphs that can be then seen as matrices. Computation will then be represented by
the computation of the iterated products of a matrix PN where N is a matrix representing
an integer and P is a matrix representing the program. The nilpotency of this product will
represent the fact that the integer represented by N is accepted by the program repre-
sented by P.

But the representation of an integer as a matrix is non-uniform: the size of the matrix
depends on the integer considered. Since we want the representations of programs to be
able to handle any size of input, we embed the matrices representing integers into the
hyperfinite factor, whose definition is recalled in Section 3. Operators that represent pro-
grams are constructed from finite permutations, which can be internalized –represented
as operators– using the crossed product construction. This allows them to perform some
very simple operations on the input. Namely, they will be able to cope with several copies
of the input and to scan them independently. However, since the representation of integers
in the hyperfinite factor is not unique, one needs the notion of normative pair (Subsection
4.2) to guarantee that a program is insensitive to the chosen representation of the integer.

We next introduce, in Section 5, a notion of abstract machines – non-deterministic
pointer machines (NDPM) – well suited to be represented by operators. This model is very
close to multi-head finite automata, a classical characterization of logspace computation,
but we begin this section by presenting its specificities. We then prove that NDPMs can
recognize any set in co-NL by providing an example of a co-NL-complete problem solved
by a NDPM and a mechanism of reduction between problems.

We then define (Section 6) an encoding of NDPMs as a certain kind of operators –named
boolean operators, which proves that co-NL is contained in the set of languages accepted
by such operators. To show the converse, we first show that checking the nilpotency of a
product PN in the hyperfinite factor, where P is a boolean operator and N represents an
integer, is equivalent to checking that a certain matrix is nilpotent (this rest on the quite
technical Lemma 31). Finally, we can show that deciding if this matrix is nilpotent is in
co-NL.

2. Binary Integers

In this paper, we will be working with binary integers. In this section, we will explain
how it is possible to represent these integers by matrices. As it turns out, representation
by matrices is not satisfactory, and it will be necessary to represent integers by operators
acting on an infinite-dimensional (separable) Hilbert space, as it will be done in Section 4.

In intuitionistic logic, binary lists are typed with ∀X (X ⇒ X ) ⇒ ((X ⇒ X ) ⇒ (X ⇒ X )).
In ELL, the type of binary lists is:

∀X !(X ⊸ X )⊸ (!(X ⊸ X )⊸ !(X ⊸ X ))



C. Aubert and T. Seiller 4

To a binary integer3 corresponds a proof of the sequent ⊢ ?(X ⊗ X‹),?(X ⊗ X‹), !(X ⊸ X ).
One can easily read from a proof of this sequent the binary list it represents by looking
at the occurences of contraction (and in some cases, weakening) rules. We develop below
three examples: the empty list ⋆, the lists ⋆0 and ⋆110. In these examples, we labeled
the variables in order to distinguish between the different occurrences of the variable X .
This is necessary because we need to keep track of which formulas are principal in the
contraction rule. This distinction, which by the way appears in geometry of interaction,
is crucial since it may be the only difference between the proofs corresponding to two
different binary lists. For instance, without this information, the proofs representing ⋆110
and ⋆010 would be exactly the same4.

To each sequent calculus proof, we associate a graph which represents the axiom links
in the sequent calculus proof. The vertices are arranged as a table where the different
occurrences of the variables in the conclusion are represented on a horizontal scale, and a
number of slices are represented on a vertical scale: the contraction is represented in ge-
ometry of interaction by a superimposition which is dealt with by introducing new copies of
the occurrences using the notion of slices. In previous works (Seiller 2012b, Seiller 2012a),
one of the authors showed how to obtain a combinatorial version of (a fragment) of Gi-
rard’s geometry of interaction in the hyperfinite factor. Though the graphs shown here are
more complex than the ones considered in these papers (in particular, the edges may go
from one slice to another), they correspond exactly to the representation of binary lists in
Girard’s framework5.

• The proof representing the empty list ⋆ uses the weakening rule twice:

ax

⊢ X (S)‹, X (E)
`

⊢ X (S)⊸ X (E)
!

⊢ !(X (S)⊸ X (E))
?w

⊢ ?(X (0i)⊗ X (0o)‹), !(X (S)⊸ X (E))
?w

⊢ ?(X (0i)⊗ X (0o)‹),?(X (1i)⊗ X (1o)‹), !(X (S)⊸ X (E))
`

⊢ ?(X (0i)‹ ⊸ X (0o)‹),?(X (1i)⊗ X (1o)‹), !(X (S)⊸ X (E))
`

⊢ ?(X (0i)‹ ⊸ X (0o)‹),?(X (1i)‹ ⊸ X (1o)‹), !(X (S)⊸ X (E))
`

⊢ ?(X (0i)‹ ⊸ X (0o)‹), (!(X (1i)⊸ X (1o))⊸ (!(X (S)⊸ X (E))))
`

⊢ (!(X (0i)⊸ X (0o))⊸ ((!(X (1i)⊸ X (1o))⊸ (!(X (S)⊸ X (E)))))
∀

⊢∀X (!(X (0i)⊸ X (0o))⊸ (!(X (1i)⊸ X (1o))⊸ !(X (S)⊸ X (E))))

We will use a double line in the following to ignore the bureaucracy of introducing all
the `. The corresponding graph is:

(0o,0) (0i,0) (1o,0) (1i,0) (S,0) (E,0)

3 As binary lists trivially represent binary integers, we may focus on binary integers for free.
4 Or more precisely, they would be indistinguishable. This is consequence of the fact that the contraction rule

in sequent calculus does not distinguish which formulas it is contracting, even though it should in order to be
correctly defined. For instance, there are more than one proof of ⊢ A, A obtained from ⊢ A, A, A by means of
a contraction rule, but even though these are different, they are indistinguishable with the usual syntax of
sequent calculus.

5 For more details, one may consult Seiller’s PhD Thesis (2012c).



Characterizing co-NL by a group action 5

• The proof representing the list ⋆0 (resp. ⋆1) uses a weakening to introduce X (1i) ⊸
X (1o) (resp. X (0i)⊸ X (0o)):

ax

⊢ X (S)‹, X (0i)
ax

⊢ X (0o)‹, X (E)
⊗

⊢ X (0i)⊗ X (0o)‹, X (S)‹, X (E)
`

⊢ X (0i)⊗ X (0o)‹, X (S)⊸ X (E)
!

⊢ ?(X (0i)⊗ X (0o)‹), !(X (S)⊸ X (E))
?w

⊢ ?(X (0i)⊗ X (0o)‹),?(X (1i)⊗ X (1o)‹), !(X (S)⊸ X (E))

⊢ !(X (0i)⊸ X (0o))⊸ (!(X (1i)⊸ X (1o))⊸ !(X (S)⊸ X (E)))
∀

⊢∀X !(X (0i)⊸ X (0o))⊸ (!(X (1i)⊸ X (1o))⊸ !(X (S)⊸ X (E)))

The corresponding graph is:

(0o,0) (0i,0) (1o,0) (1i,0) (S,0) (E,0)

(0o,1) (0i,1) (1o,1) (1i,1) (S,1) (E,1)

• The proof representing the list ⋆110 contracts the occurrences X (Ai)⊗ X (Ao)‹ and
X (1i)⊗ X (1o)‹, in bold below:

ax

⊢ X (0i), X (E)‹
ax

⊢ X (1i), X (0o)‹
⊗

⊢ X (0i)⊗ X (0o)‹, X (1i), X (E)‹
ax

⊢ X (Ai), X (1o)‹
⊗

⊢ X (0i)⊗ X (0o)‹, X (1i)⊗ X (1o)‹, X (Ai), X (E)‹
ax

⊢ X (S), X (Ao)‹
⊗

⊢ X (0i)⊗ X (0o)‹, X (1i)⊗ X (1o)‹, X (Ai)⊗ X (Ao)‹, X (S), X (E)‹
`

⊢ X (0i)⊗ X (0o)‹, X (1i)⊗ X (1o)‹, X (Ai)⊗ X (Ao)‹, X (S)⊸ X (E)
!

⊢ ?(X (0i)⊗ X (0o)‹),?(X(1i)⊗X(1o)‹,?(X(Ai)⊗X(Ao)‹, !(X (S)⊸ X (E))
?c

⊢ ?(X (0i)⊗ X (0o)‹),?(X(1i)⊗X(1o)‹), !(X (S)⊸ X (E))

⊢∀X !(X (0i)⊸ X (0o))⊸ (!(X (1i)⊸ X (1o))⊸ !(X (S)⊸ X (E)))

The corresponding graph is:

(0o,0) (0i,0) (1o,0) (1i,0) (S,0) (E,0)

(0o,1) (0i,1) (1o,1) (1i,1) (S,1) (E,1)

(0o,2) (0i,2) (1o,2) (1i,2) (S,2) (E,2)

(0o,3) (0i,3) (1o,3) (1i,3) (S,3) (E,3)

The edges of the graph describe the scanning of the list. We illustrate this by explaining
how to construct the graph corresponding to the list ⋆11010. Indeed, the graph can be
described directly from the list itself:



C. Aubert and T. Seiller 6

⋆ •
S

•
E

0

1 •
o

•
i

5

1 •
o

•
i

4

0 •
o

•
i

3

1 •
o

•
i

2

0 •
o

•
i

1

Each element of the list lives in a different slice —the integer shown above each element
of the list. Moreover, each element is connected by its output vertex to its successor’s input
vertex (the successor of the last element is ⋆), and by its input vertex to its predecessor’s
output node. This gives the following graph, which is the representation of ⋆11010:

(0o,0) (0i,0) (1o,0) (1i,0) (S,0) (E,0)

(0o,1) (0i,1) (1o,1) (1i,1) (S,1) (E,1)

(0o,2) (0i,2) (1o,2) (1i,2) (S,2) (E,2)

(0o,3) (0i,3) (1o,3) (1i,3) (S,3) (E,3)

(0o,4) (0i,4) (1o,4) (1i,4) (S,4) (E,4)

(0o,5) (0i,5) (1o,5) (1i,5) (S,5) (E,5)

Definition 1 (Matricial representation of a list). Given a binary representation of an
integer n =⋆a1, . . . ,ak of size k 6= 06 and its corresponding graph Gn, n is represented by
Mn, a 6×6 block matrix of the following form:

Mn =

0
︷ ︸︸ ︷

1
︷ ︸︸ ︷

∗
︷ ︸︸ ︷























0 l00 0 l10 s0 0
}

0
l∗00 0 l∗01 0 0 e∗0
0 l01 0 l11 s1 0

}

1
l∗10 0 l∗11 0 0 e∗1
s∗0 0 s∗1 0 0 0

}

∗
0 e0 0 e1 0 0

where coefficients are (k+1)× (k+1) matrices (the (·)∗ denotes the conjugate-transpose)
defined – for u,v ∈ {0,1} – by:

6 We will always assume in the following that the length of the binary integer representing the integer n under
study is denoted by k.



Characterizing co-NL by a group action 7

— (luv)a,b = 1 if there is an edge in Gn from (uo,a) to (vi,b), and (luv)a,b = 0 otherwise;
— (eu)0,n = 1 if there is an edge from (uo,n) to (E,0), and (eu)a,b = 0 otherwise;
— (sv)0,n = 1 if there is an edge from (vo,n) to (S,0), and (sv)a,b = 0 otherwise.

One can simply make sure that no information is lost, the graph Gn – and by transitivity
the input n – is totally and faithfully encoded in Mn.

This representation of binary integers is however non-uniform: the size of the matrix
depends on the size of the binary representation. This is where the use of von Neumann
algebras takes its importance: any matrix algebra can be embedded in the type II1 hy-
perfinite factor R. To get a uniform representation of integers, we therefore only need to
embed the matricial representation in R. Before explaining this step in Section 4, we re-
view in the next section some basics of the theory of von Neumann algebras. The aim of
this section is not to introduce the reader to the theory which is much too rich to be con-
densed here, but to give some ideas and intuitions on it. In the end of the next section, we
introduce the crossed product construction, an operation which will be fundamental in the
subsequent sections.

3. Von Neumann Algebras and Crossed Products

This section aims at giving a quick overview of the theory of von Neumann algebras. Most
of the material it contains is not needed for understanding the results that follow, and
the reader can skip this section for a first reading. Section 4 uses the fact that we are
working in the type II1 hyperfinite factor, but the only results it uses is the fact that any
matrix algebra can be embedded in a type II1 factor (Proposition 2), the definition of the
crossed product algebra (Definition 5) and some properties of unitary operators acting on
a Hilbert space. The remaining sections of the paper do not use results of the theory of
operator algebras, except for the last section which contains a technical lemma (Lemma
31) whose proof essentially relies on Theorem 6.

3.1. Hilbert Spaces and Operators

We consider the reader familiar with the notions of Hilbert spaces and operators (contin-
uous —or equivalently bounded— linear maps between Hilbert spaces). We refer to the
classic textbooks of Conway (1990) for the bases of the theory, and of Murphy (1990) for an
excellent introduction to the theory of operator algebras. We will not dwell on the defini-
tions and properties of von Neumann algebras, factors, and hyperfiniteness. We believe all
these notions, though used in this paper and in Girard’s, are not at the core of the charac-
terization, and will not play an important rôle in the following construction. We therefore
refer to the series of Takesaki (2001, 2003a, 2003b). A quick overview of the needed mate-
rial can also be found in the appendix of a paper by one the authors (Seiller 2012b).

We recall that an operator T is a linear map from H —a Hilbert space— to H that is
continuous. A standard result tells us that this is equivalent to T being bounded, i.e. that
there exists a constant C such that for all ξ ∈H, ‖Tξ‖ É C‖ξ‖. The smallest such constant
defines a norm on L (H) —the set of operators on H—which we will denote by ‖T‖.



C. Aubert and T. Seiller 8

Being given an operator T in L (H), we can show the existence of its adjoint —denoted
by T∗—, the operator that satisfies <Tξ,η> = <ξ,T∗η> for all ξ,η ∈ H. It is easily shown
that T∗∗ = T, i.e. that (·)∗ is an involution, and that it satisfies the following conditions:

1 For all λ ∈C and T ∈L (H), (λT)∗ = λ̄T∗;
2 For all S,T ∈L (H), (S+T)∗ = S∗+T∗;
3 For all S,T ∈L (H), (ST)∗ = T∗S∗.

In a Hilbert space H there are two natural topologies, the topology induced by the norm
on H, and a weaker topology defined by the inner product.

1 The strong topology: we say a sequence {ξi}i∈N converges strongly to 0 when ‖ξi‖→ 0.
2 The weak topology: a sequence {ξi}i∈N converges weakly to 0 when <ξi,η>→ 0 for all
η ∈L (H). Weak convergence is thus a point-wise or direction-wise convergence.

On L (H), numerous topologies can be defined, each of which having its own advantages
and drawbacks. The five most important topologies are the norm topology, the strong oper-
ator topology, the weak operator topology, the ultra-strong (or σ-strong) topology and the
ultra-weak (or σ-weak) topology. We can easily characterize the first three topologies in
terms of converging sequences as follows:

1 The norm topology: {Ti}i∈N converges (for the norm) to 0 when ‖Ti‖→ 0 ;
2 The strong operator topology, which is induced by the strong topology on H: {Ti}i∈N

converges strongly to 0 when, for any ξ ∈H, Tiξ converges strongly to 0 ;
3 The weak operator topology, which is induced by the weak topology on H: {Ti}i∈N con-

verges weakly to 0 when, for any ξ ∈H, Tiξ converges weakly to 0.

We can show that L (H) is the dual of a space denoted by L (H)∗ containing the trace-
class operators. For further details, the reader may refer to (Murphy 1990) or (Takesaki
2001). We remind here of this result only to define the σ-weak topology: if A is a topological
space and A∗ is its dual, the weak∗ topology on A is defined as the point-wise topology.

3.2. Von Neumann Algebras in a Nutshell

Let H be a Hilbert space, and L (H) be the set of bounded —continuous— linear maps from
H to itself. It is standard knowledge that L (H) is an associative algebra when endowed
with composition and pointwise scalar multiplication and addition. It is moreover a com-
plete normed vector space for the operator norm, defined as ‖u‖ = sup{x ∈H | ‖u(x)‖/‖x‖}.
It is therefore what is called a Banach algebra. On the other hand, it is known that every
element of L (H) has an adjoint operator u∗. This operation (·)∗ is an involution satisfying
(t+ u)∗ = t∗+ u∗, (tu)∗ = u∗t∗, (λu)∗ = λ̄u∗, ‖u∗‖ = ‖u‖, and ‖u∗u‖ = ‖u‖2. A Banach al-
gebra endowed with such an involution is called a C∗-algebra. As it turns out (this is the
famous Gelfand-Naimark-Segal (GNS) construction), any C∗-algebra can be represented
as a norm-closed ∗-subalgebra of L (H) for a Hilbert space H.

A von Neumann algebra K is a C∗-subalgebra of L (H), where H is a Hilbert space,
which is closed for a weaker topology than the norm topology: the strong-operator topology,
which is pointwise convergence on H considered with its norm topology. The first important
result of the theory, obtained by von Neumann, is that this requirement is equivalent to
the requirement that K is closed for the even weaker weak operator topology which is



Characterizing co-NL by a group action 9

pointwise convergence on H considered with its weak topology. It is also equivalent to a
completely algebraic condition which is the fact that K is equal to its bi-commutant: let
us denote K′ —the commutant of K— the set of elements of L (H) which commute with
every element of K, then K′′ denotes the bi-commutant of K, that is the commutant of the
commutant of K.

The study of von Neumann algebras was quickly reduced to the study of factors, that is
von Neumann algebras K whose center —the algebra of elements commuting with every
element of K— is trivial: i.e. von Neumann algebras K such that K∩K′ =C1K. Indeed, any
von Neumann algebra can be decomposed along its center as a direct integral (a continuous
direct sum) of factors. Factors N can then be easily classified by considering their sets of
projections (operators p such that p = p∗ = p2). Two projections p, q are equivalent in N

—denoted by p ∼N q— in the sense of Murray and von Neumann if there exists a partial
isometry u ∈N such that uu∗ = p and u∗u = q. A projection p is infinite in N if there exists
a proper subprojection q < p (where q É p is defined as pq = q, i.e. as the inclusion of the
subspaces corresponding to p and q) such that p ∼N q. A projection is finite when it is not
infinite. The classification of factor is as follows:

— Type I: N contains non-zero finite minimal projections. If the identity of N is the sum
of a finite number —say n— of minimal projections, N is of type In, and if it is not the
case N is of type I∞.

— Type II:N contains finite projections but has no minimal projections. Then if the iden-
tity of N is a finite projection, N is of type II1, and it is of type II∞ otherwise.

— Type III:all the non-zero projections of N are infinite.

A typical example of type In factor is the algebra of n×n matrices. Similarly, a typical
example of type I∞ factor is the algebra L (H) of bounded linear maps from a Hilbert
space H to itself. Examples of type II and type III factors are more difficult to come by,
and are generally constructed as von Neumann algebras defined from groups, or as von
Neumann algebras induced by the (free and ergodic) action of a topological group acting
on a measured space. Both these constructions are particular cases of the crossed product
construction which is defined at the end of this section.

Proposition 2. Any matrix algebra can be embedded in a type II1 factor.

Proof. Let k be an integer, and M denote the algebra of k× k matrices. Let N be a type
II1 factor. One can find in N a family π1, . . . ,πk of projections such that

∑k
i=1πi = 1 and

which are equivalent in the sense of Murray and von Neumann, i.e. there exists partial
isometries (ui, j)1Éi< jÉk such that ui, ju∗

i, j = πi and u∗
i, jui, j = π j. We will denote by u j,i the

partial isometry u∗
i, j and by ui,i the projection πi. We can then define an embedding Ψ of

M into N as follows:

(ai, j)1Éi, jÉk 7→
∑

i, j
ai, jui, j

One can then easily check that Ψ is a ∗-algebra injective morphism.

Among von Neumann algebras, the approximately finite dimensional ones are of par-
ticular interest, and are usually called hyperfinite. These are algebras in which every



C. Aubert and T. Seiller 10

operator can be approximated (in the sense of the σ-weak topology7) by a sequence of
finite-dimensional operators (elements of type In factors, for n ∈N). In particular, the type
II1 hyperfinite factor is unique up to isomorphism (in fact, hyperfinite factors of almost all
types are unique).

The definition we gave of von Neumann algebras is a concrete definition, i.e. as an
algebra of operators acting on a Hilbert space. It turns out that von Neumann algebras
can be defined abstractly as C∗-algebras that are the dual space of a Banach space. In the
next subsection, and more generally in this paper, the term ‘von Neumann algebra’ will
have the meaning of ‘abstract von Neumann algebra’.

3.3. von Neumann Algebras and Groups

Definition 3 (Representations). Let K be a von Neumann algebra. A couple (H,ρ) where
H is a Hilbert space and ρ is a ∗-homomorphism from K to L (H) is a representation of K.
If ρ is injective, we say the representation is faithful.

Among the numerous representations of a von Neumann algebra, one can prove the
existence (Haagerup 1975) of the so-called standard representation, a representation sat-
isfying several important properties.

The operation that will be of interest to us will be that of taking the crossed product of
an algebra and a group. This operation is closely related to that of semi-direct product of
groups and is a way of internalizing automorphisms. Given an algebra A and a group G of
automorphisms of A, we construct the algebra A⋊G generated by the elements of A and
the elements of G.

Definition 4. An action of a topological group G on a von Neumann algebra K is a contin-
uous homomorphism of G into Aut(K).

Definition 5 (Crossed product (representations)). Let (H,ρ) be a representation of a von
Neumann algebra K, G a locally compact group, and α an action of G on K. Let K= L2(G,H)
be the Hilbert space of square-summable H-valued functions on G. We define representa-
tions πα of K and λ of G on K as follows

(πα(x).ξ)(g) = (ρ(α(g)−1(x))ξ(g) (x ∈K,ξ ∈K, g ∈G)
(λ(g).ξ)(h) = ξ(g−1h) (g,h ∈G,ξ ∈K)

Then the von Neumann algebra on K generated by πα(K) and λ(G) is called the crossed
product of (H,ρ) by α.

An important fact is that the result of the crossed product does not depend on the chosen
representation of K. The following theorem, which states this fact, will be of use in a
technical lemma at the end of this paper.

Theorem 6 (Unicity of the crossed product (Takesaki 2003a, Theorem 1.7, p. 241)). Let
(H,ρ) and (K,ρ′) be two faithful representations of a von Neumann algebra K, and let G be

7 In a nutshell, the algebra L (H) is the dual of the algebra of trace-class operators. As a dual, it thus inherits
the traditional weak∗ topology, which is called in the context of von Neumann algebras the σ-weak topology.



Characterizing co-NL by a group action 11

a locally compact group together with an action α on K. Then there exists an isomorphism
between the crossed product of (H,ρ) by α and the crossed product of (K,ρ′) by α.

As a consequence, one can define the crossed product of a von Neumann algebra and a
group acting on it by choosing a particular representation. Of course, the natural choice is
to consider the standard representation.

Definition 7 (Crossed product). Let K be a von Neumann algebra, G a group and α an
action of G on K. The algebra K⋊α G is defined as the crossed product of the standard
representation of K by α.

A particular case of crossed product is the crossed product of C by a (trivial) action
of a group G. The resulting algebra is usually called the group von Neumann algebra
N(G) of G. As it turns out, the operation of internalizing automorphisms of algebras (the
crossed product) and the operation of internalizing automorphisms of groups (the semi-
direct product) correspond: the algebra N(G⋊α H) is isomorphic to N(G)⋊α̃ H where α̃ is
the action of H on N(G) induced by the action of H on G.

4. Integers in the Hyperfinite Factor

4.1. Binary Representation

We will embed the (k+1)×(k+1) matrices of Definition 1 in the hyperfinite factor R to have
a uniform representation of the integers: an integer will be represented by an operator in
M6(R) fulfilling some properties. To express them we define, given a sequence ⋆a1 . . .ak

representing an integer n and for j, l ∈ {0,1}, the sets:

In
jl = {1É i É k | ai = j,ai+1 = l}

In
S j = {i = 1 | ai = j}

In
jE = {i = k | ai = j}

Roughly speaking, In
S j (resp. In

jE) tells us about the first (resp. last) bit of n and In
jl is the

set of sequences of a j followed by a l.

Definition 8 (Binary representation of integers). An operator Nn ∈ M6(R) is a binary
representation of an integer n if there exists projections π0,π1, . . . ,πk in R that satisfy
∑k

i=0πi = 1 such that:

Nn =













0 l00 0 l10 lS0 0
l∗00 0 l∗01 0 0 l∗0E
0 l01 0 l11 lS1 0

l∗10 0 l∗11 0 0 l∗1E
l∗S0 0 l∗S1 0 0 0
0 l0E 0 l1E 0 0













where the coefficients are partial isometries fulfilling the equations (where πk+1 =π0):

l⋆ =
∑

i∈In
⋆

πi+1l⋆πi (⋆ ∈ {00,01,10,11,S0,S1,0E,1E})

π0 = (l0E + l1E)(l00 + l01 + l10 + l11)k−1(lS0 + lS1)



C. Aubert and T. Seiller 12

Proposition 9 (Binary and matricial representations). Given Nn ∈M6(R) a binary rep-
resentation of the integer n, there exists an embedding θ : Mk+1(C) → R such that8 Id⊗

θ(Mn)= Nn, where Mn is the matricial representation of n.

Proof. Let Nn ∈R a binary representation of n ∈ N, and π0, . . . ,πk the associated projec-
tions. Notice that the projections πi are pairwise equivalent.

We now define an embedding θ :Mk+1(C)→R:

θ : (ai, j)0Éi, jÉk 7→

k∑

i=0

k∑

j=0
ai, jui, j

with:

ui, j =







(l00 + l01 + l10 + l11) j−1(lS0 + lS1) if i = 0
(l00 + l01 + l10 + l11) j−1 if i < j and i 6= 0
((l00 + l01 + l10 + l11)i−1(lS0 + lS1))∗ if j = 0
((l00 + l01 + l10 + l11)i−1)∗ if i > j and j 6= 0
πk if i = j = k

We can easily check that the image by Id⊗θ of the matrix Mn representing n is equal to
Nn.

This new representation is a gain in terms of uniformity, as all the integers are repre-
sented by matrices of the same size. But at the same time, as any embedding θ :Mk+1(C)→
R define a representation of the integers, we have to check that they all are equivalent
(Proposition 10) and to define (Definition 11) a framework where the representation of the
integers and the programs can interact as expected.

Proposition 10 (Equivalence of binary representations). Given Nn and N ′
n two binary

representations of n ∈N, there exists a unitary u ∈R such that (Id⊗u)Nn(Id⊗u)∗ = N ′
n.

Proof. Let π0, . . . ,πn (resp. ν0, . . . ,νn) be the projections and l⋆ (resp. l′⋆) the partial isome-
tries associated to Nn (resp. N ′

n). It is straightforward that π0 and ν0 are equivalent ac-
cording to Murray and von Neumann definition, so there exists a partial isometry v such
that vv∗ = ν0 and v∗v =π0. For all 0É i É n we define the partial isometries:

vi = ((l′00 + l′01 + l′10 + l′11)i−1(l′S0 + l′S1))v((l00 + l01 + l10 + l11)i−1(lS0 + lS1))∗

We can easily check that:

viv
∗
i = νi

v∗i vi = πi

It follows that the sum u =
∑n

i=0 vi is a unitary and (Id⊗u)Nn(Id⊗u)∗ = N ′
n.

8 We denote by Id the identity matrix of M6(C). We will allow ourselves the same abuse of notation in the
following statements and proofs in order to simplify the formulas.



Characterizing co-NL by a group action 13

4.2. Normative Pairs

The notion of normative pair, a pair of two subalgebras (N,O), was defined by Girard
(Girard 2012) in order to describe the situations in which an operator in O acts uniformly
on the set of all representations of a given integer in N. Indeed, as we just explained,
we no longer have uniqueness of the representation of integers. An operator represent-
ing a kind of abstract machine should therefore interact in the same way with different
representations of the same integer.

The notion of normative pair therefore depends on the notion of interaction one is con-
sidering. The interaction used by Girard was based on Fuglede-Kadison determinant9. As
a matter of fact, Girard defines his interaction with the determinant but actually uses
nilpotency in his proofs. In order to give more flexibility to the definitions, we chose to
work with an interaction based on nilpotency, which represents the fact the computation
ends. This change in definition does not modify the fact that one can characterize co-NL,
but allows one to consider a broader class of groups10, and a broader class of languages11.

Definition 11 (Normative Pairs). Let N and O be two subalgebras of a von Neumann
algebra K. The pair (N,O) is a normative pair (in K) if:

— N is isomorphic to R;

— For all Φ ∈M6(O) and Nn, N ′
n ∈M6(N) two binary representations of n,

ΦNn is nilpotent⇔ΦN ′
n is nilpotent

Proposition 12. Let S be a set and for all s ∈ S, Ns =R. For all group G and all action α

of G on S, the algebra K= (
⊗

s∈S Ns)⋊α̂G – where α̂ denotes the action induced by α on the
tensor product – contains a subalgebra generated by G that we will denote G. Then for all
s ∈ S, the pair (Ns,G) is a normative pair (in K).

Proof. From the hypotheses, Ns is isomorphic to R. Regarding the second condition, we
will only show one implication, the other being obtained by symmetry. By Lemma 10,
there exists a unitary u such that (Id⊗u)Nn(Id⊗u)∗ = N ′

n. We define v =
⊗

s∈S u and πv

the unitary in K induced by v. Then πv commutes with the elements of G, so if there exists
d ∈N such that (φNn)d = 0, then (φN ′

n)d = (φuNnu∗)d = (uφNnu∗)d = u(φNn)du∗ = 0.

Definition 13 (Observations). Let (N,G) be a normative pair. An observation is an oper-
ator in M6(G)⊗Q, where Q is a matrix algebra, i.e. Q=Ms(C) for an integer s, called the
algebra of states.

9 A generalization of the usual determinant of matrices that can be defined in a type II1 factor.
10 The use of the determinant forces Girard to consider only amenable groups, so that the result of the crossed

product in Proposition 12 yields the type II1 hyperfinite factor.
11 In this paper and in Girard’s, we consider languages obtained from finite positive linear combinations of

unitaries induced by the group elements. The positivity of the coefficients is needed so that the condition
involving the determinant implies the nilpotency. However, these conditions are no longer equivalent if one
allows negative coeficients. As a consequence, this new definition of normative pair extends the number of
languages that can be defined.



C. Aubert and T. Seiller 14

Definition 14. Let (N,G) be a normative pair, and φ an observation. We define the set of
natural numbers:

[φ]= {n ∈N | φNn is nilpotent, Nn a binary representation of n}

Definition 15. Let(N0,G) be a normative pair and X ⊂ ∪∞
i=1M6(G)⊗Mi(C) be a set of

observations. We define the language decided by X as the set:

{X }= {[φ] | φ ∈ X }

Corollary 16. Let S be the group of finite permutations over N, and for all n ∈N, Nn =R.
Then (N0,G) is a normative pair in (

⊗

n∈NNn)⋊α̂S.

In this particular case, the algebra (
⊗

n∈NNn)⋊α̂S is the type II1 hyperfinite factor.
This is one of the reason why Girard considered it, as it is then possible to use Fuglede-
Kadison determinant. From now on, we will consider this normative pair fixed, and we
will study two sets of observations.

Definition 17 (PÊ0 and P+). An observation (φi, j)0Éi, jÉ6s ∈M6(G)⊗Ms(C) is said to be
positive (resp. boolean) when for all i, j, φi, j is a positive finite linear combination (resp. a
finite sum) of unitaries induced by elements of S, i.e. φi, j =

∑

k∈I i, j
αk

i, jλ(σk
i, j) with αk

i, j Ê 0

(resp. αk
i, j = 1).

We then define the following sets of observations:

PÊ0 = {φ | φ is a positive observation}

P+ = {φ | φ is a boolean observation}

It is not clear at this point how a program could be expressed as an observation. In the
next section, we will introduce a notion of abstract machines which is well suited to be
represented as an observation. We will then show how one can define an observation that
simulates such a machine.

5. Non-Deterministic Pointer Machines

We define in this section the notion of non-deterministic pointer machines (NDPM), an ab-
stract device really close to the multi-head finite automata (Rosenberg 1966), well known
to characterize logspace computation. The two have in common the fact that they may
only move a fixed number of pointers, read the pointed values and according to their (non-
deterministic) transition function change the position of the pointers and their state.

However, we felt it necessary to introduce this model of computation because it has
several peculiarities that will help encode them as operators:

— It is ‘universally non-deterministic’: if one branch of computation rejects, the whole
computation rejects. It is convenient because acceptance is represented as the nilpo-
tency of an operator.

— Acceptance and rejection are in the codomain of the transition function, and not states,
because we want the computation to stop or to loop immediately, and not to have to
define the ‘last movement’ of the pointers.



Characterizing co-NL by a group action 15

— The alphabet is fixed to {0,1,⋆}, because these are the only values encoded in the binary
representation of the integers.

— Its input is circular, because in the binary representation we can access both the last
and first bits of the integer from the symbol ⋆.

— The ‘initial configuration’ (in fact, the pseudo-configuration, defined below) is a param-
eter that will be used to make the operator loop properly.

— The values are read and stored only when the pointer move, because before the com-
putation starts, the operator cannot access the input.

— If the transition relation is not defined for the current situation, the NDPM accepts,
because that’s the way the operator will behave. So acceptation is the ‘default’ behav-
ior, whereas rejection is meaningfull. We could equivalently have forced the relation
transition to be total.

Moreover, we will prove in the following that NDPMs can be modified to always halt, and
to move at most one pointer at a time.

This device may remind of the programming language PURPLE (Hofmann & Schöpp
2009) as we cannot remember any value nor access the address of the pointers, and it
may be interesting to study the relations between the latter and our machines. However,
since this paper is focused on the study of a non-deterministic framework12, we postpone
this question to a future work dealing with deterministic complexity classes. Here, we will
focus on proving that NDPMs can recognize any co-NL set.

A pointer machine is given by a set of pointers that can move back and forth on the
input tape and read (but not write) the values it contains, together with a set of states. For
1 É i É p, given a pointer pi, only one of three different instructions can be performed at
each step:

pi+, i.e. ‘move one step forward’,
pi−, i.e. ‘move one step backward’,

ǫi, i.e. ‘do not move’

We define the set of instructions I{1,...,p} = {pi+, pi−,ǫi | i ∈ {1, . . . , p}}. We will denote by
♯pi the value of the pointer (the address it points at), that is the number of cells clockwise
between ⋆ and the bit pointed by pi, i.e. the distance between ⋆ and the bit pointed. Note
that the alphabet Σ is fixed to {0,1,⋆}.

Definition 18. A non-deterministic pointer machine with p ∈ N∗ pointers is a pair M =

(Q,→) where Q is the set of states and →⊆ ({0,1,⋆}p×Q)×((I p
{1,...,p}×Q)∪{accept, reject})

is the transition relation. We write NDPM(p) the set of NDPMs with p pointers.

We define a pseudo-configuration c of M ∈NDPM(p) as a ‘partial snapshot’: an element
in {0,1,⋆}p ×Q that contains the last values read by the p pointers and the current state,
but does not contain the addresses of the p pointers. The set of pseudo-configurations of a
machine M is written CM and it is the domain of the transition relation.

Let M ∈NDPM(p), c ∈ CM and n ∈N an input. We define Mc(n) as M with n encoded as
a string on its circular input tape (as ⋆a1 . . .ak for a1 . . .ak the binary encoding of n and

12 Since the writing of this paper, an article dealing with a non-deterministic variant of PURPLE has been
published (Hofmann, Ramyaa & Schöpp 2013).



C. Aubert and T. Seiller 16

ak+1 = a0 = ⋆) starting in the pseudo-configuration c with ♯pi = 0 for all 1 É i É p (that
is, the pointers are initialized with the address of the symbol ⋆). The pointers may be
considered as variables that have been declared but not initialized yet. They are associated
with memory slots that store the values and are updated only when the pointer moves, so
as the pointers did not moved yet, those memory slots haven’t been initialized. The initial
pseudo-configuration c initializes those p registers, not necessarily in a faithful way (it
may not reflect the values contained at ♯pi). The entry n is accepted (resp. rejected) by
M with initial pseudo-configuration c ∈ CM if after a finite number of transitions every
branch of Mc(n) reaches accept (resp. at least a branch of M reaches reject). We say that
Mc(n) halts if it accepts or rejects n and that M decides a set S if there exists an initial
pseudo-configuration c ∈ CM such that Mc(n) accepts if and only if n ∈ S. We write L (M)
the set decided by M.

Definition 19. Let {NDPM} be the class of sets S such that there exists a NDPM that
decides S.

One movement at a time We can prove that for all M ∈ NDPM(p) there exists M ∈

NDPM(p) such that for all σ1, . . . ,σp,q →′ p1, . . . , pp,q′ at most one instruction among
p1, . . . , pp differs from ǫi —stated informally, such that no more than one pointer moves
at every transition— and such that L (M) = L (M′). The number of states of M′ and the
number of transitions needed by M′ to decide the same set increase, but that does not
affect our machine in terms of complexity as the number of transitions and the cardinality
of Q will not be measures of the complexity of our machines.

Shorthands We use the symbol ∗ for any symbol among {0,1,⋆}, 0/1 for ‘0 or 1’. For
instance (∗,0,q)→ (ǫ1, p2+,q′) will be a shorthand for

(0,0,q) → (ǫ1, p2+,q′)

(1,0,q) → (ǫ1, p2+,q′)

(⋆,0,q) → (ǫ1, p2+,q′)

Sensing pointers We can easily mimic ‘sensing pointers’, i.e. answer the question ‘Is
♯p1 = ♯p2?’, by the help of the following routine, which need a third pointer p3 with ♯p3 = 0.
At every transition, p1 and p2 move one square left and p3 moves one square right. Two
cases arise:

— p1 and p2 reach ⋆ after the same transition,

— p1 (or p2) reaches ⋆ whereas the other pointer is not reading ⋆.

According to the situation, we encode that they were at the same position or not in the
state. Then p1 and p2 moves at each transition one square right, p3 moves at each tran-
sition one square left, and when ♯p3 = 0, we resume the computation. We can easily check
that p1 and p2 are back to their initial position, and now we can retrieve from the state if
they were at the same position or not, i.e. if we had ♯p1 = ♯p2. Notice moreover that p3 is
back to ⋆ and ready to be used for another comparison.



Characterizing co-NL by a group action 17

To express any number It is possible to express a distance superior to the size k of the
input to a routine: j pointers can represent a distance up to k j. Every time the i-th pointer
made a round-trip (that is, is back on ⋆), the i+1-th pointer goes one cell right. By acting
like the hands of a clock, the j pointers can encode any integer inferior to k j.

To decode the distance expressed by j pointers p1, . . . , p j, it is sufficient to have j point-
ers p′

1, . . . , p′
j and to move them clockwise until for all 1É i É j, ♯pi = ♯p′

i.

We will for the sake of simplicity consider that any distance O (k j) can be expressed by
a single pointer, even if it may require several pointers to be properly expressed. We make
this idea formal in the proof of Lemma 25, by defining how to implement a clock in any
NDPM.

Pointer arithmetic It is classical pointer arithmetic to prove that with the help of some
additional pointers, NDPMs can compute addition, subtractions, multiplication, division,
logarithm and modulo, i.e. that given two pointers p1 and p2, it is possible to let a third
pointer p3 be at ♯p1+♯p2, ♯p1−♯p2, ♯p1×♯p2, ⌊♯p1/♯p2⌋, ⌈log(♯p1)⌉ or ♯p1 mod ♯p2. Needless
to say, those operations permit to establish bit by bit the binary expression of an integer
encoded by ♯p.

We will only deal with decision problems and ask ourselves what sets can be recognized
in this framework. It turns out that we can recognize any co-NL-set, and to prove it we
will use the most common method13: we will exhibit a NDPM that can solve a co-NL-
complete problem, and define another NDPM that reduce any co-NL problem to this co-

NL-complete problem.

Definition 20 (STConnComp). We define the following problem: ‘given a (directed) graph
encoded as a list of adjacences, accept if and only if there is no path from the source (num-
bered 1) to the target (numbered n) in the graph’. This problem, known as STConnComp

or REACHABILITYComp, is co-NL complete. We define the set

STConnComp= {n ∈N | n does not encode a graph where there is a path from 1 to n}

Proposition 21. STConnComp ∈ {NDPM}

Proof. Given a graph of size n, the input will be encoded as

⋆00 . . .00
︸ ︷︷ ︸

n bits

1

edges going from1
︷ ︸︸ ︷

a110a120 . . .0a1n−10a1n 1 . . . 1

edges going from n
︷ ︸︸ ︷

an10an20 . . .0ann−10ann 1

where (ai j) is the adjacency list, that is to say that ai j = 1 if there is an edge from the
vertex numbered by i to the vertex numbered by j, 0 elsewhere. The boxed bits in the
figure above are ‘separating’ bits, between the coding of n and the list of adjacences, and
between the coding of the edges of source i and the coding of the edges of source i+1.

We define a NDPM M such that Mc(n) with c = {⋆,⋆,⋆,⋆,Init} accepts if and only if n ∈

STConnComp.

13 That can be reminded to the reader in (Arora & Barak 2009), pp. 88–89.



C. Aubert and T. Seiller 18

(⋆,⋆,⋆,⋆,Init)→ (p1+, p2+, p3+, p4+,Init) (1)

(∗,0,∗,∗,Init)→ (ǫ1, p2+, p3+,ǫ4,Init) (2)

(∗,1,∗,∗,Init)→ (ǫ1, p2+,ǫ3,ǫ4,out.edge?) (3)

(∗,0,∗,∗,out.edge?)→ (ǫ1, p2+,ǫ3, p4+,no.edge) (4)

(∗,0,∗,∗,no.edge)→ (ǫ1,ǫ2, p3+,ǫ4,p3.next.node) (5)

(∗,1,∗,∗,no.edge)→ accept (6)

(∗,∗,∗,∗,p3.next.node)→ (ǫ1,ǫ2, p3+,ǫ4,reading.sep.bit) (7)

(∗,∗,0,∗,reading.sep.bit)→ (ǫ1,ǫ, p3+,ǫ4,p3.next.node) (8)

(∗,∗,1,∗,reading.sep.bit)→ (ǫ1, p2+,ǫ3,ǫ4,out.edge?) (9)

(∗,1,∗,∗,out.edge?)→

{

(ǫ1, p2+,ǫ3, p4+,no.edge)

(p1+,ǫ2,ǫ3, p4+,edge.found)
(10)

(∗,∗,∗,1,edge.found)→ reject (11)

(1,∗,∗,0,edge.found)→ accept (12)

(∗,∗,∗,0,edge.found)→ (ǫ1, p2−,ǫ3, p4−,rewind.p2.p4) (13)

(∗,∗,∗,0/1,rewind.p2.p4)→ (ǫ1, p2−,ǫ3, p4−,rewind.p2.p4) (14)

(∗,∗,∗,⋆,rewind.p2.p4)→ (ǫ1, p2−,ǫ3,ǫ4,rewind.p2) (15)

(∗,0/1,∗,∗,rewind.p2)→ (ǫ1, p2−,ǫ3,ǫ4,rewind.p2) (16)

(∗,⋆,∗,∗,rewind.p2)→ (ǫ1, p2+, p3−,ǫ4,exchange.p2.p3.) (17)

(∗,∗,0/1,∗,exchange.p2.p3)→ (ǫ1, p2+, p3−,ǫ4,exchange.p2.p3.) (18)

(∗,∗,⋆,∗,exchange.p2.p3)→ (ǫ1,ǫ2, p3+,ǫ4,get.p3.to.start) (19)

(∗,∗,0,∗,get.p3.to.start)→ (ǫ1,ǫ2, p3+,ǫ4,get.p3.to.start) (20)

(∗,∗,1,∗,get.p3.to.start)→ (ǫ1, p2+,ǫ3,ǫ4,out.edge?) (21)

Figure 1. The transition relation to decide STConnComp

The transition relation of M is presented in the figure 1. Informally, our algorithm goes
as follow:

The pointer p1 counts the size of the path followed. Every time we follow an edge, we
move p1 forward on the string made of n bits (second line of 10). The pointer p2 will scan
the encoding of the outgoing edges of a vertex, ‘followed’ by p3: when p2 is reading ai j

then p3 will be at a j1. If ai j = 1 (premise of 10), a non-deterministic transition takes place:
on one hand we continue to scan the outgoing edges from i, on the other we increment
p1, place p2 at a j1 and p3 at a11. The pointer p4 ‘follows’ p3 on the n first bits, and if p4

reaches a 1 when p2 reads that there is an edge, it means that there is an edge whose
target is n, and so we reject (11). When p2 finishes to browse the adjacency list of an edge,
we accept (6). If p1 reaches a 1 and p4 reads a 0 (premise of 12), it means that we already
followed n edges without ever targeting the vertex n, so we end up accepting. As we know



Characterizing co-NL by a group action 19

that if there is a path from 1 to n then there exists a path of size at most n, Mc(n) will
accept if and only if n ∈STConnComp, elsewhere Mc(n) rejects.

We now adapt the classical logspace-reduction from any problem in NL to STConn.
Given a co-NL-problem Pb, there exists a non-deterministic logspace Turing Machine
M that decides it. To solve Pb is just to establish if there is no transition from the initial
configuration to a rejecting configuration of M, once the computational graph of M is given.
We now make some assumptions on M and prove how a NDPM can output any bit of the
transition graph of M.

Given any set Pb ∈ co-NL, there exists a non-deterministic logspace Turing Machine M
such that M accepts n14 iff n ∈ Pb. We can assume w.l.o.g. that M works on the alphabet
Σ= {0,1}, does not cycle, always halts, has one read-only tape and one read-write working
tape whose precise bound is k× (log(|n|)). Those are classical ‘hacking’ of Turing Machines
that should not surprise the reader. We may also assume that the names of the states are
written in binary, so that for |Q| = q the number of states of M, any state may be written
with ⌈log q⌉ bits. At last, we may assume that the instructions to move the heads are
written with two bits. All those assumptions make clear that M may be entirely described
with a binary string.

We know that M(n) has less than

2(k×(log(|n|)))
× (k× (log(|n|)))× (log(|n|))×⌈log(q)⌉

different configurations. It reflects respectively the content of the working tape, the posi-
tion of the read-write and read-only heads and the state. This is equivalent to 2O (log(|n|)),
so we know there exists a d such that M(n) has less than |n|d different configurations.

Any configuration of M(n) may be described as

01000 . . .010 . . .011
︸ ︷︷ ︸

Position of the read head

Working tape and position of the working head
︷ ︸︸ ︷

σ0σ0 . . .σ0σ1σ0 . . .σ0σ0σ0σ0σ0σ0σ001 . . .10
︸ ︷︷ ︸

state

where the ⌈log(|n|)⌉ first bits encode the position of the reading head in binary, σ corre-
sponds to the bits on the working tape and the bit that follows σ equals 1 iff the working
head is on that cell. The remaining ⌈log(q)⌉ bits express the current state.

This binary string is of length ⌈log(|n|)⌉× (2× (⌈log |n|⌉×k))×⌈log(q)⌉, i.e. there exists a e
such that this string is of length inferior to e× log(|n|)2.

Among all the binary strings of size e× log(|n|)2, some correspond to configurations, and
some do not (for instance because the working head is supposed to be in several places at
the same time) – we will call them ‘phantom configurations’.

The configuration graph of M on input n is simply the graph where configurations are
vertices, and there is an edge between two vertices iff there is a transition in M(n) between
the two corresponding configurations.

Lemma 22 (Pointer-reduction). For all non-deterministic logspace Turing Machine M,

14 Meaning that all branches reach accept after a finite number of transitions.



C. Aubert and T. Seiller 20

there exists a NDPM T such that for all n, given a pointer pd with ♯pd = j, T accepts iff the
j-th bit of the encoding of the computation graph of M on input n is 1, rejects if it is 0.

Proof. Recall we use the encoding of the proof of Proposition 21 to express the encoding of
the configuration graph of M. The NDPM T will act as a ‘transducer’ as follows:

— It computes the number of binary strings of size e× log(|n|)2. This number is bounded
by 2e×log(|n|)2 and we saw previously that a NDPM could express such distances. Then
T compares this value to j : if j is inferior, it rejects, if j is equal, it accepts, elsewhere
it goes on. This reflects the initial bits set to 0 to express in unary the size of the graph.

— Elsewhere T establishes if j corresponds to a ‘separating bit’ and accepts or rejects
accordingly, that can be simply made with the division and modulo operations.

— Elsewhere, j encodes a query regarding the presence or absence of transition between
two configurations a and b. If a = b, there is no need to explore this transition15, and T
rejects. Elsewhere T establishes if there is a transition between a and b, and accepts
or rejects accordingly.

This last point needs to be made more precise: if j > 2e×log(|n|)2 and if j does not correspond
to a ‘separating bit’, it means that the value of j corresponds to the absence or presence
of an edge between two vertices. So there exists a and b such that j = aab. A simple
arithmetic of pointers allows us to retrieve those two values expressed as integers (i.e. as
distances).

Then, they are converted to binary strings: the positions of the read-only heads need a
bit of pointer arithmetic to be obtained and compared, but the rest of the integer just needs
to be compared bitwise. The rest of the binary expression of the vertex encodes directly the
configuration, and as all the transitions make only local changes to them, there is only a
constant number of information to remember.

Every time there is a difference between the binary expression of a and the binary
expression of b, T checks that the difference between them is legal regarding the transition
function of M —that may be encoded in the states of T or may be given as a parameter.

The transducer T also have to check that a and b are not ‘phantom configurations’ and
that j is not ‘too big’, i.e. does not represent a query on vertices that does not exists.

Corollary 23. co-NL⊆ {NDPM}

Proof. Let Pb ∈ co-NL, there exists a non-deterministic logspace Turing machines N that
decides Pb. Suppose given n ∈N, we will compose the NDPM M that solves STConnComp

with the transducer T that computes the graph of N(n).
Every time M has to read a value, it asks T by letting a pointer be on the position j of

the value it wants to know. There is some kind of layer of abstraction in this composition,
for M goes through the input tape without ever reading the actual values, but asks the
values to T, which actually reads n.

We have to make sure that the j of the proof of Proposition 22 can be big enough: what
is the size of the encoding of the graph of N(n)? We encode it as being of size 2e×log(|n|),

15 Because that would imply that there is a transition from a configuration to itself, and so M(n) is stuck in a
loop.



Characterizing co-NL by a group action 21

i.e. we also take ‘phantom configurations’ to be vertices. The encoding of this ‘completed’
graph —for every string of size e× log(|n|) is taken to be one of its vertex, even if it is
not reachable— is of size O (2log(|n|))2, an expression bounded by a power of |n|, so we can
express it.

We can suppose moreover that there is a transition between the ‘phantom configuration’
encoded by 000 . . .001 and the initial configuration, and that there exists a transition be-
tween any rejecting configuration and the ‘phantom configuration’ encoded by111 . . .111.
This allows us to keep the STConnComp algorithm as is, computing only if there is no
path from the vertex 1 to the vertex n.

The transducer T can compute the configuration graph of N(x) bit-by-bit and pass it
to M which solves STConnComp. So M ◦T(n) accepts iff there is no path from 1 to a
rejecting configuration in the graph of N(n), i.e. iff N(n) accepts. Hence Pb ∈NPM.

It turns out that all NDPMs cannot be represented as operators. Indeed, Lemma 29
which establishes the equivalence between NDPMs and operators needs an additional
requirement: acyclicity. However, as we will now show, a language which is decided by a
NDPM is decided by an acyclic NDPM.

Definition 24 (Acyclicity). A NDPM M is said to be acyclic when for all c ∈ CM and all
entry n ∈N, Mc(n) halts.

Lemma 25. For all NDPM M that decides a set S there exists an acyclic NDPM M′ that
decides S.

Proof. To prove this, we need to prove that for all n ∈ N of size |n| and c ∈ CM there exists
a c′ ∈ CM′ such that if Mc(n) does not halt then M′

c′ (n) rejects, and if Mc(n) accepts (resp.
rejects) then M′

c′ (n) accepts (resp. rejects).
We know that the number of configurations of M – with p pointers – is bounded by

|n|p × (3)p × |Q| that is to say bounded by O (|n|d) for d a constant. So we know that if M
does more than O (|n|d) transitions, it will never halt. To obtain M′ we will simply add d+1
pointers that will behave like the hands of a clock. The first one moves forward each time
we make a transition. Each time the i-th one has travelled through the whole input tape,
the i+1-th one moves forward. When the last one is back on the beginning of the input tape,
M′ rejects. It ensures us that M′ – which has appart from that the same computational
behaviour as M – will halt after at most O (|n|d+1) transitions. We set p′ = p+d+1, and
for all q ∈Q, every time we had in M the transition:

(~i,q)→ (~m,q′)

we add to →′∈ M′ the following set of transitions (for p+1É a < p′):

(~i,⋆, . . . ,⋆,q)→′ (~m, pp+1+, . . . , pp′+,q’)

(~i,0/1, . . . ,0/1,q)→′ (~m, pp+1+,ǫp+2, . . . ,ǫp′ ,q’)

(~i,0/1, . . . ,0/1, ia =⋆,0/1, , . . . ,0/1,q)→′ (~m,ǫp+1, . . . ,ǫa−1, pa+, pa+1+,ǫa+2, . . . ,ǫp′ ,q’)

(~i,0/1, . . . ,0/1,⋆,q)→′ reject



C. Aubert and T. Seiller 22

Then, for all c′ = (~i, pp+1, . . . , pp′ ) ∈ CM′ that does not appear on the left-hand side in the
previous set of transitions, we add c′ →′ reject.

For all c = (m1, . . . ,mp,q) ∈ CM we define ct = (m1, . . . ,mp,⋆, . . . ,⋆,q) ∈ CM′ .
Now take a pseudo-configuration c ∈ CM , several cases arise:

— If Mc(n) was halting, it was in less than O (|n|d) transitions so M′

ct (n) will have the
same behavior.

— If Mc(n) was entering a loop, M′

ct (n) rejects after O (|n|d+1) transitions.

However, since we supposed that M was deciding S, we know there exists a pseudo-
configuration s ∈ CM such that for all n ∈ N, Ms(n) halts, hence never enters a loop. As
a result, by considering the pseudo-configuration st we can see that M′ will decide the
set S. Moreover it is clear that for all c′ ∈ CM′ and all n ∈ N, M′

c′ (n) always halt, so M′ is
acyclic.

Definition 26. Let {ANDPM} be the class of sets S such that there exists an acyclic
NDPM that decides S.

Proposition 27.

co-NL⊆ {ANDPM}

Proof. Corollary 23 shows that co-NL ⊆ {NDPM}. Moreover, it is clear that {ANDPM} ⊆

{NDPM} and the preceding lemma shows that {NDPM} ⊆ {ANDPM}. As a consequence,
we have {NDPM}= {ANDPM} and thus co-NL⊆ {ANDPM}.

6. Encoding Non-Deterministic Pointer Machines

6.1. Encoding a Machine

Our aim in this section is to prove (Lemma 29) that for any acyclic NDPM M and pseudo-
configuration c ∈ CM , there exists an observation M•

c ∈M6(G)⊗QM such that for all Nn ∈

M6(N) a binary representation of n, Mc(n) accepts if and only if M•
c(Nn⊗1QM ) is nilpotent.

We will define M•
c as an operator of M6(G)⊗QM , where

QM =M6(C)⊗M6(C)⊗·· ·⊗M6(C)
︸ ︷︷ ︸

p times

⊗Ms(C)

The intuition is that the j-th copy of M6(C) represents a ‘memory block’ that contains the
last value read by the j-th pointer. We will therefore distinguish for each copy of M6(C)
a basis (0o,0i,1o,1i, s, e) corresponding to the different values a pointer can read. The
last algebra in the tensor product represents a set of states: we will distinguish a basis
Q ∪B where Q is the set of states of the machine M and B is an additional set of states
needed for the definition of M•

c . To sum up, the distinguished basis of QM considered will
be denoted by tuples (a1, . . . ,ap,q). Notice that such a tuple naturally corresponds to a
pseudo-configuration when q ∈Q.

As a consequence of the tensoring of Nn with the unit of the algebra of states, the in-
teger is considered at the same time in every possible pseudo-configuration. As a result,
the computation for c a pseudo configuration represented by the sequence M•

c(Nn ⊗1QM ),



Characterizing co-NL by a group action 23

(M•
c(Nn⊗1QM ))2, . . . somehow simulates all the computations Mc(n) simultaneously. How-

ever, the representation of reject cannot be done without considering an initial pseudo-
configuration, something that will be explained in the next subsection.

The main difficulty is now to encode the transition relation. In order to do this, we will
encode each couple (c, t) ∈→ by an operator φc,t. The encoding of the transition relation
will then correspond to the sum:

→
•
=

∑

c∈CM

∑

t s.t. c→t
φc,t

Before explaining the encoding of basic operations, we first define the projections π0o,
π0i, π1o, π1i, πstart, πend of M6(C) as the projections onto the subspace generated by the
distinguished basis. We moreover define π0· = π0i +π0o and π1· = π1o +π1i to identify the
bit currently read without considering if we come from the left (the output of the bit) or
the right (the input of the bit).

For the sake of simplicity, we also define the following operators in QM : if c and c′ are
respectively equal to (a1, . . . ,ap,q) and (a′

1, . . . ,a′
p,q′), we define the partial isometry:

(c → c′)= (a1 → a′
1)⊗·· ·⊗ (ap → a′

p)⊗ (q→q′)

where

(p → p′)=

p

p′













0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . 1 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0













(p ∈ {a1, . . . ,ap,q})
(p′ ∈ {a′

1, . . . ,a′
p,q′})

For S a set of states, we will use the notation (S → a′
i) (denoted (→ a′

i) when S contains
all possible states) for the element that goes from any state in S to a′

i, which is defined as
∑

s∈S(s → a′
i).

A transition that impacts only the values stored in the subset pi1 , . . . , pi l and the state
q will be denoted by

([ai1 → a′
i1

]i1 ; . . . ; [ai l → a′
i l

]i l ;q→q’)= u1 ⊗u2 ⊗·· ·⊗up ⊗ (q→q’)

where ui = (ai j → a′
i j

) if ∃ j, i = i j, ui = Id elsewhere, and q→q′ = Id if q=q′.
We are now ready to define the operators needed to encode the basic operations of the

machine. Considering the von Neumann algebra M6(R)⊗QM as M6(C)⊗R⊗QM , we will
define these operators as tensor products u⊗v⊗w, where u ∈M6(C), v ∈G⊂R and w ∈QM .

6.2. Basic Operations

From now on, we consider given a machine M and a pseudo-configuration c ∈ CM .

6.2.1. Move forward (resp. backward) a pointer, read a value and change state. We want
to encode the action ‘move forward (resp. backward) the pointer j when we are in the



C. Aubert and T. Seiller 24

pseudo-configuration c = (a1, . . . ,ap;q), read the value a′
j stored at ♯p j and change the

pseudo-configuration for c′ = (a1, . . . ,a j−1,a′
j,a j+1, . . . ,ap;q′)’. Although the operators we

are going to define are all parametric in q and q′, those parameters won’t appear in their
name for the sake of readability.

We first define two matrices [out] and [in] that will be used to keep only the values that
comes next, respectively for the forward and backward move:

[out]=













1 1 1 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0













[in]=













0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1













The reader can refer to Definition 8 to see that the application of one of those two matrix
to the input get the desired result.

We then define the operators ←−m j and −→m j, that somehow select the j-th pointer thanks
to the transposition τ0, j that exchanges 0 and j and puts it in the right direction:

←−m j = [out]⊗τ0, j ⊗ (q→move j)
−→m j = [in]⊗τ0, j ⊗ (q→move j)

Notice that we also changed the state to move j. Finally, we define the three operators
that encode the different actions the machine will make according to which of the three
possible values (0, 1, ⋆) the j-th pointer read. Those operators come in two variants, since
in case of a backward move we are going to read the output of a bit, whereas a forward
move leads to the reading of the input of a bit16.

←−−
l j,0 =π0o ⊗τ0, j ⊗ ([→π0o] j;move j →q′)
←−−
l j,1 =π1o ⊗τ0, j ⊗ ([→π1o] j;move j →q′)
←−−
l j,⋆ =π⋆o ⊗τ0, j ⊗ ([→π⋆o] j;move j →q′)

We define
−−→
l j,0,

−−→
l j,1 and

−−→
l j,⋆ in a similar way by substituting i to o in the previous equations.

Those six operators {
←−−
l j,b,

−−→
l j,b | b ∈ {0,1,⋆}} allow to move forward or backward according to

the direction, when the next bit is b and change the state to q′.
To sum up, we encode the backward and forward moves by:

←−m j +
∑

b∈{0,1,⋆}

←−−
l j,b and −→m j +

∑

b∈{0,1,⋆}

−−→
l j,b

6.2.2. Accept. The case of acceptance is especially easy: we want to stop the computation,
so every transition (a1, . . . ,an;q)→ accept will be encoded by 0.

6.2.3. Reject. We want the operator to loop to simulate the reject of the machine. Indeed,
a rejection must ensure that the resulting operator M•

c(Nn ⊗1QM ) will not be nilpotent. A

16 We consider that ⋆o = start and ⋆i = end.



Characterizing co-NL by a group action 25

first naive attempt:

rejectnaive = IdM6(C) ⊗ Id⊗πre ject

shows that it is possible to make the computation loop, as Nd
n 6= 0 for all d ∈N.

((Nn ⊗1Q)IdM6(C) ⊗ Id⊗πre ject)
d
= (Nn ⊗πre ject)

d
= Nd

n ⊗πre ject

However, as →• is built as a sum of the basic operations, rejectnaive appears in it, and so
M•(Nn⊗1QM ) cannot be nilpotent17. This is problematic since we want this operator to be
nilpotent in case of acceptance.

So we have to be a little more clever to insure the operator will loop if and only if the
operator that simulates the reject is reached. To do that, we simply make the operator go
back to the chosen pseudo-configuration c = (a1, . . . ,ap;q0) when it reaches this operator.
In this way, if reject was reached after applying the machine with a pseudo-configuration
c′, we enforce the computation of the machine on c. As a consequence, if the integer was ac-
cepted by the machine in state c, the rejection that corresponds to a computation on c′ will
be temporary: once rejection attained, the computation restarts with pseudo-configuration
c and will therefore halt accepting.

To encode this, we add two states to the machine —back j and move-back j— for each
j = 1, . . . , p, and we define:

rm j = 1⊗τ0, j ⊗ (back j →move-back j)

rr j = π0o +π1o ⊗τ0, j ⊗ ([→π0o +π1o] j;move-back j →back j)

rc j = πstart ⊗τ0, j ⊗ ([→ a j] j;move-back j →back j+1) (1É j < p)

rcp = πstart ⊗τ0,p ⊗ ([→ ap]p;move-backp →q0)

The operator simulating the reject by making the operator loop is then defined as follows:

rejectc =

(
p∑

j=1
rm j + rr j + rc j

)

+ (reject→back0)

Definition 28. Let M be a pointer machine, → its transition relation and c a configura-
tion. The operator M•

c is defined as:

M•
c =→

•
+rejectc

6.3. First Inclusions

Lemma 29. Let M be an acyclic NDPM, c ∈ CM and M•
c the encoding we just defined. For

all n ∈N and every binary representation Nn ∈M6(N0) of n:

Mc(n) accepts⇔ M•
c(Nn ⊗1) is nilpotent

Proof. Let us fix n ∈ N and Nn one of its binary representations. Considering the repre-
sentation of the reject it is clear that if a branch of Mc(n) rejects, the operator M•

c(Nn ⊗1)
will not be nilpotent, so we just have to prove that if Mc(n) accepts then M•

c(Nn ⊗1) is

17 Remember that Nn ⊗1Q = Nn ⊗ Id⊗p
n=1M6(C) ⊗πre ject +Nn ⊗ Id⊗p

n=1M6(C) ⊗ (1−πre ject).



C. Aubert and T. Seiller 26

nilpotent. We prove its reciprocal: let’s suppose M•
c(Nn⊗1) is not nilpotent. In this product

Nn is given to the operator M•
c that starts the simulation of the computation of M with

input n in every possible pseudo-configuration at the same time. Since the encoding of M
takes in argument a pseudo-configuration c ∈ CM , we know that there exists a j such that
M•

c(Nn⊗1)π j is the simulation of Mc(n), but the computation takes place in the other pro-
jections too: for i 6= j it is possible that M•

c(Nn⊗1)πi loops where for a d (M•
c(Nn⊗1))dπ j = 0.

We can correct this behavior thanks to acyclicity: if M•
c(Nn⊗1) is not nilpotent it is because

at some point the reject state has been reached. After this state of reject is reached (let’s
say after r ∈N iterations) we know that M•

c(Nn ⊗1)rπi is exactly the simulation of Mc(n).
If it loops again, it truly means that Mc(n) rejects. So we just proved that M•

c(Nn ⊗1) is
not nilpotent if and only if (M•

c(Nn⊗1))dπ j 6= 0 for all d ∈N. But it is clear that in this case
M with pseudo-configuration c rejects the entry n.

Proposition 30.

co-NL⊆ {ANDPM}⊆ {P+}⊆ {PÊ0}

Proof. The first inclusion is given by Proposition 27. By Lemma 29, we have {ANDPM} ⊆

{P+} since the representation M•
c of a couple (M, c), where M is an acyclic NDPM and

c ∈ CM , is obviously in P+. Moreover, since P+ ⊂ PÊ0, we have {P+}⊆ {PÊ0}.

7. Positive observations and co-NL

To show that {PÊ0} is included in co-NL, we will show that the product of a binary rep-
resentation and an observation in PÊ0 is the image of a matrix by an injective morphism.
This return from the type II1 hyperfinite factor to matrix algebras is necessary to prove
that we can reduce the nilpotency of an operator to the nilpotency of a matrix, so that a
finite machine can decide it. This fact was used by Girard18, but we felt it needed to be
more precisely stated and proved in the following (quite technical) lemma.

Lemma 31. We consider the normative pair (N0,G) defined in Corollary 16 and denote by
K the algebra (

⊗

nÊ0R)⋊S. Let Nn be a binary representation of an integer n in M6(N0)
and Φ ∈M6(G)⊗Q be an observation in PÊ0. Then there exists an integer k, an injective
morphism ψ :Mk(C) →K and two matrices M ∈M6(Mk(C)) and Φ̄ ∈M6(Mk(C))⊗Q such
that Id⊗ψ(M)= (Nn ⊗1Q) and Id⊗ψ⊗ IdQ(Φ̄)=Φ.

Proof. We denote by n the integer represented by Nn and R ∈ M6(n+1)(C) its matricial
representation. Then there exists a morphism θ : Mn+1(C) →R such that Id⊗θ(R) = Nn

by Proposition 9. Composing θ with the inclusion µ :Mn+1(C)→
⊗N

n=0Mn+1(C), x 7→ x⊗1⊗
·· ·⊗1, we get:

Id⊗ (
N⊗

n=0
θ(µ(R))= N̄n ⊗1⊗·· ·⊗1

︸ ︷︷ ︸

N copies

18 Altough this point is not dwelled on, this statement is necessary in (Girard 2012, Proof of Theorem 12.1,
p.258).



Characterizing co-NL by a group action 27

where N̄n is the representation of n in M6(C)⊗R (recall the representation Nn in the
statement of the lemma is an element of M6(C)⊗K).

Moreover, since Φ is an observation, it is contained in the subalgebra induced by the
subgroup SN where N is a fixed integer, i.e. the subalgebra of S generated by {λ(σ) | σ ∈

SN }. We thus consider the algebra (
⊗N

n=0Mn+1(C))⋊SN . It is isomorphic to a matrix
algebra Mk(C): the algebra

⊗N
n=0Mn+1(C) can be represented as an algebra of operators

acting on the Hilbert space CN(n+1), and the crossed product (
⊗N

n=0Mn+1(C))⋊SN is then

defined as a subalgebra I of the algebra L (L2(SN ,C(n+1)N
)) ∼=M(n+1)N N!(C). We want to

show that (Nn ⊗1Q) and Φ are the images of matrices in I by an injective morphism ψ

which we still need to define.
Let us denote by α the action of SN on

⊗N
n=0Mn+1(C). By definition, I= (

⊗N
n=0Mn+1(C))⋊

SN is generated by two families of unitaries:

— λα(σ) where σ ∈SN ;
— πα(x) where x is an element of

⊗N
n=0Mn+1(C).

We will denote by γ the action of S on
⊗∞

n=0R. Then K= (
⊗

nÊ0R)⋊S is generated by the
following families of unitaries:

— λγ(σ) for σ ∈S;
— πγ(x) for x ∈

⊗

nÊ0R.

As we already recalled, Φ is an observation in PÊ0 and is thus contained in the subalge-
bra induced by the subgroup SN . Moreover, Nn is the image through θ of an element of
Mn+1(C). Denoting β the action of SN on

⊗N
n=0R, the two operators we are interested in

are elements of the subalgebra J of K generated by:

— λβ(σ) for σ ∈SN ;
— πβ(

⊗N
n=0θ(x)) for x ∈

⊗N
n=0Mn+1(C).

We recall that Φ is a matrix whose coefficients are finite positive linear combinations of
elements λγ(σ) where σ ∈SN , i.e. (denoting by k the dimension of the algebra of states):

Φ= (
∑

i∈Ia,b

αi
a,bλγ(σi

a,b))1Éa,bÉ6k

We can therefore associate to Φ the matrix Φ̄ defined as Φ̄= (
∑

i∈Ia,b
αi

a,bλα(σi
a,b))1Éa,bÉ6k.

We will now use the theorem stating the crossed product algebra does not depend on
the chosen representation (Theorem 6). The algebra

⊗N
n=0Mn+1(C) is represented (faith-

fully) by the morphism πβ ◦
⊗∞

n=0θ. We deduce from this that there exists an isomor-
phism from I to the algebra generated by the unitaries λβ(σ) (σ ∈SN ) and πβ ◦

⊗∞
n=0θ(x)

(x ∈
⊗N

n=0Mn+1(C)). This isomorphism induces an injective morphism ω from I into J such
that:

ω(πα(x)) = πβ(
N⊗

n=0
θ(x))

ω(λα(σ)) = λβ(σ)

We will denote by ι the inclusion map
⊗N

n=0R⊂
⊗∞

n=0R and υ the inclusion map SN ⊂S.
We will once again use the same theorem as before, but its application is not as imme-
diate as it was. Let us denote by SN\S the set of the orbits of S for the action of SN



C. Aubert and T. Seiller 28

by multiplication on the left, and let us chose a representant τ̄ in each of these orbits.
Recall the set of orbits is a partition of S and that SN ×SN\S is in bijection with S.
As a consequence, the Hilbert space L2(SN ,L2(SN\S,

⊗∞
n=0H)) is unitarily equivalent to

L2(S,
⊗∞

n=0H). We will therefore represent
⊗N

n=0R on this Hilbert space and show this
representation corresponds to πγ. For each x ∈

⊗N
n=0R, we define ρ(x) by:

ρ(x)ξ(τ̄)= γ(τ̄−1)(ι(x))ξ(τ̄)

This representation is obviously faithful. We can then define the crossed product of this
representation with the group SN on L2(SN ,L2(SN\S,

⊗∞
n=0H)). The resulting alge-

bra is generated by the operators (in the following, ξ is an element of the Hilbert space
L2(SN ,L2(SN\S,

⊗∞
n=0H))):

λ(ν)ξ(τ̄)(σ) = ξ(τ̄)(ν−1σ)

π(x)ξ(τ̄)(σ) = ρ(β(σ−1)(x))ξ(τ̄)(σ)

= γ(τ̄−1)(γ(σ−1)(ι(x)))ξ(τ̄)(σ)

= γ(τ̄−1σ−1)(ι(x)))ξ(τ̄)(σ)

= γ((στ̄)−1)(ι(x)))ξ(τ̄)(σ)

Through the identification of L2(SN ,L2(SN\S,
⊗∞

n=0H)) and L2(S,
⊗∞

n=0H)), we therefore
get (where ξ ∈ L2(SN ,L2(SN\S,

⊗∞
n=0H))):

λ(ν)ξ(στ̄) = ξ(ν−1στ̄)

= λγ(ν)ξ(στ̄)

π(x)ξ(στ̄) = γ((στ̄)−1)(ι(x)))ξ(στ̄)

= πγ(ι(x))ξ(στ̄)

Applying theorem 6 we finally get the existence of an injective morphism ζ from J into K

such that:

πβ(x) 7→ πγ(ι(x))

λβ(σ) 7→ λγ(σ)

Figure 2 illustrates the situation. We now define ψ : I → K by ψ = ζ ◦ω. Noticing that
Nn = IdM6(C) ⊗ (πγ(ι◦µ(N̄n)), we get:

IdM6(C) ⊗ψ(M) = IdM6(C) ⊗ψ(Id⊗πα(Id⊗µ)(R))

= IdM6(C) ⊗πγ(ι◦
N⊗

n=0
θ(µ(R)))

= IdM6(C) ⊗πγ(ι(N̄n ⊗1⊗·· ·⊗1))

= IdM6(C) ⊗πγ(ι◦µ(N̄n))

= Nn



Characterizing co-NL by a group action 29

(
⊗N

n=0R)⋊βSN

(
⊗

nÊ0R)⋊γS

(
⊗N

n=0Mn+1(C))⋊αSN

⊗N
n=0R

⊗∞
n=0R

⊗N
n=0Mn+1(C)

SN

S

SN

πβ

πγ

πα

λβ

λγ

λα

⊂ ιζ

⊗N
n=0 θω

Figure 2. Representation of the main morphisms defined in the proof of Lemma 31

IdM6(C) ⊗ψ⊗ IdQ(Φ̄) = (
∑

i∈Ia,b

αi
a,bψ(λα(σi

a,b)))1Éa,bÉ6k

= (
∑

i∈Ia,b

αi
a,bλγ(σi

a,b))1Éa,bÉ6k

= Φ

The (injective) morphism ψ thus satisfies all the required properties.

We are now ready to prove the last inclusion to get the main theorem.

Proposition 32. {PÊ0}⊆ co-NL

Proof. Let Φ ∈ PÊ0, Q its algebra of states and Nn a representation of an integer n. By
lemma 31, we know there exists a morphism χ (with ψ as defined in the lemma, χ =

IdM6(C)⊗ψ⊗IdQ) and two matrices M and Φ̄ such that χ(M⊗1Q)= Nn⊗1Q and χ(Φ̄)=Φ.
So we have Φ(Nn ⊗1Q) nilpotent if and only if Φ̄(M ⊗1Q) nilpotent. Our aim is now to
prove that checking the nilpotency of this matrix is in co-NL.
Our algebra is:

M6(C)⊗ ((Mn+1(C)⊗·· ·⊗Mn+1(C)
︸ ︷︷ ︸

p copies

)⋊SN )⊗Q

and we know an element of its basis will be of the form

(π,a0,a1, . . . ,ap;σ; e)

where π is an element of the basis (0o,0i,1o,1i, s, e) of M6(C), ai ∈ {1, . . . ,k} (for i ∈ {1, . . . , p})
are the elements of the basis chosen to represent the integer n, σ ∈SN and e is an element
of a basis of Q. When we apply M⊗1Q representing the integer to an element of this basis,
we obtain one and only one vector of the basis: (π,a0,a1, . . . ,ap;σ; e). When we apply to this
element the observation Φ̄ we obtain a linear positive combination of L ∈ N elements of
the basis:

Φ̄(π,a0,a1, . . . ,ap;σ; e)=
L∑

i=0
αi(ρ,aτi(0), . . . ,aτi(p);τiσ; e i)

With a non-deterministic machine, we can follow the computation in parallel on each basis



C. Aubert and T. Seiller 30

vector thus obtained. The computation can then be regarded as a tree (denoting by b j
i the

elements of the basis encountered):

bi0
0

b1
i0

b2
0 b2

p2
. . .
Φ

b3
0 b3

p3

. . .
Φ

. . .
Φ

Nn

Nn Nn

We know that L and the nilpotency degree of Φ̄(M ⊗1Q) are both bounded by the dimen-
sions of the underlying space, that is to say 6(k+1)p p!q where q is the dimension of Q.
Since every coefficient αi is positive, the matrix is thus nilpotent if and only if every branch
of this tree is of length at most 6(k+1)p p!q.

We only have a logarithmic amount of information to store (the current basis vector),
and every time a branch splits a non-deterministic transition takes place to continue the
computation on every sub-branch.

Theorem 33.

{ANDPM}= {P+}= {PÊ0}= co-NL

Proof. By combining Proposition 30 and Proposition 32.

8. Conclusion and Perspectives

This work explains the motivations and choices made by Girard when he proposed this
new approach to study complexity classes. In particular, we explained how the represen-
tation of integers by matrices is an abstraction of sequent calculus proofs of the type of
binary lists in ELL, and how using the hyperfinite factor allows to overcome the lack of
uniformity of the matrix representation. We then introduced a notion of normative pair
which differs from the one introduced by Girard and showed how the crossed product
construction can be used to define such pairs. Going from an interaction based on the de-
terminant to one relying on nilpotency allows to consider a larger class of groups in the
construction based on the crossed product. Moreover, even if the two definitions are equiv-
alent in some cases, such as the one considered in this paper, they differ in some others.

We then introduced non-deterministic pointer machines as a technical tool to show that
co-NL⊆ {P+}. The proof of this inclusion, which was only sketched in Girard’s paper, helps
to get more insights on how computation is represented by operators. Moreover, it gives a
new characterization of co-NL in term of machines. We then proved that {PÊ0} ⊆ co-NL

following the proof given by Girard (Girard 2012), providing a proper statement and a
proof of the key technical result that was not provided by Girard. Of course, we could have
used the famous result which states that REACHABILITYComp, is in NL (Immerman



Characterizing co-NL by a group action 31

1988), to prove that we also characterized NL, but we hope to get a different proof of this
closure by complementation with our tools.

We believe that this new approach of complexity can be used to characterize other com-
plexity classes. Two different possibilities should be considered: changing the normative
pair, and changing the set of observations. As we showed, one could define a normative
pair from a group action by using the crossed product construction. However, obtaining
new results in this way requires to overcome the difficulty of finding appropriate groups.

The second possibility, which seems at the time less complicated, would be to consider
other sets of observations for the same normative pair. For instance, one could define the
set of observations whose coefficients are unitaries induced by group elements and whose
norm is equal to 1 (so that there are at most one non-zero coefficient in each column).
Denoting this set by P1, we can easily adapt the proof of Proposition 32 to show that
{P1}⊆L. However, the question of whether the corresponding class {P1} is equal or strictly
included in L, and its eventual relations to PURPLE (Hofmann & Schöpp 2009), still need
to be answered.

References

Arora, S. & Barak, B. (2009), Computational complexity: a modern approach, Vol. 1, Cambridge Uni-
versity Press.

Aubert, C. (2011), Sublogarithmic uniform boolean proof nets, in J.-Y. Marion, ed., ‘DICE’, Vol. 75 of
EPTCS, pp. 15–27.

Baillot, P. & Pedicini, M. (2001), ‘Elementary complexity and geometry of interaction’, Fundamenta
Informaticae 45(1-2), 1–31.

Conway, J. B. (1990), A course in functional analysis, Springer.
Dal Lago, U. (2005), The geometry of linear higher-order recursion, in ‘LICS’, IEEE Computer Society,

pp. 366–375.
Dal Lago, U. & Hofmann, M. (2010), ‘Bounded linear logic, revisited’, Logical Methods in Computer

Science 6(4), 1–31.
Danos, V. & Joinet, J.-B. (2003), ‘Linear logic & elementary time’, Information and Computation

183(1), 123–137.
Girard, J.-Y. (1989a), ‘Geometry of interaction I: Interpretation of system f’, Studies in Logic and the

Foundations of Mathematics 127, 221–260.
Girard, J.-Y. (1989b), Towards a geometry of interaction, in ‘Proceedings of the AMS Conference on

Categories, Logic and Computer Science’, pp. 69–108.
Girard, J.-Y. (2011), ‘Geometry of Interaction V: Logic in the Hyperfinite Factor’, Theoretical Com-

puter Science 412(20), 1860–1883.
Girard, J.-Y. (2012), Normativity in logic, in P. Dybjer, S. Lindström, E. Palmgren & G. Sundholm, eds,

‘Epistemology versus Ontology’, Vol. 27 of Logic, Epistemology, and the Unity of Science, Springer,
pp. 243–263.

Haagerup, U. (1975), ‘The standard form of von neumann algebras’, Mathematica Scandinavia
37(271-283).

Hofmann, M., Ramyaa, R. & Schöpp, U. (2013), Pure pointer programs and tree isomorphism, in
F. Pfenning, ed., ‘FoSSaCS’, Vol. 7794 of Lecture Notes in Computer Science, Springer, pp. 321–
336.

Hofmann, M. & Schöpp, U. (2009), Pointer programs and undirected reachability, in ‘LICS’, IEEE
Computer Society, pp. 133–142.



C. Aubert and T. Seiller 32

Immerman, N. (1988), Nondeterministic space is closed under complementation, in ‘CoCo’, IEEE
Computer Society, pp. 112–115.

Lafont, Y. (2004), ‘Soft linear logic and polynomial time’, Theoretical Computer Science 318(1), 163–
180.

Murphy, G. J. (1990), C∗-algebras and operator theory, Academic Press Inc., Boston, MA.
Rosenberg, A. (1966), ‘On multi-head finite automata’, IBM Journal of Research and Development

10(5), 388–394.
Schöpp, U. (2007), Stratified bounded affine logic for logarithmic space, in ‘LICS’, IEEE Computer

Society, pp. 411–420.
Seiller, T. (2012a), ‘Interaction graphs: Additives’, Arxiv preprint abs/1205.6557.
Seiller, T. (2012b), ‘Interaction graphs: Multiplicatives’, Annals of Pure and Applied Logic 163, 1808–

1837.
Seiller, T. (2012c), Logique dans le facteur hyperfini : géometrie de l’interaction et complexité, PhD

thesis, Université de la Méditerranée.
URL: http://tel.archives-ouvertes.fr/tel-00768403/

Szelepcsényi, R. (1987), ‘The method of focing for nondeterministic automata’, Bulletin of the EATCS
33, 96–99.

Takesaki, M. (2001), Theory of Operator Algebras 1, Vol. 124 of Encyclopedia of Mathematical Sci-
ences, Springer.

Takesaki, M. (2003a), Theory of Operator Algebras 2, Vol. 125 of Encyclopedia of Mathematical Sci-
ences, Springer.

Takesaki, M. (2003b), Theory of Operator Algebras 3, Vol. 127 of Encyclopedia of Mathematical Sci-
ences, Springer.

Terui, K. (2004), Proof Nets and Boolean Circuits, in ‘LICS’, IEEE Computer Society, pp. 182–191.


	Introduction
	Binary Integers
	Von Neumann Algebras and Crossed Products
	Hilbert Spaces and Operators
	Von Neumann Algebras in a Nutshell
	von Neumann Algebras and Groups

	Integers in the Hyperfinite Factor
	Binary Representation
	Normative Pairs

	Non-Deterministic Pointer Machines
	Encoding Non-Deterministic Pointer Machines
	Encoding a Machine
	Basic Operations
	First Inclusions

	Positive observations and co-NL
	Conclusion and Perspectives
	References

