
HAL Id: hal-01005701
https://hal.science/hal-01005701

Preprint submitted on 16 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open licence - etalab

Logarithmic Space and Permutations
Clément Aubert, Thomas Seiller

To cite this version:

Clément Aubert, Thomas Seiller. Logarithmic Space and Permutations. 2013. �hal-01005701�

https://hal.science/hal-01005701
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
https://hal.archives-ouvertes.fr

Logarithmic Space and PermutationsI

Clément Auberta, Thomas Seillerb

aLIPN – UMR CNRS 7030 Institut Galilée - Université Paris-Nord 99, avenue J.-B. Clément
93430 Villetaneuse – France

bInstitut des Hautes Études Scientifiques, Le Bois-Marie, 35 Route de Chartres, 91440
Bures-sur-Yvette, France

Abstract

In a recent work, Girard [1] proposed a new and innovative approach to
computational complexity based on the proofs-as-programs correspondence.
In a previous paper [2], the authors showed how Girard’s proposal succeeds
in obtaining a new characterization of co-NL languages as a set of operators
acting on a Hilbert Space. In this paper, we extend this work by showing
that it is also possible to define a set of operators characterizing the class L
of logarithmic space languages.

Keywords: Linear Logic, Complexity, Geometry of Interaction, Pointer
Machine, Finite Automata, Logarithmic Space

1. Introduction

1.1. Linear Logic and Implicit Computational Complexity
Logic, and more precisely proof theory – the domain whose purpose is

the formalization and study of mathematical proofs – recently yielded nu-
merous developments in theoretical computer science. These developments
are founded on a correspondence, often called Curry-Howard correspondence,
between mathematical proofs and computer programs (usually formalized
in lambda-calculus). The main interest of this correspondence lies in its

IWork partially supported by the ANR projects ANR-2010-BLAN-021301 LOGOI and
ANR-08-BLAN-0211-01 COMPLICE.

Email addresses: aubert@lipn.fr (Clément Aubert), seiller@ihes.fr (Thomas
Seiller)

Preprint submitted to INFORMATION & COMPUTATION February 16, 2015

dynamic nature: program execution corresponds to a procedure on mathe-
matical proofs known as the cut-elimination procedure.

In the eighties, Jean-Yves Girard discovered linear logic through a study
of mathematical models of the lambda-calculus. This logical system, as a
direct consequence of this correspondence between proofs and programs, is
particularly interesting from the point of view of the mathematical founda-
tions of computer science for its resource-awareness. In particular, it gave
birth to a number of developments in the field of implicit computational
complexity, for instance through the definition and study of restricted logi-
cal systems (sub-systems of linear logic) in which the set of representable
functions captures a complexity class. For instance, elementary linear logic
(ELL) restricts the rules governing the use of exponential connectives – the
connectives dealing with the duplication of the arguments of a function – and
the set of representable functions in ELL is exactly the set of elementary time
functions [3]. It was also shown [4] that a characterization of logarithmic
space computation can be obtained if one restricts both the rules of exponen-
tial connectives and the use of universal quantifiers. Finally, a variation on
the notion of linear logic proof nets succeeded in characterizing the classes
NC of problems that can be efficiently parallelized [5].

1.2. Geometry of Interaction
A deep study of the formalization of proofs in linear logic, in particular

their formalization as proof nets, led Jean-Yves Girard to initiate a program
entitled geometry of interaction (GoI) [6]. This program, in a first approxima-
tion, intends to define a semantics of proofs that accounts for the dynamics of
the cut-elimination procedure. Through the correspondence between proofs
and programs, this would define a semantics of programs that accounts for
the dynamics of their execution. However, the geometry of interaction pro-
gram is more ambitious: beyond the mere interpretation of proofs, its purpose
is to completely reconstruct logic around the dynamics of the cut-elimination
procedure. This means reconstructing the logic of programs, where the notion
of formula – or type – accounts for the behavior of algorithms.

Informally, a geometry of interaction is defined by a set of paraproofs to-
gether with a notion of interaction, in the same way one defines strategies and
their composition in game semantics. An important tool in the construction
is a binary function that measures the interaction between two paraproofs.
With this function one defines a notion of orthogonality that corresponds to
the negation of logic and reconstructs the formulas as sets of paraproofs equal

2

to the orthogonal of a given set of paraproofs: a formula is therefore a set of
“programs” that interact in a similar way to a given set of tests.

Since the introduction of this program Jean-Yves Girard proposed dif-
ferent constructions to realize it. These constructions share the notion of
paraproofs: operators in a von Neumann algebra. They however differ on the
notion of orthogonality they use: in the first constructions, this notion was
founded on the nilpotency of the product of two operators, while the more
recent construction [7] uses Fuglede-Kadison determinant – a generalization
of the usual determinant of matrices that can be defined in type II1 factors.

Since the reconstruction of logic is based on the notion of execution, ge-
ometry of interaction constructions are particularly interesting for the study
of computational complexity. It is worth noting that the first construction of
GoI [8] allowed Abadi, Gonthier, and Lévy [9] to explain the optimal reduction
of λ-calculus defined by Lamping [10]. This first GoI construction was also
used to obtain results in the field of implicit computational complexity [11].

1.3. A new approach to complexity
Recently Jean-Yves Girard proposed a new approach for the study of

complexity classes that was inspired by his latest construction of a geometry of
interaction. Using the crossed product construction between a von Neumann
algebra and a group acting on it, he proposed to characterize complexity
classes as sets of operators obtained through the internalization of outer
automorphisms of the type II1 hyperfinite factor. The authors showed in a
recent paper [2] that this approach succeeds in defining a characterization of
the set of co-NL languages as a set of operators in the type II1 hyperfinite
factor. The proof of this result was obtained through the introduction of
non-deterministic pointer machines, which are abstract machines designed to
mimic the computational behavior of operators. The result was obtained by
showing that a co-NL complete problem could be solved by these machines.

In this paper, we extend these results in two ways. The first important
contribution is that we give an alternative proof of the fact that co-NL is
indeed characterized by non-deterministic pointer machines. This new proof
consists in showing that pointer machines can simulate the well-known and
studied two-way multi-head finite automata [12, 13]. The second contribution
of this paper consists in obtaining a characterization of the class L as a
set of operators in the hyperfinite factor of type II1. By studying the set of
operators that characterize the class co-NL and in particular the encoding of
non-deterministic pointer machines as operators, we are able to show that

3

the operators encoding a deterministic machine satisfy a condition expressed
in terms of norm. We then manage to show that the language decided by an
operator satisfying this norm condition is in the class L, showing that the set
of all such operators characterizes L.

2. The Basic Picture

The construction uses an operator-theoretic construction known as the
crossed product of an algebra by a group acting on it. The interested reader
can find a quick overview of the theory of von Neumann algebras in the
appendix of the second author’s work on geometry of interaction [14], and a
brief presentation of the crossed product construction in the authors’ previous
work [2] on the characterization of co-NL. For a more complete presentation
of the theory of operators and the crossed product construction, we refer to
the well-known series of Takesaki [15, 16, 17].

In a nutshell, the crossed product construction AoαG of a von Neumann
algebra A and a group action α : G →Aut(A) defines a von Neumann algebra
containing A and unitaries that internalize the automorphisms α(g) for g ∈G.
For this, one considers the Hilbert space1 K= L2(G,H) where H is the Hilbert
space A is acting on, and one defines two families of unitary operators2 in
L (K):

• the family {π(u) | u ∈A unitary} which is a representation of A on K;

• the family {λ(g) | g ∈G} which contains unitaries that internalize the
automorphisms α(g).

Then the crossed product AoαG is the von Neumann algebra generated by
these two families.

1The construction L2(G,H) is a generalization of the well-known construction of the
Hilbert space of square-summable functions: in case G is considered with the discrete
topology, the elements are functions f : G →H such that

∑
g∈G‖ f (g)‖2 <∞.

2Recall that in the algebra L (H) of bounded linear operators on the Hilbert space H

(we denote by 〈·, ·〉 its inner product), there exists an anti-linear involution (·)∗ such that
for any ξ,η ∈ H and A ∈ L (H), 〈Aξ,η〉 = 〈ξ, A∗η〉. This adjoint operator coincides with the
conjugate-transpose in the algebras of square matrices. A unitary operator u is an operator
such that uu∗ = u∗u = 1.

4

As a by-product of Girard’s work on geometry of interaction [7], we know3

how to represent integers as operators in the type II1 hyperfinite factor R.
This representation comes from logical considerations, and it has some

specificities, among which the fact that the integer is represented as a circular
binary string, and the fact that every bit is considered as having an input
and an output4. This representation arises from the interpretation of proofs
of the type ∀X !(X (X)((!(X (X)(!(X (X)) (the type of binary lists
in Elementary Linear Logic) in the setting of geometry of interaction. The
obtained interpretation is the image of a matrix through an embedding of the
matrix algebra in which it is contained in the hyperfinite factor. Since there
are no natural choice of a particular embedding, a given integer does not have
a unique representation in R, but a family of representations. Luckily, any
two representations of a given integer are unitarily equivalent (we denote by
Mk(C) the algebra of k×k matrices over C):

Proposition 1 ([2, Proposition 10]). Let N, N ′ ∈M6(C)⊗R be two represen-
tations of a given integer. There exists a unitary u ∈R such that:

N = (1⊗u)∗N ′(1⊗u)

The next step is then to define a representation of machines, or algorithms,
as operators that do not discriminate two distinct representations of a given
integer, i.e. operators that act uniformly on the set of representations of a
given integer. As the authors have shown in their previous work, the crossed
product construction allows one to characterize an algebra of operators acting
in such a uniform way. We recall the construction in the particular case of
the group of finite permutations, which will be the only setting that will be
studied in this work.

The algebra R can be embedded in the infinite tensor product algebra
T=⊗

n∈NR through the morphism ι0 : x 7→ x⊗1⊗1⊗ We will denote by
N0 the image of R in T through ι0. Notice that this tensor product algebra is
isomorphic to R. The idea of Girard is then to use the action of the group S

of finite permutations of N onto T, defined by:

σ.(x0 ⊗ x1 ⊗·· ·⊗ xk ⊗ . . .)= xσ−1(0) ⊗ xσ−1(1) ⊗·· ·⊗ xσ−1(k) ⊗ . . .

3A detailed explanation of this representation can be found in Appendix A, in the authors’
previous work [2] or in the second author’s PhD thesis [18].

4Something that will be proven useful in Section 5, for it will help us to determine in
which direction the integer is read.

5

This group action defines a sub-algebra G of the crossed product algebra
K= (

⊗
n∈NR)oS . This algebra G is the algebra generated by the family of

unitaries λ(σ) for σ ∈ S , and we think of it as the algebra of machines, or
algorithms. As it turns out, the elements of this algebra act uniformly on the
set of representations of a given integer:

Proposition 2 ([2, Proposition 11]). Let N, N ′ ∈M6(C)⊗N0 be two represen-
tations of a given integer, and φ ∈M6(C)⊗G. Then:

φN is nilpotent iff φN ′ is nilpotent

To be a bit more precise, we will be interested in the elements of the
algebras of operators M6(C)⊗G⊗Mk(C). By tensoring with a matrix al-
gebra, which we call the algebra of states, we will be able to develop more
computational power. An element of one of these algebras will be called an
observation, and it still acts uniformly on distinct representations Nn, N ′

n of
a given integer: if φ is an observation, φ(Nn ⊗1Mk(C)) is nilpotent if and only
if φ(N ′

n ⊗1Mk(C)) is nilpotent5. From this proposition, one can justify that the
following definition makes sense:

Definition 3. Let φ ∈M6(C)⊗G⊗Mk(C) be an observation. We define the
language accepted by φ by (Nn denotes any representation of the integer n):

[φ]= {n ∈N |φ(Nn ⊗1) nilpotent}

By extension, if P is a set of observations, we denote by [P] the set {[φ] |φ ∈ P}.

To sum up the construction, one has the following objects:

• an algebra containing representations of integers: the hyperfinite factor
R of type II1, embedded in K through the morphism π◦ ι0;

• an algebra containing the representations of machines, or algorithms:
the von Neumann sub-algebra G of K generated by the set of unitaries
{λ(σ) |σ ∈S };

• a notion of acceptance: if N is a representation of a integer and φ is
a representation of a machine, we say that φ accepts N when φN is
nilpotent.

5We will in the following simply write 1 for the identity element of Mk(C).

6

3. Pointer Machines

We previously introduced [2] non-deterministic pointers machines that
were designed to mimic the computational behavior of operators: they do not
have the ability to write, their input tape is cyclic, and they are “universally
non-deterministic”, i.e. rejection is meaningful whereas acceptation is the
default behavior. We exhibited a non-deterministic pointer machine that
decides a co-NL-complete language and showed how a reduction could be per-
formed with pointers. Here, we complete this result by simulating multi-head
finite automata [19], a method that allows us to get a deeper understanding of
pointer machines, in both their deterministic and non-deterministic versions.

A pointer machine is given by a set of pointers that can move back and
forth on the input tape and read (but not write) the values it contains, together
with a set of states. For 1É i É p, given a pointer pi, only one of three different
instructions can be performed at each step: pi+, i.e. “move one step forward”,
pi−, i.e. “move one step backward” and εi, i.e. “do not move”. In the following
definition, we let Ik = {pk+, pk−,εk} be the set of instructions for the k-th
pointer and Σ= {0,1,?} be the alphabet. We will denote by #pi the address of
the pointer.

Definition 4. A non-deterministic pointer machine with p Ê 1 pointers is a
couple M = {Q,→} where Q is the set of states and →⊆ (Σp×Q)×∏p

i=1 I i×Q)∪
{accept, reject}) is the transition relation and it is total. We write NDPM(p)
the set of non-deterministic pointer machines with p pointers.

A configuration of M ∈NDPM(p) is as usual a “snapshot” of M at a given
time, and we define a pseudo-configuration c of M ∈NDPM(p) as a “partial
snapshot”: c ∈ Σp ×Q contains the last values read by the p pointers and
the current state, but does not contain the addresses of the p pointers. It is
therefore impossible to resume the computation from a pseudo-configuration
provided the description of M and the input, but one can know what would
be the set of instructions and the new state resulting from the application of
→. The set of pseudo-configurations of a machine M is written CM and it is
the domain of the transition relation. If → is functional, M is a deterministic
pointer machine. We write DPM(p) the set of deterministic pointer machines
with p pointers.

Let M ∈ NDPM(p), s ∈ CM and n ∈N an input. We define Ms(n) as M with

7

n encoded as a string6 on its circular input tape (as ?a1 . . .ak for a1 . . .ak the
binary encoding of n and ak+1 = a0 =?) starting in the pseudo-configuration
s with #pi = 0 for all 1 É i É p (that is, the pointers are initialized with
the address of the symbol ?). The pointers may be considered as variables
that have been declared but not initialized yet. They are associated with
memory slots that store the values and are updated only when the pointer
moves, so as the pointers did not move yet, those memory slots haven’t been
initialized. The initial pseudo-configuration s initializes those p registers, not
necessarily in a faithful way (it may not reflect the values contained at #pi).
The entry n is accepted (resp. rejected) by M with initial pseudo-configuration
s ∈ CM if after a finite number of transitions every branch of Ms(n) reaches
accept (resp. at least a branch of M reaches reject). We say that Ms(n)
halts if it accepts or rejects n and that M decides a set S if there exists a
pseudo-configuration s ∈ CM such that Ms(n) accepts if and only if n ∈ S.

As we will see, this notion of non-deterministic pointer machines is similar
to the classical notion of multi-head finite automata:

Definition 5. [13, Definition 1] For k Ê 1, a non-deterministic two-way k-
head finite automaton is a tuple M = {S, A,k,B,C, s0,F,σ} where:

• S is the finite set of states;

• A is the alphabet7;

• k is the number of heads;

• B and C are the left and right endmarkers;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of accepting states;

• σ⊆ (S× (A∪ {B,C})k)× (S× {−1,0,1}k) is the transition relation, where
−1 means to move the head one square to the left, 0 means to keep the

6Of course, one could do the exact same work taking binary words instead of integers.
This choice of presentation was originally driven by Girard’s will to enlighten that, among
the infinitely many isomorphic representations of an integer, “none of them [was] more
‘standard’ than the others.” [1, p. 244]

7We take it to be always equal to {0,1}, as any alphabet is equivalent to this one modulo a
reasonable translation.

8

head on the current square and 1 means to move it one square to the
right.

Moreover, whenever8 (s′, (d1, . . . ,dk)) ∈σ(s, (a1, . . . ,ak)), then ai =B (1É i É k)
implies di ∈ {0,1}, and ai =C (1É i É k) implies di ∈ {−1,0}.

In the following, we will denote by 2NDFA(k) the set of non-deterministic
two-ways k-head finite automata.

One defines configurations and transitions in a classical way. One should
however notice that the heads cannot move beyond the endmarkers because
of the definition of the transition relation.

Let M ∈ 2NDFA(k) and n ∈N an input whose binary writing is w. We say
that M accepts n if M starts in state s0, with B wC written on its input tape
and all of its heads on B, and if after a finite number of transitions at least
one branch of M reaches a state belonging to F. We say that M always halt
if for all input all branches of M reach after a finite number of transitions a
configuration such that no transition may be applied. If σ is functional, M is
said to be deterministic. We write 2DFA(k) the set of deterministic two-way k
heads automata.

4. Simulation and first results

Multi-head finite automata were introduced in the early seventies [12] and
provided many promising perspectives9. Their nice characterization of L and
NL and the similarities they share with non-deterministic pointer machines
will be the key to prove (anew) that non-deterministic pointer machines
characterize co-NL and that their deterministic restriction characterizes L.

We will denote by DPM, NDPM, 2DFA and 2NDFA the sets of languages
decided by respectively the sets ∪kÊ1DPM(k), ∪kÊ1NDPM(k), ∪kÊ12DFA(k)
and ∪kÊ12NDFA(k).

Theorem 6 ([12], p. 338). L= 2DFA and NL= 2NDFA.

We will denote in the following by L (X) (resp. L (X)) the language ac-
cepted (resp. rejected) by X .

8Of course, one may see σ as a partial function from S× (A∪ {B,C})k to P (S× {−1,0,1}k),
and that justifies this notation that we will use from now on.

9An overview of the main results and open problems of the theory was recently pub-
lished [13].

9

Proposition 7. For all M ∈ 2NDFA(k) (resp. M ∈ 2DFA(k)), there exists k′

and M′ ∈ 2NDFA(k′) (resp. M′ ∈ 2DFA(k′)) such that M′ always halt and
L (M)=L (M′).

Proof. Given an input n ∈N, we know that the number of configurations of
M is bounded by Card(S)× (log2(n)+2)k, that is to say by log2(n)d for d a
constant fixed with M. We will construct M′ so that it halts rejecting after
performing more than this number of transitions.

We set k′ = k+d+1, and we construct M′ so that its k first heads act as
the heads of M, and the d+1 heads act as the hands of a clock, going back
and forth between the two endmarkers. For all s ∈ S of M, S′ contains the
set of states s× {→,←}d+1 that give the current direction of the d+1 heads.
At every transition the k+1-th head moves according to its direction. For
k < i < k′, when the i-th head has made a round-trip on n, the i+1-th head
moves one square according to its direction. If the k′-th head has made a
round-trip on n – that is, is back on B – M′ halts rejecting10.

Now remark that if a branch of M accepts, there exists a branch of
M that accepts without ever looping, i.e. without going through the same
configuration twice. Moreover, branches without loops are of length at most
Card(S)× (log2(n)+ 2)k. Thus, if M has no branches of length less than
log2(n)d for the suitable d, then it has no accepting branch. By construction,
M′ always halts after log2(n)d+1 transitions and accepts exactly as M does,
so we proved that L (M)=L (M′) and that M′ always halts. Notice that if M
was deterministic, so is M′.

Proposition 8. For all k Ê 1, for all M ∈ 2NDFA(k) (resp. M ∈ 2DFA(k))
that always halts, there exists M′ ∈NDPM(k) (resp. M′ ∈ 2DFA(k)) such that
L (M)=L (M′).

Proof. There is only little work to do, since NDPMs are essentially “re-
arrangements” of NDFAs. Given M = {S, A,k,B,C, s0,F,σ}, we design M′ =
{Q,→} ∈ NDPM(k) that rejects an input iff M accepts it. We set Q = S \ F.
The transition relation → is obtained from σ as follows:

• If the state of the resulting configuration of a transition belongs to F,
the same transition belongs to → with its right-hand side replaced by
reject;

10That can be simply done by halting the computation in a state not belonging to F.

10

• The role of both endmarkers B and C is played by the symbol ?;

• The instructions −1,0 and 1 in position i ∈N are translated by pi−,εi
and pi+.

There is one point that needs some care. If a transition t1 in σ have for
premise (q, (. . . ,C, . . .)) and another one t2 have for premise (q, (. . . ,B, . . .)), we
cannot translate in → both with (q, (. . . ,?, . . .)): that would introduce non-
determinism in deterministic machines, and could lead to false positive as
well as false negative. Remark that this “critical pair” may involve more than
one pointer.

If such a situation occurs in σ, one may patch it by creating duplicates
of each states, to label them with the last directions of each pointer. This
modification provokes a global rewriting of → to take into account new states,
but do not raise any particular difficulty. Thanks to a slight overhead in the
number of state, it is possible to encode if ? was read from the right (and
hence encode B) or from the left (and hence encode C).

At last, to make → total, one just have to complement it by adding, from
any pseudo-configuration not in the domain of definition of σ, transitions
leading to accept. Finally, we chose the initial pseudo-configuration c to be
{?, . . . ,?, s0}.

As M always halts, rejection is exactly “not accepting”, and M′ always
halts. One can check that M′

c(n) accepts iff M(n) rejects. Moreover, if M is
deterministic, so is M′.

This proposition has as an immediate corollary the inclusions co-2DFA⊆
DPM and co-2NDFA ⊆ NDPM. By combining this result with Theorem 6
and the fact that L is closed under complementation11, we obtain the expected
result:

Corollary 9. L⊆DPM and co-NL⊆NDPM.

The converse inclusion will be a by-product of the encoding of NDPMs into
operators and won’t be proved directly, but it is reasonable to think of NDPMs

11Using the fact that NL = co-NL [20], we could show that NL ⊂ NDPM. However, we
choose not to use the well-known equality between NL and co-NL in the hope that this new
approach to complexity may provide a new proof of this result. Moreover, it is easier to grasp
the computation of observations as “universally non-deterministic”.

11

as “modified” 2NFAs. Those modifications are introduced to ease the simu-
lation by operators: we already mentioned that the transition relation was
total, the input circular, the importance of the initial pseudo-configuration to
initialize the computation, but we should also mention that any NDPM can
be modified so that it does not move more than one pointer at each transition.

5. Pointer Machines and Operators

In this section, we will briefly explain the encoding of pointer machines
as operators. The non-deterministic case, which was already defined in
our previous work [2], will be given in Section 5.1. The specifics of the
deterministic case, which is a novelty, concludes in Section 5.2 this section.
An example, detailed in Appendix A, will help the reader to grasp the main
steps of that encoding.

5.1. Encoding NDPMs
We will begin by a definition of two families of observations.

Definition 10. Let φ ∈M6(C)⊗G⊗Mk(C) be an observation that we will
write as a 6k×6k matrix (ai, j)1Éi, jÉ6k with coefficients in G. We say that φ is:

• A positive observation if for all 1É i, j É 6k, we have ai, j =∑l
m=0α

i, j
m λ(gi, j

m)
where l is an integer (possibly null), and α

i, j
m are positive real numbers.

• A boolean observation if for all 1É i, j É 6k, we have ai, j =∑l
m=0λ(gi, j

m)
where l is an integer (possibly null).

Definition 11. We define the following sets:

PÊ0 = {φ |φ is a positive observation}
P+ = {φ |φ is a boolean observation}

We showed [2] that any non-deterministic pointer machine M can be
encoded as an operator in P+, implying that co-NL⊆ [P+].

The encoding of non-deterministic pointer machines was defined as fol-
lows: we encode each couple (c, t) ∈→ by an operator φc,t, and then the
encoding of the transition relation corresponds to the sum:

→•= ∑
c∈CM

(∑
t s.t. c→t

φc,t

)

12

To define the encoding correctly, we need to introduce a number of addi-
tional states. We will denote by Q↑ the extended set of states obtained from Q.
According to the notation introduced in Figs. 1 and 2, this set has cardinality
Card(Q)+ p× (Card(Q)2 +2) and is (a subset of):

Q↑ =Q∪
p⋃

j=1

(
{mov-back j,back j}∪ {movq,q’

j |q,q’ ∈Q}
)

The machine will then be encoded as an operator in M6(G)⊗P, where P
is the algebra of pseudo-states, i.e. an algebra that will encode the memory
slots that contain the last value read by the pointers, and the extended set of
states Q↑. That is:

P=M6(C)⊗M6(C)⊗·· ·⊗M6(C)︸ ︷︷ ︸
p times

⊗MCard(Q↑)(C)

Summing up, the encoding of a non-deterministic pointer machine with a
set of states Q will be an observation in the algebra M6(C)⊗G⊗Mk(C) with
k = 6p ×Card(Q↑)= 6p × (Card(Q)+ p× (Card(Q)2 +2).

The following encoding differs from the one used in our earlier work [2].
The reason for this (small) change is that the encoding of the “move forward”
and “move backward” instructions were defined as operators whose norm
was strictly greater than 1. Since we want the encoding of a deterministic
machine to be of norm at most 1 (see the next subsection), it is necessary to
define a more convenient encoding. The encoding of acceptance and rejection
are not modified, but we recall them anyway. The reader should also keep in
mind that the encoding of the integer is somehow redundant, for every bit
will have an input and an output: this will help us to discriminate between
the movements of a pointer from right to left and the movements from left to
right.

Before describing the encoding in details, we need to introduce several
notations that will be used for the definition of operators. We recall that the
integer is encoded as a circular string, whose start and end is ?, and that
every bit has an output that is connected to the input of the following bit. So
for instance “reading” 0i amounts to asking (the integer) what is the bit before
the bit 0 under treatment, “reading” ?o amounts to asking what is the first bit
of the integer. The way the “pointer” will parse the entry is highly interactive,
or dynamic, for it is always on the edge of reading the next bit. So we define
the projections π∗ of M6(C) (∗ ∈ {0i,0o,1i,1o, e, s}) as the projections on the

13

subspace induced by the basis element12. We will sometimes denote e (resp.
s) by ?i (resp. ?o), and we also define the projections πin =π0i +π1i +πe and
πout =π0o +π1o +πs. Those projections correspond to the following matrices.

πin =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 πout =



0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1


We will moreover use matrices named (in → out) and (out → in), shown

below. Those matrices will be used for continuing a movement in the same
direction as the last movement, i.e. if the integer answered that the last read
value was a 0, it will answer on the basis element 0i – for “0 in” – if the
pointer is moving forward. Then, to ask the next value, the pointer needs to
ask the next value on the basis element 0o – for “0 out”. To go from 0i to 0o,
one can apply the matrix (in → out). The matrix (out → in) plays the same
role when moving in the opposite direction. Moreover, changes of directions
are dealt with the projections πin and πout.

(in→ out)=



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 (out→ in)=



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


For the sake of simplicity, we also define the following operators in P: if

c = (a1, . . . ,ap,q) and c′ = (a′
1, . . . ,a′

p,q′), we define the partial isometry:

(c → c′)= (a1 → a′
1)⊗·· ·⊗ (ap → a′

p)⊗ (q→q′)

12To be coherent with the notations of our earlier paper, we will always denote by
{0i,0o,1i,1o, e, s} the basis of M6(C) we are working with.

14

where (p → p′) (for p, p′ ∈Q↑ or p, p′ ∈ {0i,0o,1i,1o, e, s}) is defined as:

p

p′


0 . . . 0 . . . 0
...
0 . . . 1 . . . 0
...
0 . . . 0 . . . 0


For S a set of states, we will use the notation (S→ a′

i) (denoted (→ a′
i) when

S contains all possible states) for the sum of partial isometries
∑

s∈S(s → a′
i)

that encodes a transition from any state in S to a′
i. The notation (S→) will

denote the projection on the subspace generated by S.
A transition that impacts only on the values stored in the subset of

pointers13 pi1 , . . . , pi l and the state q will be denoted by

((ai1 → a′
i1

)i1 ; . . . ; (ai l → a′
i l

)i l ;q→q’)

This operator is defined as

u1 ⊗u2 ⊗·· ·⊗up ⊗ (q→q’)

where ui = (ai j → a′
i j

) if ∃ j, i = i j, ui = 1 elsewhere.
Finally, we will denote by τi, j the operator in G induced by the transposi-

tion exchanging the integers i and j.
Now, we can explain how the different transitions are encoded. Figures 1

and 2 give the definitions of the operators used in the following description.

Move a pointer, read a value and change state. We first explain how to en-
code the action “move forward the pointer j”. When we are in the pseudo-
configuration c = (a1, . . . ,ap;q), the machine, during this transition, moves
the pointer j one step to the right, reads the value a′

j stored at #p j, updates
the memory slot in consequence and changes the state from q to q′. There
are two cases: either the last movement of the pointer j was a forward move,

13In fact this subset will always be a singleton, for our encoding corresponds to a NDPM
that moves at most one pointer at each transition and any NDPM can be replaced by another
NDPM that moves its pointers one at a time.

15

bfc
j,q’ =πout ⊗τ0, j ⊗ (({0o,1o,?o}→) j;q→movq,q’

j)

ffc
j,q’ = (in→ out)⊗τ0, j ⊗ (({0i,1i,?i}→) j;q→movq,q’

j)

fbc
j,q’ =πin ⊗τ0, j ⊗ (({0i,1i,?i}→) j;q→movq,q’

j)

bbc
j,q’ = (out→ in)⊗τ0, j ⊗ (({0o,1o,?o}→) j;q→movq,q’

j)

recc
j,q’ =

∑
•∈{0,1,?}

(
π•i ⊗τ0, j ⊗ ((→•i) j;movq,q’

j →q’)
)

Figure 1: The operators in M6(C)⊗G⊗P encoding forward and backward move instructions

rm j = 1⊗τ0, j ⊗ (back j →mov-back j)

rr0
j =π0o ⊗τ0, j ⊗ ((→ 0o) j;mov-back j →back j)

rr1
j =π1o ⊗τ0, j ⊗ ((→ 1o) j;mov-back j →back j)

rc j =
{
π?o ⊗τ0, j ⊗ ((→ a j) j;mov-back j →back j+1) (1É j < p)
π?o ⊗τ0,p ⊗ ((→ ap)p;mov-backp →q0) (j = p)

Figure 2: The operators in M6(C)⊗G⊗P encoding rejection.
The operator rc j is parametric on an initial pseudo-configuration s = (a1, . . . ,ap;q0).

16

or it was a backward move. The case we are dealing with is obtained from
the value stored in memory slot of the j-th pointer: if the value is 0i, 1i or
?i, then the last move was a forward move, if the value is 0o, 1o or ?o, the
last move was a backward move. In the first case, the operator ffc

j,q’ will be
applied (notice the projection πin on the j-th memory slot), and in the second
the bfc

j,q’ operator will be applied. Both these operators somehow activate
the j-th pointer by using the transposition τ0, j and prepare for reading the
representation of the integer. This representation will then give the value
of the next (when moving forward) digit of the input. The recc

j,q’ operator is
then applied in order to simultaneously update the value of the j-th memory
slot and deactivate the j-th pointer.

The operator that will encode the moving forward instruction is then
defined as forwardc

j,q’ = bfc
j,q’+ffc

j,q’+recc
j,q’ which is an element of the algebra

M6(C)⊗G⊗P.
In case of a “move backwards pointer j” instruction, the operator encoding

the transition is backwardc
j,q’ = fbc

j,q’+bbc
j,q’+recc

j,q’, one again an element of
the algebra M6(C)⊗G⊗P.

In the following, we will forget about the subscripts and superscripts of
these operators14 and write ff, fb, bf, bb and rec in order to simplify notations.

Accept. The case of acceptance is especially easy: we want to stop the com-
putation15, so every transition (a1, . . . ,an;q) → accept will be encoded by
0.

Reject. The transitions of the form (a1, . . . ,an;q)→ reject are encoded by the
operator that represents the “transition” (a1, . . . ,an;q)→ (a1, . . . ,an;back1).

This defines the operator →• encoding the transition relation →. But we
need a bit more to interpret a machine. Indeed, as we already explained, the
representation of an integer is accepted by an observation φ if the product of
the two operators is nilpotent. Hence, a rejection should lead to the creation
of a loop. We therefore add two new states – back j and mov-back j – for
each j = 1, . . . , p. We can then define rejects =

∑p
j=1 rm j + rr0

j + rr1
j + rc j. This

14Remark by the way that all those indices were redundant, for the pseudo-configuration c
entails a choice of j and q′.

15This is one of the reasons we did not considered accept to be a state: we want the
computation to stop immediately, there is no need to provide “one last set of instructions”.

17

operator actually encodes a reinitialization16 of the machine that starts when
the computation reaches the state back1: the pointers are moved back one
after the other until they point on the symbol ?, and the memory slots and
the state are initialized according to the given initial pseudo-configuration
s = (a1, . . . ,ap;q0). The reason for this complicated way of encoding rejection
comes from the fact that the computation simulated by the operators is
massively parallel: the operator M•

s is a big sum that recollect every single
evolution from a pseudo-configuration to any other “reachable” with →, and
it starts moreover in all pseudo-configurations at the same time.

Another complication due to this parallel computation and this particular
way of defining rejection is that the operators simulate correctly only acyclic
machines, i.e. machines that never enter a computational loop whichever
configuration – including intermediary ones – is chosen as a starting point
for computation17. This is necessary because we want the entering of a loop
to be the result of rejection. Fortunately, it can be shown that:

Proposition 12 ([2, Lemma 25]). For all M ∈ NDPM(p) there exists M′ ∈
NDPM(p′) such that M′ is acyclic and L (M)=L (M′).

In the particular case of acyclic machines, one can show that the encoding
is sound:

Proposition 13 ([2, Lemma 29]). Let M ∈ NDPM(p) be acyclic, c ∈ CM and
M•

s =→• +rejects. For all n ∈N and every binary representation Nn ∈
vnM6(C)⊗N0 of the integer n:

Ms(n) accepts⇔ M•
s(Nn ⊗1) is nilpotent.

These two results can then be combined with the results of the previous
section to get the following proposition:

16And this is why the encoding of a NDPM is done provided an initial pseudo-configuration
s. In practice, one can always take s to be the “faithful” pseudo-configuration, i.e. s =
?, . . . ,?;q0). We choose to dwell on the parametricity of the encoding to highlight the
particular mechanism of rejection, and its flexibility.

17For instance, let us consider a machine M that contains a state loop and, for a chosen
pseudo-configuration c, the transition (c,loop)→ (ε1, . . . ,εp, loop}. Then this machine is not
acyclic, even if the state loop cannot be accessed during the computation, i.e. even if M do
not contain any transition leading to the state loop.

18

Proposition 14.
co-NL⊆ [P+]

We will now study the encoding of deterministic pointer machines in more
detail.

5.2. The Encoding of DPMs
We will show that the encoding of deterministic pointer machines satisfies

a particular property: their 1-norm is less or equal to 1. We first define what is
the 1-norm on the algebras Mk(M6(R))); this defines in particular the 1-norm
of observations since M6(C)⊗G⊗P is a subalgebra of M6(C)⊗R⊗Mk(C)
(for k = 6p ×Card(Q↑)), which is isomorphic to Mk(M6(R)).

Definition 15. We define the family of norms ‖·‖k
1 on Mk(M6(R)) by:

‖(ai, j)1Éi, jÉk‖k
1 = max

1É jÉk

k∑
i=1

‖ai, j‖

where ‖ai, j‖ is the usual norm (the C∗-algebra norm) on M6(R).
We will simply write ‖·‖1 when the superscript is clear from the context.

Remark. For each k, the map ‖·‖k
1 :Mk(M6(R))→RÊ0 just defined is a norm

and, as such, does not depend on the chosen basis. To understand this,
notice that this norm can be defined – considering the isomorphism between
Mk(M6(R)) and Mk(C)⊗M6(R) – as the tensor product of the 1-norm on
Mk(C) and the usual norm on M6(R). The 1-norm on Mk(C) is formally
defined from the usual 1-norm on vectors as ‖A‖1 = sup ‖Ax‖1

‖x‖1
. It can then

be shown equal, for any (orthonormal) basis in which one may write A as a
matrix (ai, j)1Éi, jÉk, to the expression max1É jÉk

∑k
i=1|ai, j|.

A corollary of the following proposition will be used extensively in the
proofs.

Proposition 16. Let A,B be operators such that AB∗ = B∗A = 0. Then:

‖A+B‖ =max{‖A‖,‖B‖}

Proof. Actually, this proposition appears as Theorem 1.7 (b) in an article by
P. J. Maher [21]. This last theorem is stated differently (with conditions on
ranges) in the given reference. To obtain the result as we stated it, simply
notice that AB∗ = 0 implies Ran(B∗) ⊆ ker(A) = (Ran(A∗))⊥ so Ran(B∗) ⊥

19

Ran(A∗). Similarly, B∗A = 0 implies that Ran(A) ⊆ ker(B∗) = (Ran(B))⊥ so
Ran(A) ⊥ Ran(B). Thus, if AB∗ = B∗A = 0, we have Ran(A) ⊥ Ran(B) and
Ran(A∗)⊥Ran(B∗) and one can then apply the theorem of Maher.

Corollary 17. The operators ff+bf, rec, bb+fb, and rr0
j +rr1

j +rc j (j fixed) are
of norm 1.

Proof. It is clear that bf×ff∗ = 0 since πoutπin = 0. Similarly, ff∗×bf= 0. Thus,
using the preceding proposition, we have ‖ff+bf‖ =max{‖bf‖,‖ff‖}= 1.

A similar argument shows that ‖fb+bb‖ = 1.
Clearly, as a consequence of πaiπbi = 0 for a 6= b, we deduce ‖rec‖ = 1 by

Proposition 16.
We are now proving the result for rr0

j + rr1
j + rc j, so we fix 1 É j É p.

First, notice that rc j × (rr0
j)
∗ = 0 as a consequence of πmov-back j ×πback j = 0.

Conversely, (rr0
j)
∗×rc j = 0 as a consequence of18 πback j+1 ×πmov-back j = 0. A

similar argument shows that rc j× (rr1
j)
∗ = 0 and (rr1

j)
∗×rc j = 0. Moreover, we

know that (rr0
j)
∗×rr1

j = 0 and rr1
j × (rr0

j)
∗ = 0 by just looking at the first term

of the tensor in their definition. By an iterated use of Proposition 16, we get
that ‖rr0

j +rr1
j +rc j‖ =max{‖rr0

j‖,‖rr1
j‖,‖rc j‖}= 1.

We are now in possession of all the material needed to characterize the
operators coming from the encoding of a deterministic pointer machine.

Proposition 18. Let M ∈ DPM(p) be an acyclic machine, and M•
s =→•

+rejects its encoding as an operator, ‖M•
s‖1 É 1.

Proof. Since we are working with deterministic machines, the transition
relation is functional: for each ρ ∈ CM there is at most one t, say tρ, such that
ρ→ tρ. Thus:

M•
s =

∑
ρ∈CM

φρ,tρ +rejects

Since M•
s is an element of Mk(M6(R)), we will now compute ‖M•

s‖k
1 . We first

show that this matrix has at most one non-null coefficient in each column.
Then we will use the fact that these coefficients are of norm at most 1.

18When j = p, we consider that back j+1 =q0 to ease the argument.

20

To prove this we introduce the set P = {0i,0o,1i,1o,?i,?o}p ×Q↑ of ex-
tended pseudo-configurations. This set is a basis of the algebra of pseudo-
states, and we write M•

s = (aρ,ρ′)ρ,ρ′∈P . This way, the 1-norm of M•
s is

‖M•
s‖1 =max

ρ′∈P
{
∑
ρ∈P

‖aρ,ρ′‖}

Let ρ = (a1, . . . ,ap; q) be a (non-extended) pseudo-configuration. If ρ is a
pseudo-configuration of the machine (i.e. q is an element of Q), then there is
at most one pseudo-configuration tρ such that ρ→ tρ. This atomic transition
can be:

• Accept: in this case the operator φρ,tρ is equal to 0 and the column is
empty.

• Reject: in this case the column corresponding to ρ contains only the op-
erator (q→back1) that encodes the transition ρ→ (a1, . . . ,ap;back1),
and the norm of this operator is equal to 1.

• Move forward a pointer, read a value and change state to q’: then
the only extended pseudo-configurations introduced by the encoding
is ρ̃ = (a1, . . . ,an;movq,q’

j). The column corresponding to ρ contains
the operator ff+bf, which is of norm 1 by Corollary 17. The column
corresponding to ρ̃ contains only the operator rec whose norm is equal
to 1 by Corollary 17.

• Move backwards: this case is similar to the previous one.

Now let us take a look at the operator rejects. The extended pseudo-con-
figurations introduced for the encoding of the rejection are, for j = 1, . . . , p,
ρ̄m

j = (a1, . . . ,an;mov-back j) and ρ̄b
j = (a1, . . . ,an;back j). The column corre-

sponding to ρ contains only the operator encoding the transition from ρ to ρ̄b
1 ,

which is a norm 1 operator. Let us now fix 1É j É p. The column correspond-
ing to the extended pseudo-state ρ̄b

j contains only the operator rm j, which is
of norm 1. The column corresponding to ρ̄m

j contains the operator rr j + rc j,
which is of norm 1 by Corollary 17.

We just showed that each column of the matrix contains at most one
operator different from 0, and that this operator is always of norm 1. Hence,
for any fixed extended pseudo-configuration ρ:∑

ρ∈P
aρ,ρ′ É 1

21

As a consequence of the definition of the 1-norm, we have:

‖M•‖1 =max
ρ′∈P

{
∑
ρ∈P

aρ,ρ′}É 1

The last proposition motivates the following definition:

Definition 19.
P+,1 = {φ |φ ∈ P+ and ‖φ‖1 É 1}

Now, by looking carefully at the proof of Proposition 12, one can show that
a similar result holds in the particular case of deterministic pointer machines.
Indeed, if M is deterministic, the machine M′ constructed from M in the
proof is also deterministic:

Proposition 20. For all M ∈DPM(p), there exists M′ ∈DPM(p) such that M′

is acyclic and L (M)=L (M′).

As a consequence, one gets the following result:

Proposition 21.
L⊆ [P+,1]

The question is then: is this inclusion strict or did we find a characteriza-
tion of the class L? To answer this question, we need to look at the proof of
the inclusion [PÊ0] ⊆ co-NL and see what happens when we restrict to the
operators in P+,1.

6. Operators and Logarithmic Space

In this section, we will show that [P+,1] ⊆ L, concluding the proof that
[P+,1] = L. To prove this inclusion, we need a technical lemma, which we
proved in our earlier paper.

Lemma 22 ([2, Lemma 31]). Let Nn be a binary representation of an integer
n in M6(C)⊗N0 and Φ ∈M6(C)⊗S⊗Mk(C) be an observation in PÊ0. There
exist an integer f , an injective morphism ψ : M f (C) →R and two matrices
M ∈M6(C)⊗M f (C) and Φ̄ ∈M6(C)⊗M f (C)⊗Mk(C) such that Id⊗ψ(M)= Nn
and Id⊗ψ⊗ IdE(Φ̄)=Φ.

22

This lemma is of the utmost importance. Even though the hyperfinite
factor R is necessary to have a uniform representation of integers, it is an
algebra of operators acting on an infinite-dimensional Hilbert space. It is
therefore not obvious that one can check the nilpotency of such an operator
with finite resources, and it is of course not possible in general.

However, the technical lemma above has as a direct consequence that
checking the nilpotency of a product Φ(Nn ⊗1) where Φ is an observation in
PÊ0 is equivalent to checking the nilpotency of a product of matrices.

Corollary 23. LetΦ ∈M6(C)⊗G⊗Mk(C) be an observation and Nn ∈M6(C)⊗
N0 a representation of the integer n. There exists matrices (i.e. operators acting
on a finite-dimensional Hilbert space) Φ̄ and M such that:

Φ(Nn ⊗1Mk(C)) is nilpotent if and only if Φ̄(M⊗1Mk(C)) is nilpotent

The matrices Φ̄ and M⊗1Mk(C) are acting on a Hilbert space of dimension
6×(log2(n)+1)p p!×k, i.e. the integer f in Lemma 22 is equal to (log2(n)+1)p p!.
Moreover the degree of nilpotency of the two products is equal. We can then
show that there exists a Turing machine that decides the nilpotency of the
product ΦNn using only logarithmic space (i.e. in log2(n)).

Proposition 24 ([2, Proposition 32]). If Φ ∈ PÊ0 and Nn is a representation
of n ∈N, there is a co-NL machine that checks if Φ̄(M⊗1Mk(C)) is nilpotent.

This proposition, together with Proposition 14 and the fact that [P+] ⊆
[PÊ0] gives us a proof of the following equality:

Theorem 25 ([2, Theorem 33]).

co-NL= [P+]= [PÊ0]

We recall how the proof of Proposition 24 works. The algebra we are
working with is:

F=M6(C)⊗ ((Mlog2(n)+1(C)⊗·· ·⊗Mlog2(n)+1(C)︸ ︷︷ ︸
p copies

)oSp)⊗Mk(C)

We let in the following K = 6k(log2(n)+1)p p! be the dimension of the Hilbert
space the algebra F is acting on.

23

We chose the basis of this algebra defined as the set of elements of the
form:

(π,a0,a1, . . . ,ap;σ; e)

where π is an element of the basis (0o,0i,1o,1i, s, e) of M6(C), ai (i ∈ {1, . . . , p})
are the elements of the basis chosen to represent the integer n, σ ∈Sp and e
is an element of a basis of Mk(C). When we apply M⊗1Mk(C) representing
the integer to an element of this basis, we obtain one and only one vector of
the basis (π,a0,a1, . . . ,ap;σ; e). When we apply to this element the matrix Φ̄
we obtain a (positive) linear combination of l ∈N elements of the basis:

Φ̄(π,a0,a1, . . . ,ap;σ; e)=
l∑

i=0
αi(ρ,aτi(0), . . . ,aτi(p);τiσ; e i) (1)

So we obtain the following picture:

bi0
0

bi0
1

bi0
2

b
il2
2

. . .
Φ̄

bi0
3

b
il2
3

. . .
Φ̄

. . .
Φ̄

M⊗1Mk(C)

M⊗1Mk(C) M⊗1Mk(C)

To decide if the product Φ̄(M⊗1Mk(C)) is nilpotent, it is then sufficient to
check, for each possible value of bi0

0
, that the branches of this tree are finite.

Since they are either infinite or of length at most K , this can be checked by
a non-deterministic (to deal with the branchings that appears in the figure
above) Turing machine. This machine only uses logarithmic space since it
needs only to store at each step the value of bi0

0
, the current basis element

bih
2 j

, and the number of iterations j of Φ̄(M⊗1Mk(C)) that were computed to
get from bi0

0
to bih

2 j
.

Now, let us look at the case when Φ ∈ P+,1. In this particular case, Eq. (1)
becomes:

Φ̄(π,a0,a1, . . . ,ap;σ; e)= (ρ,aτb0 (0), . . . ,aτb0 (p);τb0σ; eb0) (2)

24

Let us write Φ̄ as a Card(Q)×Card(Q) matrix (Φ̄q,q′)q,q′∈Q (here Q denotes a
basis of Mk(C), which is a matrix algebra from the definition of observations).
We can deduce from ‖Φ̄‖1 É 1 that for all q ∈Q,

∑
q′∈Q‖Φ̄q,q′‖ É 1.

As Φ is an element of P+, the matrix Φ̄ satisfies the following equation:

Φ̄(π,a0,a1, . . . ,ap;σ; e)=
l∑

i=0
(ρ,aτi(0), . . . ,aτi(p);τiσ; e i) (3)

We deduce that ‖Φ̄e,e i‖ Ê 1 (i = 1, . . . , l), and therefore
∑

e′∈Q‖Φ̄e,e′‖ Ê l. Since
Φ ∈ P+,1, we know that ‖Φ̄q,q′‖ É 1 from which we deduce that l É 1.

That is, the previous picture becomes:

bi0
0

bi0
1

bi0
2

bi0
3

...

M⊗1Mk(C)

M⊗1Mk(C)

Φ̄

Φ̄

Notice that the nilpotency degree of Φ̄(M⊗1Mk(C)) is again at most K . One
can thus easily define a deterministic Turing machine that takes the basis
elements one after the other and compute the sequence bi0

0
, bi0

1
, . . . : if the

sequence stops before the K-th step, the machine starts with the next basis
element as bi0

0
, and if the sequence did not stop at step K it means the matrix

was not nilpotent. This Turing machine needs no more than logarithmic
space since it stores only the current starting basis element (i.e. bi0

0
), the last

computed term of the sequence bi0
2 j

and the number of iterations computed
so far j. We thus obtain the following proposition.

Proposition 26. If Φ ∈ P+,1 and Nn is a representation of n ∈N, there is a L
machine that checks if Φ̄M is nilpotent.

Putting together the results of this section and the last, we can finally
state the main theorem of this paper:

25

Theorem 27.
L= [P+,1]

Together with Theorem 25, we thus obtained two sets of observations P+
and P+,1, satisfying P+,1 (P+ and such that L= [P+,1]⊆ [P+]= co-NL.

7. Conclusion

This work both completes and extends the results obtained in our earlier
paper [2] where we showed that the approach recently proposed by Girard [1]
for studying complexity classes succeeds in characterizing the complexity
class co-NL. On the one hand, we showed that the non-deterministic pointer
machines, which were designed to mimic the computational behavior of oper-
ators, are really close to a well-known abstract machine, two-way multi-head
finite automata. This result gives a much better insight on the pointer
machines, and we hope this will help us in extending the model of pointer ma-
chines to study others complexity classes. It moreover strengthens the proof
of the fact that the set of operators P+ characterizes the class co-NL. On the
other hand, we extended the result by finding a subset of P+, defined through
a condition on the norm, that corresponds to the encoding of deterministic
pointer machines. We showed first that deterministic pointer machines were
equivalent to the notion of deterministic two-way multi-head finite automata,
hence that L is a subset of the language associated to P+,1. We then showed
that the converse inclusion holds, showing that the set of operators P+,1 is
indeed a characterization of the complexity class L.

The notion of acceptance used in this work (nilpotency) is closely re-
lated [22] to the notion of interaction in Girard’s geometry of interaction in
the hyperfinite factor (GoI5). This should leads to the possibility of defining
types in GoI5 corresponding to complexity classes. For this reason, and the
fact that the GoI5 construction allows more classical implicit computational
complexity approaches such as defining constrained exponential connectives,
the GoI5 framework seems a perfect candidate for a general mathematical
framework for the study of complexity. The combined tools offered by geom-
etry of interaction and the numerous tools and invariants of the theory of
operators that could be used in this setting offer new perspectives for the
obtention of separation results.

We also believe that the approach explored in this paper can be used to
obtain characterizations of other complexity classes, and in particular the

26

classes P and co-NP. These characterizations may be obtained through the
use of a more complex group action in the crossed product construction, or by
defining a suitable superset of P+. An approach for obtaining such a result
would be to generalize the notion of pointer machines to get a characterization
of P or co-NP. Since the pointer machines are closely related to the operators
and the way the latter interact with the representation of integers, such a
result would be a great step towards a characterization of these classes.

References

[1] J.-Y. Girard, Normativity in logic, in: P. Dybjer, S. Lindström, E. Palm-
gren, G. Sundholm (Eds.), Epistemology versus Ontology, Vol. 27 of Logic,
Epistemology, and the Unity of Science, Springer, 2012, pp. 243–263.
doi:10.1007/978-94-007-4435-6_12.

[2] C. Aubert, T. Seiller, Characterizing co-nl by a group action, Math-
ematical Structures in Computer Science (FirstView) (2014) 1–33.
doi:10.1017/S0960129514000267.

[3] V. Danos, J.-B. Joinet, Linear logic & elementary time, Information and
Computation 183 (1) (2003) 123–137. doi:10.1016/S0890-5401(03)
00010-5.

[4] U. Schöpp, Stratified bounded affine logic for logarithmic space, in: LICS,
IEEE Computer Society, 2007, pp. 411–420. doi:10.1109/LICS.2007.
45.

[5] K. Terui, Proof nets and boolean circuits, in: LICS, IEEE Computer
Society, 2004, pp. 182–191. doi:10.1109/LICS.2004.1319612.

[6] J.-Y. Girard, Towards a geometry of interaction, in: J. W. Gray, A. Ščedrov
(Eds.), Proceedings of the AMS-IMS-SIAM Joint Summer Research
Conference held June 14-20, 1987, Vol. 92 of Categories in Computer
Science and Logic, American Mathematical Society, 1989, pp. 69–108.
doi:10.1090/conm/092/1003197.

[7] J.-Y. Girard, Geometry of interaction V: logic in the hyperfinite factor,
Theoretical Computer Science 412 (20) (2011) 1860–1883. doi:10.1016/
j.tcs.2010.12.016.

27

http://dx.doi.org/10.1007/978-94-007-4435-6_12
http://dx.doi.org/10.1017/S0960129514000267
http://dx.doi.org/10.1016/S0890-5401(03)00010-5
http://dx.doi.org/10.1016/S0890-5401(03)00010-5
http://dx.doi.org/10.1109/LICS.2007.45
http://dx.doi.org/10.1109/LICS.2007.45
http://dx.doi.org/10.1109/LICS.2004.1319612
http://dx.doi.org/10.1090/conm/092/1003197
http://dx.doi.org/10.1016/j.tcs.2010.12.016
http://dx.doi.org/10.1016/j.tcs.2010.12.016

[8] J.-Y. Girard, Geometry of interaction 1: Interpretation of system F,
Studies in Logic and the Foundations of Mathematics 127 (1989) 221–
260. doi:10.1016/S0049-237X(08)70271-4.

[9] G. Gonthier, M. Abadi, J.-J. Lévy, The geometry of optimal lambda
reduction, in: R. Sethi (Ed.), POPL, ACM Press, 1992, pp. 15–26. doi:
10.1145/143165.143172.

[10] J. Lamping, An algorithm for optimal lambda calculus reduction, in:
F. E. Allen (Ed.), POPL, Association for Computing Machinery, ACM
Press, 1990, pp. 16–30. doi:10.1145/96709.96711.

[11] P. Baillot, M. Pedicini, Elementary complexity and geometry of interac-
tion, Fundamenta Informaticae 45 (1–2) (2001) 1–31.

[12] J. Hartmanis, On non-determinancy in simple computing devices, Acta
Informatica 1 (4) (1972) 336–344. doi:10.1007/BF00289513.

[13] M. Holzer, M. Kutrib, A. Malcher, Multi-head finite automata: Character-
izations, concepts and open problems, in: T. Neary, D. Woods, A. K. Seda,
N. Murphy (Eds.), CSP, Vol. 1 of Electronic Proceedings in Theoretical
Computer Science, 2008, pp. 93–107. doi:10.4204/EPTCS.1.9.

[14] T. Seiller, Interaction graphs: Multiplicatives, Annals of Pure and Ap-
plied Logic 163 (2012) 1808–1837. doi:10.1016/j.apal.2012.04.005.

[15] M. Takesaki, Theory of Operator Algebras 1, Vol. 124 of Encyclopedia of
Mathematical Sciences, Springer, 2001.

[16] M. Takesaki, Theory of Operator Algebras 2, Vol. 125 of Encyclopedia of
Mathematical Sciences, Springer, 2003.

[17] M. Takesaki, Theory of Operator Algebras 3, Vol. 127 of Encyclopedia of
Mathematical Sciences, Springer, 2003.

[18] T. Seiller, Logique dans le facteur hyperfini : géometrie de l’interaction
et complexité, Ph.D. thesis, Université de la Méditerranée (2012).
URL http://tel.archives-ouvertes.fr/tel-00768403/

[19] A. L. Rosenberg, On multi-head finite automata, IBM Journal of Re-
search and Development 10 (5) (1966) 388–394. doi:10.1147/rd.105.
0388.

28

http://dx.doi.org/10.1016/S0049-237X(08)70271-4
http://dx.doi.org/10.1145/143165.143172
http://dx.doi.org/10.1145/143165.143172
http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1007/BF00289513
http://dx.doi.org/10.4204/EPTCS.1.9
http://dx.doi.org/10.1016/j.apal.2012.04.005
http://tel.archives-ouvertes.fr/tel-00768403/
http://tel.archives-ouvertes.fr/tel-00768403/
http://tel.archives-ouvertes.fr/tel-00768403/
http://dx.doi.org/10.1147/rd.105.0388
http://dx.doi.org/10.1147/rd.105.0388

[20] N. Immerman, Nondeterministic space is closed under complementation,
in: CoCo, IEEE Computer Society, 1988, pp. 112–115. doi:10.1109/
SCT.1988.5270.

[21] P. J. Maher, Some operator inequalities concerning generalized inverses,
Illinois Journal of Mathematics 34 (3) (1990) 503–514.

[22] T. Seiller, Interaction graphs: Additives, Arxiv preprint abs/1205.6557,
accepted for publication in Annals of Pure and Applied Logic. arXiv:
1205.6557.

A. Examples

We develop below some examples that should enlighten the encoding of
integers, the notion of pointer machine, and the encoding of the latter as
operators. We begin by recalling the encoding of the input adopted, with two
examples. Then, we briefly sketch a pointer machine that accepts palindromes
and encode it as an observation. This allows us to make general remarks on
the “tricks” one can adopt to lighten the encoding, which is in all generality
unnecessarily heavy. Although this makes this example somehow strange
to illustrate the paper as it is not encoded using the method employed for
the proofs, we believe it gives a number of insights on how the observations
interact with integers and how the computation actually takes place.

A.1. Integers
As explained in details in our earlier paper [2], integers are represented

as matrices which are then embedded into the hyperfinite factor R. The
matrices are themselves adjacency matrices of a graph representing the links
between two adjacent symbols in the binary representation of the integer.
Let us work out two examples.

First, the integer ?010 will be represented by the adjacency matrix of
the following graph. Notice the integers on top of the circled symbols which
represent a sort of “state” – or sorts of “locations” for symbols – , with a
unique such state for each symbol in the list (counting the symbol ?).

? •s•e
0

0 •o•i
1

1 •o•i
2

0 •o•i
3

29

http://dx.doi.org/10.1109/SCT.1988.5270
http://dx.doi.org/10.1109/SCT.1988.5270
http://arxiv.org/abs/1205.6557
http://arxiv.org/abs/1205.6557

This adjacency matrix is a 6×6 matrix with 4×4 matrices as coefficients,
where the number 4 stands for the length of the list (these are the “states”
mentioned above) and the number 6 stand for the 6 different types of vertices:
0i, 0o, 1i, 1o, e (i.e. ?i) and s (i.e. ?o). Here is the corresponding matrix:

M?010 =

0︷ ︸︸ ︷ 1︷ ︸︸ ︷ ∗︷ ︸︸ ︷



0 0 0 l10 s0 0
}

00 0 l∗01 0 0 e∗0
0 l01 0 0 0 0

}
1l∗10 0 0 0 0 0

s∗0 0 0 0 0 0
}
∗0 e0 0 0 0 0

where 0 stands for the zero 4× 4 matrix, the adjoint (·)∗ corresponds to
the conjugate-transpose, and the matrices l10, l01, s0 and e0 are defined as
follows:

l01 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 l10 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0



s0 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 e0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


The matrix l01 express the edges of the above graph that are going from left
to right, whose source is a 0 and whose target is a 1. This matrix is therefore
located – in the 6×6 matrix – on the column corresponding to “0o” (for “0
out”) – because its source is a vertex “0o” – and on the row “1i” – because its
target is a “1i” vertex. This matrix then contains a single non-zero element
because the list contains exactly one such edge going left-to-right from a 0
to a 1, and shows how this edge connects the locations; in this case, the only
such edge goes from the location named 1 to the location named 2, which
explains why the non-zero element is located in the second column (locations
are numbered starting from 0) and the third row.

The definition and placement of the matrix l10 is explained in the same
fashion, while the matrix s0 (resp. e0) represent those edges going from left

30

to right whose source is a “s” vertex (resp. a “0” vertex) and target is a “0”
vertex (resp. a “e” vertex). Similar matrices named l00 and l11 could appear
in the encoding of an integer if its binary writing contained two symbols 0 or
two symbols 1 following each other; in our example, however, these matrices
are empty.

Lastly, the adjoint matrices such as l∗01 actually correspond to the right-
to-left edge in the above graph.

As a second example, we consider the integer ?1100. It is represented as
a 6×6 matrix with 5×5 matrices as coefficients. The corresponding graph is
as follows.

? •s•e
0

1 •o•i
1

1 •o•i
2

1 •o•i
3

0 •o•i
4

The corresponding matrix is then:

M?1110 =



0 0 0 l10 0 0
0 0 0 0 0 e∗0
0 0 0 l11 s1 0

l∗10 0 l∗11 0 0 0
0 0 s∗1 0 0 0
0 e0 0 0 0 0


where the matrices l10, l11, s1 and e0 are defined as:

l10 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 l11 =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0



s0 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 e0 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



31

A.2. The Palindrome DPM
We will now define a deterministic pointer machine P = {Q,→} that de-

cides the language of palindromes:

Pal= {?a0a1 . . .an | ∀i ∈ {0, . . . ,n},ai = an−i}

To decide Pal, the machine P will make use of two pointers. It will start
with both pointers on ? and move one pointer from left to right over the
input and move the second pointer from right to left – or from the end to
the beginning. It will move the pointers alternatively and check if the i-th
symbol is indeed equal to the n− i-th one. It will be defined with five states:
an initial state init, and states pass1, pass2, fail1 and fail2. The subscript
will be used to remember which pointer will be moving next. We now define
formally the machine P.

Definition 28 (The Palindrome Pointer Machine). Let P = {Q,→} be the
DPM(2) defined as follows: Q = {init,pass1,pass2,fail1,fail2}, and the fol-
lowing transitions, where “·” (resp. “0/1”) is a notation standing for any value
in {0,1,?} (resp. in {0,1}):

(?,?,init)→ (p1+,ε2,pass2) (A.1)
(·, ·,pass2)→ (ε1, p2−,pass1) (A.2)

(0,0,pass1)→ (p1+,ε2,pass2) (A.3)
(1,1,pass1)→ (p1+,ε2,pass2) (A.4)
(0,1,pass1)→ (p1+,ε2,fail2) (A.5)
(1,0,pass1)→ (p1+,ε2,fail2) (A.6)

(0/1,0/1,fail1)→ (p1+,ε2,fail2) (A.7)
(·, ·,fail2)→ (ε1, p2−,fail1) (A.8)

(?,?,pass1)→ accept (A.9)
(?,?,fail1)→ reject (A.10)

This transition relation is then completed into a total relation by considering
that each configuration not appearing above leads to an acceptation. The
machine P is then a deterministic pointer machine.

To represent rejection when encoding this machine as an observation, we
will have to create a loop by returning to the initial state (the “re-initialisation

32

trick”). The formal encoding defined in the paper works for any machine,
but it is a bit heavy. In the case of P, we use a simple trick to simplify the
representation: we consider the machine defined as above but:

• without the state init and with initial configuration (?,?,fail1) – thus
the transition A.1 is replaced by (?,?,fail1)→ (p1+,ε2,pass2);

• in which the transition A.10 is replaced by (?,?,fail1)→ (p1+,pass2).

This modified machine then either accepts – if the input is a palindrome –
or loops by going through the initial state over and over – this loop replaces
rejection. By encoding this modified machine as is, we obtain an observation
that will accept the same language as P; this observation is however simpler
than the one we would obtain from applying mindlessly the translation
presented in Section 5.1.

A.3. The Palindrome Observation
As explained above, we will actually encode the following transitions, and

no other – none of the transitions steps ending with acceptation are encoded
since acceptance corresponds to putting a stop to the computation.

(?,?,fail1)→ (p1+,ε2,pass2) (A.11)
(·, ·,pass2)→ (ε1, p2−,pass1) (A.12)

(·, ·,fail2)→ (ε1, p2−,fail1) (A.13)
(0,0,pass1)→ (p1+,ε2,pass2) (A.14)
(1,1,pass1)→ (p1+,ε2,pass2) (A.15)
(0,1,pass1)→ (p1+,ε2,fail2) (A.16)
(1,0,pass1)→ (p1+,ε2,fail2) (A.17)

(0/1,0/1,fail1)→ (p1+,ε2,fail2) (A.18)

We will moreover use a number of small “hacks” that will decrease the
size of the resulting observation. Indeed, the encoding described in this paper
is general and therefore applies blindly to every pointer machines; it may
however be optimized in specific cases. The first optimization concerns the
set of additional states. The second concerns the way the representation
deals with pointers. The third “hack” will be used to decrease the size of the
matrices that represent the pointers “memory cells”.

33

Here is the first “hack”. The set of states we are starting from is Q =
{pass1,pass2,fail1,fail2}. As it contains 4 elements, the set Q↑ should have
4+2(42 +2)= 40 elements. Of course, not all these elements are needed here.
First, we won’t need the specific states introduced to deal with rejection since
– as we already explained – rejection is already represented by the creation of
a loop through the initial state. We are thus left with 4+2×42 = 36 states. It
turns out that only 4+6= 10 states is enough in this case, as all we need are
states to transition:

• from pass1 to pass2 (transitions A.14 and A.15); we write it as pass1→2;

• from pass1 to fail2 (transitions A.16 and A.17); we write it as error;

• from pass2 to pass1 (transition A.12); we write it as pass2→1;

• from fail2 to fail1 (transition A.13); we write it as fail2→1;

• from fail1 to fail2 (transition A.18); we write it as fail1→2;

• from fail1 to pass2 (transition A.11); we write it as reinit.

Let us now explain the second “hack”. We notice that this machine never
uses any “ε transition” – i.e. the machine moves a pointer at each transition
step – and always alternates the movements of the first and second pointer.
The encoding presented in Section 5.1 makes use of a kind of “dummy pointer”,
and then activates/deactivates pointers in order to move them. We will here
get rid of this “dummy pointer” by considering that it represents the first
pointer. As a consequence, the use of the operator τ0,1 will represent the
simultaneous activation of a pointer and the deactivation of the other pointer.
Moreover, it has an effect on the set of additional states needed to encode
the operators: since we simultaneously activate a pointer and deactivate
the other, we can get rid of the six additional states explained above and
work with the 4 states of the original pointer machine. This will however
complicate the understanding of the encoding in that an operator encoding
a given transition will also encode the “recording” of the value read during
the previous transition into memory cells. i.e. we will consider operators that
are a mixing of the operators bfc

j,q’+ ffc
j,q’ for the currently encoded transition

and the operator recc′
k,q encoding the recording of the value read during the

previous transition. This complication is however worth considering since it
will greatly reduce the size of the resulting matrices.

34

Lastly, let us recall the value last read by a pointer is stored as a state in
the encoding of machines. In the general encoding presented in this paper, we
store those as 6×6 matrices, which is coherent with the fact that the integer
answers belong to a six-elements set {0i,0o,1i,1o, s, e}. However, all we will
need is the information about the symbol read, and we won’t care whether
we read this symbol by moving left or moving right. This allows us to use
3×3 matrices as memory cells, decreasing once again the size of the resulting
observation.

Finally, each transition will be represented as an element of M6(C)⊗
G⊗M3(C)⊗M3(C)⊗M4(C). The algebra M6(C) will allow the observation
to interact with the integer, i.e. ask what is the next or previous symbol
on the input tape. The two copies of M3(C) represent the “memory cells”
corresponding to the pointers, i.e. they will be used to record the last values
read by the pointers. The algebra M4(C) is used to deal with states. We
represent the 6×6, 3×3 matrices and 4×4 matrices using the respective bases
{0i,0o,1i,1o, s, e}, {0,1,?} and {pass1,pass2,fail1,fail2} with basis elements
considered in this order exactly.

We first represent the transitions A.12 and A.13. We represent them
simultaneously to gain some space; this is possible because they are the same
transition but for the involved states. These transitions do not depend on
the values read by the pointers, but will write down the new values in the
two copies of M3(C) that represent the “memory cells”. It will therefore be
represented as a sum of the following nine operators:

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 1 1 1

0 0 0
0 0 0

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 1 1 1

0 0 0
0 0 0

⊗
 0 0 0

0 0 0
0 0 1

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



35



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 1 1 1

0 0 0
0 0 0

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

1 1 1
0 0 0

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

1 1 1
0 0 0

⊗
 0 0 0

0 0 0
0 0 1

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

1 1 1
0 0 0

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 0 0
1 1 1

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 0 0
1 1 1

⊗
 0 0 0

0 0 0
0 0 1

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



36



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 0 0
1 1 1

⊗
 1 0 0

0 0 0
0 0 0

⊗


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Notice that these operators are all morally the same. One should consider

them by groups of three. The first three correspond to the case when the
value read by the first pointer during the last transition was a 0. In this case,
the integer answered on the second column of the M6(C) matrix since this
column corresponds to the basis element 0o (for “0 out”) and the first pointer
moves forward. Then the first operator corresponds to the case of the last
value read by the second pointer is also a 0. Thus, to ask what is the next
value read by this second pointer one needs to activate it – this is the role of
τ0,1 – and the machine needs to output on the second row of the 6×6 matrix:
this is because we want to know what symbol preceded the last 0 read by
the second pointer (remember that the second pointer moves backwards).
The second operator in this first group corresponds to the case when the last
value read by the second pointer was 1. Then, the 6×6 matrix used moves
from the basis element 0o – which corresponds to the previous answer given
by the integer - to the basis element 1o – to ask what symbol preceded the
last 1 read by the second pointer. The third operator corresponds to the case
when the last symbol read by the second pointer was a ?. Finally, the two
following groups of three matrices play the same role as this first group in
the eventuality that the last value read by the first pointer was a 1 or a ?.

Notice also the right-hand matrix in each of these transitions. This matrix
takes care of the states. This is why there are two non-zero coefficients
in those matrices here: one represents the transition A.12 and the second
represent the transition A.13.

Let us now deal with the representation of the transition A.14. It records
the last value read by the second pointer, which should be 0, and asks the
value following the last value read by the first pointer, which is 0 also. Thus,
the first matrix goes from 0i (since the second pointer goes backwards) to 0i
(since the first pointer moves forward). Then, the first 3×3 matrix ensures
that the last value read by the first pointer was indeed 0, and the second
3×3 matrix records the new value read by the second pointer: whichever
value was stored beforehand, it is now replaced by a 0. Lastly, the 4×4

37

matrix deals with the change of states. As before, we use the fact that this
transition is almost similar to the transition A.18 when both values are equal
to 0 and represent both by a single operator: this is shown by the fact that
the right-hand matrix not only contains a transition from pass1 to pass2 (for
transition A.14) but also a transition from fail1 to fail2.

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 1 0 0

0 0 0
0 0 0

⊗
 1 1 1

0 0 0
0 0 0

⊗


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



The operator encoding the transitions A.15, A.16 and A.17 and the corre-
sponding cases of transition A.18 are quite similar and are shown below in
that order.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 1 0
0 0 0

⊗
 0 0 0

1 1 1
0 0 0

⊗


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0




0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 1 0 0

0 0 0
0 0 0

⊗
 0 0 0

1 1 1
0 0 0

⊗


0 0 0 0
0 0 0 0
0 0 0 0
1 0 1 0




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 1 0
0 0 0

⊗
 1 1 1

0 0 0
0 0 0

⊗


0 0 0 0
0 0 0 0
0 0 0 0
1 0 1 0


Finally, we represent the transition A.11. It is represented as the following

38

operator:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⊗τ0,1 ⊗
 0 0 0

0 0 0
0 0 1

⊗
 0 0 0

0 0 0
1 1 1

⊗


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0



39

	Introduction
	Linear Logic and Implicit Computational Complexity
	Geometry of Interaction
	A new approach to complexity

	The Basic Picture
	Pointer Machines
	Simulation and first results
	Pointer Machines and Operators
	Encoding NDPMs
	The Encoding of DPMs

	Operators and Logarithmic Space
	Conclusion
	References
	Examples
	Integers
	The Palindrome DPM
	The Palindrome Observation

