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A computational model has been developed for

phonon-limited charge transport in 2D systems.

Currently, this model is used to study transport in

graphene and silicon thin films. The results obtained

so far show a good agreement with experiments.

The model is based on an atomistic approach

considering full electronic band structure and all

phonon branches. The electronic band structure is

calculated with a tight-binding model (Fig. 1). The

phonon dispersion is computed with the Vanderbilt

force field model [1] for silicon thin films, and

with a force constant method [2] for graphene

using parameters fitted to the density function the-

ory (Fig. 2). All possible electron-phonon scatter-

ing processes are searched in the energy window

relevant for transport by checking if any phonon

satisfies energy and momentum conservation rules.

The rate of each scattering process is calculated by

Fermi golden rule. These scattering rates are then

used in Boltzmann transport equation to compute

the response of the electron distribution to a low

electric field, then the resistivity and the mobility

are determined.

The tight-binding parameters of graphene and

their dependence on strain have been extracted from

ab-initio calculations. Generally, for graphene on a

oxidized substrate, the resistivity consists of three

major components:

ρ(T ) = ρ0 + ρph(T ) + ρSO(T ), (1)

where T is temperature, ρ0 is due to impurities, ρph
is due to the intrinsic phonons of graphene, and ρSO
is due to the surface optical phonons of the substrate

[3]. Here, graphene on SiO2 was considered. Fig. 3

compares the results of the simulation (represented

by a green dotted line) with the experimental data

[4] (represented by red markers) in a wide range of

temperature and at three different electron densities.

It is clear that they agree very well with each

other. Fig. 4 shows the temperature dependence

of ρph and ρSO. It can be concluded that the

intrinsic phonon scattering dominates the tempera-

ture dependent resistivity of graphene at sufficiently

high carrier concentration. Fig. 5 shows the carrier

density dependence of ρph and ρSO at 300K. ρph
is asymmetric respect to the charge neutrality point,

because the carrier-phonon coupling is not the same

for hole states and electron states.

In silicon thin films, it is known that the con-

duction band acoustic deformation potential Dac

has to be increased from Dac ∼ 10 eV in bulk to

Dac ∼ 15 eV in thin films to match the experimental

electron mobility [5]. We are therefore exploring

this problem from a tight-binding perspective to get

a better insight into the underlying physics. So far,

we have investigated the mobility in [001] silicon

thin film (thickness < 5 nm) at low carrier density

(Fig. 6). More comprehensive data on thicker films

and as a function of carrier density/effective electric

field will be discussed at the conference.
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Fig. 1. Electronic band structure of a 4 nm thick silicon film

calculated with tight-biding method.
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Fig. 2. Phonon dispersion of Graphene calculated by a force

constant method [2] using parameters fitted to the DFT.
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Fig. 3. Comparison of simulations (dotted lines by setting ρ0

at the solid lines) and experimental data (red markers) [4].
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Fig. 4. ρph (square makers) and ρSO (circle markers) versus

temperature at electron densities 1 and 13.6× 1012 cm� 2.
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Fig. 5. ρph (left) and ρSO (right) versus charge density at

300K.
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Fig. 6. Low field mobility of [001] silicon thin film in [11̄0]
(xx) and [110] (yy) directions. The gray dotted line is the

mobility of bulk silicon.
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