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We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is inspired from proof theory and more specifically linear logic and Geometry of Interaction. We show how unification can be used to build a model of computation by means of specific subalgebras associated to finite permutations groups. We then prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. We also show that the construction can naturally represent pointer machines, an intuitive way of understanding logarithmic space computing.

Introduction

Proof theory and complexity theory. There is a longstanding tradition of relating proof theory (more specifically linear logic [START_REF] Girard | Linear logic[END_REF]) and implicit complexity theory that dates back to the introduction of bounded [START_REF] Girard | Bounded Linear Logic: A Modular Approach to Polynomial Time Computability[END_REF] and light [START_REF] Girard | Light linear logic[END_REF] logics. Control over the modalities [START_REF] Schöpp | Stratified Bounded Affine Logic for Logarithmic Space[END_REF][START_REF] Dal Lago | Bounded Linear Logic, Revisited[END_REF], type assignment [START_REF] Gaboardi | An Implicit Characterization of PSPACE[END_REF] and stratification of exponential boxes [START_REF] Baillot | Linear logic by levels and bounded time complexity[END_REF], to name a few, led to a clearer understanding of the complexity bounds linear logic could entail on the cut-elimination procedure.

We propose to push further this approach by adopting a more semantical and algebraic point of view that will allow us to capture non-deterministic logarithmic space computation. Geometry of Interaction. As the study of cut-elimination has grown as a central topic in proof theory, its mathematical modeling became of great interest. The Geometry of Interaction [START_REF] Girard | Towards a Geometry of Interaction[END_REF] research program led to mathematical models of cut-elimination in terms of paths in proofnets [START_REF] Asperti | Paths in the lambda-calculus[END_REF], token machines [START_REF] Laurent | A token machine for full geometry of interaction[END_REF] and operator algebras [START_REF] Girard | Geometry of interaction 1: Interpretation of System F[END_REF]. It was already used with complexity concerns [START_REF] Baillot | Elementary Complexity and Geometry of Interaction[END_REF][START_REF] Girard | Epistemology versus Ontology[END_REF].

Recent works [START_REF] Girard | Epistemology versus Ontology[END_REF][START_REF] Aubert | Characterizing co-NL by a group action[END_REF][START_REF] Aubert | Logarithmic Space and Permutations[END_REF] studied the link between Geometry of Interaction and logarithmic space, relying on the theory of von Neumann algebras. Those three articles are indubitably sources of inspiration of this work, but the whole construction is made anew, in a simpler framework.

Unification. Unification is one of the key-concepts of theoretical computer science, for it is used in logic programming and is a classical subject of study for complexity theory. It was shown [START_REF] Girard | Geometry of Interaction III: Accommodating the Additives[END_REF][START_REF] Girard | Three lightings of logic (Invited Talk)[END_REF] that one can model cut-elimination with unification techniques.

Execution will be expressed in terms of matching in a unification algebra. This is a simple framework, yet expressive enough to encode the action of finite permutation groups on an unbounded tensor product, which is a crucial ingredient of our construction.

Contribution. We carry on the methodology of bridging Geometry of Interaction and complexity theory with a renewed approach. It relies on an simpler representation of execution in a unification-based algebra, proved to capture exactly logarithmic space complexity.

While the representation of inputs (words over a finite alphabet) comes from the classical Church representation of lists, observations (the algebraic counterpart of programs) are shown to correspond very naturally to a notion of pointer machines. This correspondence allows us to prove that reversibility (of machines) is related to the algebraic notion of isometricity (of observations). Organization of this article. In Sect.1 we review some classical results on unification of first-order terms and use them to build the algebra that will constitute our computational setting.

We explain in Sect.2 how words and computing devices (observations) can be modeled by particular elements of this algebra. The way they interact to yield a notion of language recognized by an observation is described in Sect. [START_REF] Girard | Light linear logic[END_REF].

Finally, we show in Sect.4 that our construction captures exactly logarithmic space computation, both deterministic and non-deterministic.

The Unification Algebra

Unification

Unification can be generally thought of as the study of formal solving of equations between terms.

This topic was introduced by Herbrand, but became really widespread after the work of J. A. Robinson on automated theorem proving. The unification technique is also at the core of the logic programming language Prolog and type inference for functional programming languages such as CaML and Haskell.

Specifically, we will be interested in the following problem:

Given two terms, can they be "made equal" by replacing their variables? For any t ∈ T , we will write Var(t) the set of variables occurring in t . We say that a term is closed when Var(t) = ∅ , and denote T c the set of closed terms.

Notation. The binary function symbol • is not associative, but we will write it by convention as right associating to lighten notations:

t• u•v := t • (u•v) Definition 2 (substitution) A substitution is a map θ : V → T such that the set Dom(θ) := { v ∈ V | θ(v) = v } (the domain of θ ) is finite. A substitution with domain { x 1 , . . . , x n } such that θ(x 1 ) = u 1 , . . . , θ(x n ) = u n will be written as { x 1 → u 1 ; . . . ; x n → u n } .
If t ∈ T is a term we write t.θ the term t where any occurrence of any variable x has been replaced by θ(x) .

If θ = { x i → u i } and ψ = { y j → v j } , their composition is defined as θ; ψ := { x i → u i .ψ } ∪ { y j → v j | y j ∈ Dom(θ) }
Remark. The composition of substitutions is such that t.(θ; ψ) = (t.θ).ψ holds.

Definition 3 (renamings and instances)

A renaming is a substitution α such that α(V) ⊆ V and that is bijective. A term t is a renaming of t if t = t.α for some renaming α .

Two substitutions θ, ψ are equal up to renaming if there is a renaming α such that ψ = θ; α .

A substitution ψ is an instance of θ if there is a substitution σ such that ψ = θ; σ .

Proposition 4

Let θ, ψ be two substitutions. If θ is an instance of ψ and ψ is an instance of θ , then they are equal up to renaming.

Definition 5 (unification) Two terms t, u are unifiable if there is a substitution θ such that t.θ = u.θ .

We say that θ is a most general unifier (MGU) of t, u if any other unifier of t, u is an instance of θ .

Remark. It follows from Proposition 4 that any two MGU of a pair of terms are equal up to renaming.

We will be interested mostly in the weaker variant of unification where one can first perform renamings on terms so that their variables are distinct, we introduce therefore a specific vocabulary for it. As unification grew in importance, the study of its complexity gained in attention. A complete survey [START_REF] Knight | Unification: A Multidisciplinary Survey[END_REF] tells the story of the bounds getting sharpened: general first-order unification was finally proved [START_REF] Dwork | On the sequential nature of unification[END_REF] to be a Ptime-complete problem.

In this article, we are concerned with a very much simpler case of the problem: the matching (Definition 6) of linear terms (ie. where variables occur at most once). This case can be solved in a space-efficient way.

Proposition 8 (matching in logarithmic space [START_REF] Dwork | Parallel Algorithms for Term Matching[END_REF]Lemma 20]) Whether two linear terms t, u with disjoint sets of variables are unifiable, and if so finding a MGU, can be computed in logarithmic space in the size1 of t, u on a deterministic Turing machine The lemma in [START_REF] Dwork | Parallel Algorithms for Term Matching[END_REF] actually states that the problem is in NC 1 , a complexity class of parallel computation known to be included in Logspace.

We will use only a special case of the result, matching a linear term against a closed term.

Flows and Wirings

We now use the notions we just saw to build an algebra with a product based on unification. Let us start with a monoid with a partially defined product, which will be the basis of the construction.

Definition 9 (flows)

A flow is an oriented pair written t u with t, u ∈ T such that Var(t) = Var(u) . Flows are considered up to renaming: for any renaming α , t u = t.α u.α . We will write F the set of (equivalence classes of ) flows. We set I := x x and (t u) † := u t so that (.) † is an involution of F .

A flow t u can be thought of as a 'match ... with u -> t' in a ML-style language. The composition of flows follows this intuition. Definition 10 (product of flows) Let u v ∈ F and t w ∈ F . Suppose we have chosen two representatives of the renaming classes such that their sets of variables are disjoint. The product of u v and t w is defined if v, t are unifiable with MGU θ (the choice of a MGU does not matter because of the remark following Definition 5) and in that case: (u v)(t w) := u.θ w.θ .

Definition 11 (action on closed terms)

If t ∈ T c is a closed term, (u v)(t) is defined whenever t and v are unifiable, with MGU θ , in that case (u v)(t) := u.θ

Examples. Composition of flows:

(x • c (c• c)•x)(y • z z • y) = x • c x• c•c . Action on a closed term: (x • c x • c• c)(d•c • c) = d• c .
Remark. The condition on variables ensures that the result is a closed term (because Var(u) ⊆ Var(v) ) and that the action is injective on its domain of definition (because Var(v) ⊆ Var(u) ). Moreover, the action is compatible with the product of flows: l(k(t)) = (l k)(t) and both are defined at the same time.

By adding a formal element ⊥ (representing the failure of unification) to the set of flows, one could turn the product into a completely defined operation, making F an inverse monoid. However, we will need to consider the wider algebra of sums of flows that is easily defined directly from the partially defined product.

Definition 12 (wirings)

Wirings are C-linear combinations of elements of F (formally: almost-everywhere null functions from F to C ), endowed with the following operations:

i λ i l i j µ j k j := i,j such that (likj ) is defined λ i µ j (l i k j ) (with λi,µj ∈C and li,kj ∈F ) and i λ i l i † := i λ i l † i (where λ is the complex conjugate of λ )
We write U the set of wirings and refer to it as the unification algebra.

Remark. Indeed, U is a unital * -algebra: it is a C-algebra (considering the product defined above) with an involution (.) † and a unit I .

Definition 13 (partial isometries)

A partial isometry is a wiring

U ∈ U satisfying U U † U = U . Example. (c • x x • d) + (d • c c • c) is a partial isometry.
While U offers the general algebraic background to work in, we will need to consider particular kind of wirings to study computation.

Definition 14 (concrete and isometric wirings)

A wiring is concrete whenever it is a sum of flows with all coefficients equal to 1 . An isometric wiring is a concrete wiring that is also a partial isometry. Given a set of wirings E we write E + for the set of all concrete wirings of E .

Isometric wirings enjoy a direct characterization.

Proposition 15 (isometric wirings)

The isometric wirings are exactly the wirings of the form i u i t i with the u i pairwise disjoint (Definition 6) and t i pairwise disjoint.

It will be useful to consider the action of wirings on closed terms. For this purpose we extend Definition 11 to wirings.

Definition 16 (action on closed terms) Let V c be the free C-vector space over T c . Wirings act on base vectors of V c in the following way

i λ i l i (t) := i such that li(t) is defined λ i l i (t) ∈ V c
which extends by linearity into an action on the whole V c . Isometric wirings have a particular behavior in terms of this action.

Lemma 17 (isometric action)

Let F be an isometric wiring and t a closed term. We have that F (t) and F † (t) are either 0 or another closed term t (seen as an element of V c ).

Tensor Product and Permutations

We define now the representation in U of structures that provide enough expressivity to model computation. Unbounded tensor products will allow to represent data of arbitrary size, and finite-support permutations will be used to manipulate these data.

Notations. Given any set of wirings or closed terms E , we write Vect(E) the vector space generated by E , ie. the set of finite linear combinations of elements of E (for instance Vect(T c ) = V c ). Moreover, we set I := { λI | λ ∈ C } (with I = x x as in Definition 9) which is the * -algebra of multiples of the identity, and u v := u v + v u . For brevity we write " * -algebra" instead of the more correct " * -subalgebra of U " ( ie. a subset of U that is stable by linear combinations, product and (.) † ).

Definition 18 (tensor product) Let u v and t w be two flows. Suppose we have chosen representatives of these renaming classes that have their sets of variables disjoint. We define their tensor product as (u v) ⊗ (t w) := u•t v • w . The operation is extended to wirings by bilinearity. Given two * -algebras A, B , we define their tensor product as the * -algebra

A ⊗ B := Vect F ⊗ G F ∈ A, G ∈ B
This actually defines an embedding of the algebraic tensor product of * -algebras into U , which means in particular that (F ⊗ G)(P ⊗ Q) = (F P ) ⊗ (GQ) . It ensures also that the ⊗ operation indeed yields * -algebras. Notation. As • , the ⊗ operation is not associative. We carry on our convention and write it as right associating:

A ⊗ B ⊗ C := A ⊗ (B ⊗ C) .

Definition 19 (unbounded tensor)

Let A be a * -algebra. We define the * -algebras A ⊗n for all n ∈ N as A ⊗0 := I and A ⊗n+1 := A ⊗ A ⊗n and the * -algebra A ⊗∞ := n∈N A ⊗n .

We will consider finite permutations, but allow them to be composed even when their domain of definition do not match.

Notations. Let S n be the set of finite permutations over {1, . . . , n}, if σ ∈ S n , we define σ +k ∈ S n+k as the permutation σ extended to { 1, . . . , n, . . . , n + k } letting σ +k (n + i) := n + i for i ∈ { 1, . . . , k } . We also write I k := Id {1,...,k} ∈ S k .

Definition 20 (representation)

To a permutation σ ∈ S n we associate the flow

[σ] := x 1 • x 2 • • • • • x n • y x σ(1) • x σ(2) • • • • • x σ(n) • y
A permutation σ ∈ S n will act on the first n components of the unbounded tensor product (Definition 19) by swapping them and leaving the rest unchanged.

The wirings [σ] internalize this action: in the above definition, the variable y at the end stands for the components that are not affected.

Example. Let τ ∈ S 2 be the permutation swapping the two elements of {1, 2} and

U 1 ⊗ U 2 ⊗ U 3 ⊗ I ∈ U ⊗3 ⊆ U ⊗∞ . We have [τ ] = x 1 • x 2 • y x 2 • x 1 • y and [τ ](U 1 ⊗ U 2 ⊗ U 3 ⊗ I)[τ ] † = U 2 ⊗ U 1 ⊗ U 3 ⊗ I .

Proposition 21 (representation)

For σ ∈ S n and τ ∈ S n+k we have 

[σ +k ] = [σ][I n+k ] = [I n+k ][σ] [σ +k • τ ] = [σ][τ ] and [σ -1 ] = [σ] † Definition 

Words and Observations

The representation of words over an alphabet in the unification algebra directly comes from the translation of Church lists in linear logic and their interpretation in Geometry of Interaction models [START_REF] Girard | Geometry of interaction 1: Interpretation of System F[END_REF][START_REF] Girard | Geometry of Interaction III: Accommodating the Additives[END_REF]. This proof-theoretic origin is an useful guide for intuition, even if we give here a more straightforward definition of the notion.

From now on, we fix a set of two distinguished constant symbols LR := { L, R } .

Definition 23 (word algebra)

To a set S of closed terms, we associate the * -algebra

S * := Vect { t u | t, u ∈ S }
(which is indeed an algebra because unification of closed terms is simply equality)

The word algebra associated to a finite set of constant symbols Σ is the * -algebra defined as

W Σ := (I ⊗ Σ * ⊗ LR * ) ⊗ (T * c ) ⊗1
( Tc is the set of all closed terms, I is defined at the beginning of Sect.1.3

⊗ is as in Definition 18 and (.) ⊗1 is the case n = 1 of Definition 19)

The words we consider are cyclic, with a begin/end marker , a reserved constant symbol. For example the word 0010 is to be thought of as 0010 = 10 00 = 0 001 = • • • . We consider therefore that the alphabet Σ always contains the symbol .

Definition 24 (word representation) Let W = c 1 . . . c n be a word over Σ and t 0 , t 1 , . . . , t n be distinct closed terms. The representation W (t 0 , t 1 , . . . , t n ) ∈ W + Σ with respect to t 0 , t 1 , . . . , t n of W is an isometric wiring (Definition 14), defined as

W (t 0 , t 1 , . . . , t n ) := x • • R•(t 0 • y) x • c 1 • L • (t 1 • y) + x • c 1 • R • (t 1 • y) x • c 2 • L• (t 2 • y) + • • • + x • c n • R• (t n • y) x • • L•(t 0 • y)
We now define observations, programs computing on representations of words. They lie in a particular * -algebra based on the representation of permutations presented in Sect.1. Moreover when an observation happens to be an isometric wiring, we will call it an isometric observation.

3 Normativity: Independence from Representations

We are going to define how observations accept and reject words. This needs to be discussed, because there is an issue with word representations: an observation is an element of U and can therefore only interact with representations of a word, and there are many possible representation of the same word (in Definition 24, different choices of closed terms lead to different representations). Therefore one has to ensure that acceptance or rejection is independent of the representation, so that the notion makes the intended sense. The termination of computations will correspond to the algebraic notion of nilpotency, which we recall here.

Definition 35 (separating space)

A subspace E of V c is separating for a wiring F whenever F (E) ⊆ E and

F n (E) = 0 implies F n = 0 .
Observations are finite sums of wirings. We can naturally associate a finitedimensional vector space to an observation and a finite set of closed terms.

Definition 36 (computation space) Let { t 0 , . . . , t n } be a set of distinct closed terms and φ ∈ O + Σ an observation. Let N (φ) be the smallest integer and S(φ) the smallest (finite) set of closed terms such that φ ∈ (S(φ

) * ⊗ Σ * ⊗ LR * ) ⊗ S N (φ) . The computation space Comp φ (t 0 , . . . , t n ) is the subspace of V c generated by the terms s•c • d• ( a 1 • • • • • a N (φ) • )
where

s ∈ S(φ) , c ∈ Σ , d ∈ LR and the a i ∈ { t 0 , . . . , t n } . The dimension of Comp φ (t 0 , . . . , t n ) is |Σ|2(n + 1) N (φ) |S(φ)| (where |A| is the cardinal of A ), which is polynomial in n .
Lemma 37 (separation) For any observation φ and any word W , the space Comp φ (t 0 , . . . , t n ) is separating for the wiring φ W (t 0 , . . . , t n ) .

Proof (of Theorem 34). With these lemmas at hand, we can define the non-deterministic algorithm below. It takes as an input the representation W (t 0 , . . . , t n ) of a word W of length n . φ being a constant, one can compute once and for all N (φ) and S(φ) .

1: D ← 2|S(φ)| |Σ|(n + 1) N (φ) 2: C ← 0 3: pick a term v ∈ Comp φ (t 0 , . . . , t n ) 4: while C ≤ D do 5: if (φW (t 0 , . . . , t n ))(v) = 0 then 6: return ACCEPT 7: end if 8:
pick a term v in (φW (t 0 , . . . , t n ))(v)

9:
v ← v 10:

C ← C + 1 11: end while 12: return REJECT All computation paths (the "pick" at lines 3 and 8 being non-deterministic choices) accept if and only if (φW (t 0 , . . . , t n )) n (Comp φ (t 0 , . . . , t n )) = 0 for some n lesser or equal to the dimension D of the computation space Comp φ (t 0 , . . . , t n ) . By Lemma 37, this is equivalent to φW (t 0 , . . . , t n ) being nilpotent. The term chosen at lines 3 is representable by an integer of size at most D and is erased by the one chosen at line 8 every time we go through the while-loop. C and D are integers proportional to the dimension of the computation space, which is representable in logarithmic space in the size of the input (Definition 36). The computation of (φW (t 0 , . . . , t n ))(v) at line 5 and 8 and can be performed in logarithmic space by Proposition 8, as we are unifying closed terms with linear terms.

Moreover, if φ is an isometric wiring, (φW (t 0 , . . . , t n ))(v) consists of a single term instead of a sum by Lemma 17, and there is therefore no non-deterministic choice to be made at line 8. It is then enough to run the algorithm enumerating all possible terms of Comp φ (t 0 , . . . , t n ) at line 3 to determine the nilpotency of φW (t 0 , . . . , t n ) .

Completeness: Representing Pointer Machines as Wirings

To prove the converse of Theorem 34, we prove that wirings can encode a special kind of read-only multi-head Turing Machine: pointers machines. The definition of this model will be guided by our understanding of the computation of wirings: they won't have the ability to write and acceptance will be defined as termination of all paths of computation. For a survey of this topic, one may consult the first author's thesis [START_REF] Aubert | Linear Logic and Sub-polynomial Classes of Complexity[END_REF]Chap.4], the main novelty of this part of our work is to notice that reversible computation is represented by isometric operators.

Definition 38 (pointer machine)

A pointer machine over an alphabet Σ is a tuple (N, S, ∆) where

• N = 0 is an integer, the number of pointers, • S is a finite set, the states of the machine, A pointer machine will be called deterministic if for any A ∈ S × Σ × LR , there is at most one B ∈ S × Σ × LR and one σ ∈ S N such that A → B × σ ∈ ∆ .

• ∆ ⊆ (S × Σ × LR) × (S × Σ × LR) × S N ,
In that case we can see ∆ as a partial function, and we say that M is reversible if ∆ is a partial injection.

We call the first of the N pointers the main pointer, it is the only one that can move. The other pointers are referred to as the auxiliary pointers. An auxiliary pointer will be able to become the main pointer during the computation thanks to permutations.

Definition 39 (configuration) Given the length n of a word W = c 1 . . . c n over Σ and a pointer machine M = (N, S, ∆) , a configuration of (M, n) is an element of

S × Σ × LR × {0, 1, . . . , n} N
The element of S is the state of the machine and the element of Σ is the letter the main pointer points at. The element of LR is the direction of the next move of the main pointer, and the elements of {0, 1, . . . , n} N correspond to the positions of the (main and auxiliary) pointers on the input.

As the input tape is considered cyclic with a special symbol marking the beginning of the word (recall Definition 24), the pointer positions are integers modulo n + 1 for an input word of length n . There is no constraint on c , but every time this value differs from the letter pointed by p σ(1) , the computation will halt on the next MOVE phase, because there is a mismatch between the value that is supposed to have been read and the actual bit of W stored at this position, and that would contradict the first part of item 4. In terms of wirings, the MOVE phase corresponds to the application of the representation of the word, whereas the SWAP phase corresponds to the application of the observation.

Definition 41 (acceptance)

We say that M accepts W if any sequence of transitions

C i MOVE ---→ C i SWAP ---→ C i such that C i = C i+1
for all i is necessarily finite. We write L(M ) the set of words accepted by M .

This means informally: we consider that a pointer machine accepts a word if it cannot ever loop, from whatever configuration it starts from. That a lot of paths of computation accepts "wrongly" is no worry, since only rejection is meaningful: our pointer machines compute in a "universally non-deterministic" way, to stick to the acceptance condition of wirings, nilpotency.

Proposition 42 (space and pointer machines) If L ∈ NLogspace , then there exist a pointer machine M such that L(M ) = L . Moreover, if L ∈ Logspace then M can be chosen to be reversible.

Proof (sketch). It is well-known that read-only Turing Machines -or equivalently (non-)Deterministic Multi-Head Finite Automata -characterize (N)Logspace [START_REF] Hartmanis | On Non-Determinancy in Simple Computing Devices[END_REF]. It takes little effort to see that our pointer machines are just a reasonable rearrangement of this model, since it is always possible to encode the missing information in the states of the machine. That acceptance and rejections are "reversed" is harmless in the deterministic (or equivalently reversible [START_REF] Lange | Reversible Space Equals Deterministic Space[END_REF]) case, and uses that co-NLogspace = NLogspace to get the expected result in the non-deterministic case.

As we said, our pointer machines are designed to be easily simulated by wirings, so that we get the expected result almost for free.

Theorem 43 (space completeness) If L ∈ NLogspace , then there exist an observation φ ∈ O + Σ such that L(φ) = L . Moreover, if L ∈ Logspace then φ is an isometric wiring. One can easily check that this translation preserves the language recognized (there is even a step by step simulation of the on the word W by the wiring [M ]W (t 0 , . . . , t n ) ) and relates reversibility with isometricity: in fact, M is reversible if and only if [M ] is an isometric wiring. Then, if L ∈ Logspace , M is deterministic and can always be chosen to be reversible [START_REF] Lange | Reversible Space Equals Deterministic Space[END_REF].

Discussion

The language of the unification algebra gives us a twofold point of view on computation, either through algebraic structures (that are described finitely by wirings) or pointer machines. We may therefore start exploring possible variations of the construction, combining intuitions from both worlds.

For instance, the choice of a normative pair can affect the expressivity of the construction: the more restrictive the notion of representation of a word is, the more liberal that of an observation can become, as suggested by T. Seiller. Whether and how this can affect the corresponding complexity class is definitely a direction for future work.

Another pending question about this approach to complexity classes is to delimit the minimal prerequisites of the construction, its core. Earlier works [START_REF] Girard | Epistemology versus Ontology[END_REF][START_REF] Aubert | Characterizing co-NL by a group action[END_REF][START_REF] Aubert | Logarithmic Space and Permutations[END_REF] made use of von Neumann algebras to get a setting that is expressive enough, we ligthen the construction by using simpler objects. Yet, the possibility of representing the action of permutations on a unbounded tensor product is a common denominator that seems deeply related to logarithmic space and pointer machines.

The logical counterpart of this work also needs clarifying. Indeed, the idea of representation of words comes directly from proof-theory, while the notion of observation does not seem to correspond to any known logical construction.

Finally, execution in our setting being based on iteration of matching, which is computable efficiently by a parallel machine, it seems possible to relate our modelisation with parallel computation.

Definition 1

 1 (terms) We consider the following set of first-order terms T ::= x, y, z, . . . | a, b, c, . . . | T• T where x, y, z, • • • ∈ V are variables, a, b, c, . . . are constants and • is a binary function symbol.

  22 (permutation algebra) For n ∈ N we set [S n ] := { [σ] | σ ∈ S n } and S n := Vect[S n ] . We define then S := n∈N S n , which we call the permutation algebra. Proposition 21 ensures that the S n and S are * -algebras.

3 .

 3 Definition 25 (observation algebra) An observation over a finite set of symbols Σ is any element of O + Σ where O Σ := (T * c ⊗ Σ * ⊗ LR * ) ⊗ S , i.e. a finite sum of flows of the form (s • c • d s•c • d) ⊗ [σ] with s, s closed terms, c, c ∈ Σ , d, d ∈ LR and σ is a permutation.

  the transitions of the machine (we will write (s, c, d) → (s , c , d ) × σ the transitions, for readability).

  Definition 40 (transition) Let W be a word and M = (N, S, ∆) be a pointer machine. A transition of M on input W is a triple of configurationss, c, d, (p 1 , . . . , p N ) MOVE ---→ s, c , d, (p 1 , . . . , p N ) SWAP ---→ s , c , d , (p σ(1) , . . . , p σ(N ) ) such that 1. if d ∈ LR , d is the other element of LR , 2. p 1 = p 1 + 1 if d = R and p 1 = p 1 -1 if d = L , 3. p i = p i for i = 1, 4. c is the letter at position p 1 and c is the letter at position p 1 , 5. and (s, c , d) → (s , c , d ) × σ belongs to ∆ .

Proof.

  By Proposition 42, there exists a pointer machine M = (N, S, ∆) such that L(M ) = L. We associate to the set S a set of distinct closed terms [S] and write [s] the term associated to s . To any element D = (s, c, d) → (s , c , d ) × σ of ∆ we associate the flow[D] := ([s ] • c • d [s] • c• d) ⊗ [σ] ∈ ([S] * ⊗ Σ * ⊗ LR * ) ⊗ S n ⊆ O +Σ and we define the observation [M ] ∈ O + Σ as D∈∆ [D] .

The size of a term is the total number of occurrences of symbols in it.

This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-11-BS02-0010 Récré.

Definition 26 (nilpotency)

A wiring F is nilpotent if F n = 0 for some n .

Definition 27 (automorphism) An automorphism of a * -algebra A is a linear application ϕ : A → A such that for all F, G ∈ A : ϕ(F G) = ϕ(F )ϕ(G) , ϕ(F † ) = ϕ(F ) † and ϕ is injective .

Example. ϕ(U 1 ⊗ U 2 ) := U 2 ⊗ U 1 defines an automorphism of U ⊗ U . Notation. If ϕ is an automorphism of A and ψ is an automorphism of B , we write ϕ ⊗ ψ the automorphism of A ⊗ B defined for all A ∈ A, B ∈ B as

Definition 28 (normative pair) A pair (A, B) of * -algebras is a normative pair whenever any automorphism ϕ of A can be extended into an automorphism ϕ of the * -algebra E generated by A ∪ B such that ϕ(F ) = F for any F ∈ B ⊆ E .

The two following propositions set the basis for a notion of acceptance/rejection independent of the representation of a word.

Proposition 29 (automorphic representations) Any two representations W (t 0 , . . . , t n ), W (u 0 , . . . , u n ) of a word W over Σ are automorphic: there exists an automorphism ϕ of (T * c ) ⊗1 such that

x , extended by linearity.

Proposition 30 (nilpotency and normative pairs) Let (A, B) be a normative pair and ϕ an automorphism of

Proof. Let ϕ be the extension of ϕ as in Definition 28 and ψ := Id U ⊗ ϕ .

We have for all n = 0 that (Gψ(F )

By injectivity of ψ , (Gψ(F )) n = 0 if and only if (GF ) n = 0 .

Corollary 31 (independence)

, B is a normative pair, W a word over Σ and F ∈ U ⊗ B . The product of F with the representation of the word, F W (t 0 , . . . , t n ) , is nilpotent for one choice of (t 0 , . . . , t n ) if and only if it is nilpotent for all choices of (t 0 , . . . , t n ) .

The basic components of the word and observation algebras we introduced earlier can be shown to form a normative pair.

Theorem 32

The pair (T * c ) ⊗1 , S is normative.

Proof (sketch). By simple computations, the set

can be shown to be a * -algebra E , the * -algebra generated by S ∪ (T * c ) ⊗1 . As ϕ is an automorphism of (T * c ) ⊗1 , it can be written as ϕ(G ⊗ I) = ψ(G) ⊗ I for all G , with ψ an automorphism of T * c . We set for

I which extends into an automorphism of (T * c ) ⊗∞ by linearity. Finally, we extend φ to A by ϕ(σF ) := σ φ(F ) . It is then easy to check that ϕ has the required properties.

Remark. Here we sketched a direct proof for brevity, but this can also be shown by involving a little more mathematical structure (actions of permutations on the unbounded tensor and crossed products) which would give a more synthetic proof.

We can then define the notion of the language recognized by an observation, via Corollary 31.

Definition 33 (language of an observation) Let φ ∈ O + Σ be an observation over Σ . The language recognized by φ is the following set of words over Σ : L(φ) := { W word over Σ | φ W (t 0 , . . . , t n ) nilpotent for any (t 0 , . . . , t n ) }

Wirings and Logarithmic Space

Now that we have defined our framework and showed how observations can compute, we study the complexity of deciding whenever an observation accepts a word (4.1), and how wirings can decide any language in (N)Logspace (4.2).

Soundness of Observations

The aim of this subsection is to prove the following theorem:

Theorem 34 (space soundness) Let φ ∈ O + Σ be an observation over Σ .

Actually, the result stands for the complements of these languages, but as co-NLogspace = NLogspace by the Immerman-Szelepcsényi theorem, this makes no difference. The main tool for this purpose is the notion of computation space: finite dimensional subspaces of V c (Definition 16) on which we will be able to observe the behavior of certain wirings. It can be understood as the place where all the relevant computation takes place.