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Bron and Besson yield criterion has been used to model the plastic anisotropic behavior of an aluminum alloy series 5000. The parameters of this anisotropic yield model have been identified by two different methods: a classical one, considering several homogeneous conventional experiments and an exploratory one, with only one biaxial test. On one hand, the parameter identification with conventional experiments has been carried out with uniaxial tensile and simple shear tests in different orientations to the rolling direction and with a hydraulic bulge test, all of them considered at three equivalent plastic strain levels. On the other hand, Bron and Besson yield function has also been calibrated with inverse analysis from only a cross biaxial tensile test, since it was shown that the strain distribution in the center of the cruciform specimen is significantly dependent on the yield criterion. The principal strains along a specified path in the gauge area of the cruciform specimen have been analyzed and the gap between experimental and numerical values was minimized. Finally the yield contours obtained with the two methods have been compared and discussed.

Sheet metal forming represents a class of important processes widely used in the manufacturing industry. Sheet metals usually exhibit a plastic anisotropy due to previous thermo-mechanical processes like rolling and annealing. To optimize the numerical simulation of the forming processes, an accurate description of the plastic behavior is required. Within a phenomenological description of the mechanical behavior of sheet metals, yield functions and especially anisotropic ones are used to represent the initial anisotropy of the material. Many anisotropic yield models were proposed to describe the initial anisotropy and identified from the mechanical properties, such as Hill 1948 [START_REF] Hill | A Theory of the Yielding and Plastic Flow of Anisotropic Metals[END_REF], Barlat 2000 [2] (Yld 2000-2d), Barlat 2004 [3] (Yld2004-13p/18p) yield models and Karafillis-Boyce [START_REF] Karafillis | A general anisotropic yield criterion using bounds and a transformation weighting tensor[END_REF]; a thorough review of these models is presented in [START_REF] Banabic | Sheet Metal Forming Processes: Constitutive Modeling and Numerical Simulation[END_REF]. The initial anisotropy description, coupled with hardening evolution, can lead to a good representation of the mechanical behavior over a large strain range, e.g. [START_REF] Zang | Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension[END_REF]. An alternative consists in taking into account anisotropy evolution, as proposed in [START_REF] Suh | Anisotropic yield functions with plastic-strain-induced anisotropy[END_REF]. To consider the plastic strain-induced anisotropy, Zang and Lee [START_REF] Zang | A General Yield Function within the Framework of Linear Transformations of Stress Tensors for the Description of Plastic-strain-induced Anisotropy[END_REF] carried out the eigen decompositions of the linear transformation tensors of Yld2000-2d yield model at different equivalent plastic strains. Such an approach with the variation of anisotropic coefficients is not considered in this study, where plastic anisotropy coefficients are considered constants, over the investigated strain range.

Yield functions can involve a high number of material parameters. The calibration of these parameters requires usually several mechanical tests with different loading paths.

To guarantee the relevance of the parameter set, the number of experimental data should not be lower than the number of material parameters considered in the identification process. In the case of the classical analytical approach, the experimental values, such as initial yield stresses and plastic anisotropy coefficients, obtained from mechanical tests are used as discrete input data or sampling points. The yield function makes an interpolation in-between these sampling points. Ideally, if the model is able to represent the mechanical behavior of the material, the interpolation points of the yield function correspond to these sampling points precisely. The relevance of the yield contour is improved when increasing the number of sampling points, demanding an increase of experimental information. However, from an economical point of view, the number of tests should be as small as possible. It has been proposed in [START_REF] Banabic | Sheet Metal Forming Processes: Constitutive Modeling and Numerical Simulation[END_REF] that at least the following experimental data is required: three yield stresses (e. Aretz [START_REF] Aretz | A non-quadratic plane stress yield function for orthotropic sheet metals[END_REF] identified eight parameters of Barlat 2003 yield model (Yld2003) [START_REF] Aretz | Applications of a new plane stress yield function to orthotropic steel and aluminium sheet metals[END_REF] with all the above-mentioned input data. Another method [START_REF] Aretz | Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests[END_REF] was also proposed to identify this eight parameter yield model; indeed, the bulge test was replaced by two plane strain tensile tests. The major stresses at plastic yielding were taken as the input data. With the two linear transformation tensors introduced by Barlat [2], yield models were developed to be more and more flexible, such flexibility being related to the increase of the number of material parameters. Barlat and co-authors [START_REF] Barlat | Linear transfomation-based anisotropic yield functions[END_REF] calibrated the yield function Yld2004-18p with all the above-mentioned data and with additional data: the initial yield stresses and anisotropic coefficients from uniaxial tensile tests along 15°, 30°, 60° and 75° to RD. Bron and Besson yield model [START_REF] Bron | A yield function for anisotropic materials Application to aluminum alloys[END_REF], also based on two linear transformation tensors, was identified similarly with a total of 16 parameters. From 2000, Banabic et al.

proposed a series of yield models, which are called BBC yield models. For the 8 parameter yield criterion BBC2005 [START_REF] Banabic | An improved analytical description of orthotropy in metallic sheets[END_REF] and 16 parameter BBC2008 [START_REF] Comsa | Plane-stress yield criterion for highly-anisotropic sheet metals[END_REF], Banabic et al.

used the same input data as the above mentioned Yld2003 and Yld2004-18p respectively.

However, Hu [START_REF] Hu | Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy[END_REF] pointed out that the initial yield stresses were difficult to determine accurately since there exist several definitions of initial yielding. Some works investigated the identification of material parameters considering not only the initial values but also values recorded at higher strains. To predict the earing phenomenon in drawing and ironing process, Barros et al. [START_REF] Barros | Earing Prediction in Drawing and Ironing Processes Using an Advanced Yield Criterion[END_REF] Recently, some works have been focused on parameter identification of yield functions from the biaxial tensile test. Green et al. [START_REF] Green | Experimental investigation of the biaxial behaviour of an aluminum sheet[END_REF] have performed cross biaxial test with seven different proportional strain paths, in order to identify the parameters of several yield functions, some of them could not be identified by uniaxial tensile test but only with biaxial test. The authors adjusted the parameters with an iterative procedure to optimize the predicted strength level of two arms of the cruciform sample. Teaca et al. [START_REF] Teaca | Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests[END_REF] proposed to identify Ferron, Makkouk and Morreale (FMM) yield function parameters [START_REF] Ferron | A parametric description of orthotropic plasticity in metal sheets[END_REF] by combining results of uniaxial tensile tests and cross biaxial test.

However, only two parameters of the yield model were calibrated from the strain distribution in the central part of the cruciform specimen. The field measurement of the strain level was also used by Prates et al. [START_REF] Prates | On the characterization of the plastic anisotropy in orthotropic sheet metals with a cruciform biaxial test[END_REF] that the strain distribution in the central area of the specimen depends significantly on the yield criterion. Comparison between experimental and numerical results of principal strains along a specified path in the gage area of the cruciform specimen is performed. It is shown that the cross biaxial test involves a large range of strain paths, though the maximum strain is limited. Finally, the yield models identified by the two identification methods are compared.

Material model

Assuming orthotropic symmetry, )

are respectively the rolling direction (RD), the transverse direction (TD) and the normal direction (ND). In the frame of a uniaxial tensile test, ) z , y , x ( are respectively the tensile direction, the transverse direction in the sheet plane and the normal direction.

Hill 1948 yield function

Hill 1948 orthotropic yield function is written in the following form [START_REF] Hill | A Theory of the Yielding and Plastic Flow of Anisotropic Metals[END_REF]: 
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where H ψ denotes the yield function. Plastic yielding occurs when (3)

Bron and Besson yield function

Bron and Besson proposed a yield function involving 16 parameters under the form [START_REF] Bron | A yield function for anisotropic materials Application to aluminum alloys[END_REF]:

( ) Y is no longer equal to the uniaxial yield stress in the rolling direction. k σ , k=1,2 are expressed in the form:
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) are four isotropic parameters which define the shape of the yield surface. 
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where k i c are 12 parameters which are related to the anisotropy of the material. In plane stress condition, the anisotropic parameter number reduces to 8 with 1 ). The strain levels were selected according to the maximum strain range of the tests in the database (cf. Fig. 1).
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Parameter identification of yield model with conventional tests

Numerical calculation of material data

In the plane stress condition, 11 
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plastic strain increments can be written as a function of the gradient of the yield function: [START_REF] Zang | A General Yield Function within the Framework of Linear Transformations of Stress Tensors for the Description of Plastic-strain-induced Anisotropy[END_REF] Assuming that the uniaxial tensile test is performed along a direction defined by an orientation angle θ from the rolling direction, then the anisotropic coefficient M r θ can be calculated by: The biaxial coefficient M b r is calculated in the form:
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As the identification process is performed with three levels of plastic equivalent deformation, the cost function c δ is then defined by: In case of anisotropy, as 0 Y is no longer equal to the uniaxial stress 0 σ along the rolling direction, it has to be identified along with the parameters related to anisotropy. There is therefore a total of 15 material parameters to be identified for Bron and Besson criterion.
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The major task lies in the optimization of the anisotropic parameters to minimize the cost function. The algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) [START_REF] Heath | Scientific Computing, An Introductory Survey[END_REF] is preferred here. BFGS is an approximate Newton's method, which is a hill-climbing optimization.

The convergence is rapid but the optimized set strongly depends on the initial set. To overcome this difficulty and thanks to the efficiency of the algorithm, the optimization can be led with a large number of initial sets to cover all the parameter ranges. The identification process is realized with the commercial software modeFRONTIER® [25] which is an integration platform for multi-objective optimization. It provides a coupling with third party engineering software such as MATLAB to design an automatic simulation and simplify the analysis process.

Application for AA5086

The above-mentioned conventional tests have been performed for aluminum alloy 5086. The sheet thickness is 2 mm. Experimental curves in stress equivalent strain level for these tests are presented in Fig 1 . For all the tests, strains have been measured by digital image correlation (DIC) method. These tests can be considered homogeneous, at least over a restricted area, and an average strain value was calculated over this area.

Stresses have been directly calculated from measures of force (uniaxial tension and simple shear tests) or pressure (bulge test). The equivalent strain is defined by: Fig. 1: Cauchy stress versus equivalent strain curves for conventional tests
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It can be seen that necking limits the homogeneous equivalent strain in tension at around 0.2, whereas a maximum value of 0.4 in bulge test is reached. The low maximum equivalent strain reached in simple shear comes from premature failure of the sample under the grip, partly due to the relatively high material thickness (2 mm) that entails a rather high force for the clamping under the grips.

The anisotropic coefficients θ r , obtained from uniaxial tensile tests, decrease with the plastic strain. This evolution is represented in Fig. 2, for two equivalent plastic strain ranges [0.02, 0.1] and [0.1, 0.15]. For each strain range, θ r is calculated as the linear regression of the evolution of p yy ε as a function of p zz ε (Eq. ( 2)), over the considered strain range.

Fig. 2 In the optimization process, a first step is to fix the variation range for the parameters.

The range used in this work is given in Table 2. For Y 0 , the variation range is set to be from 0.80 0 σ to 1.20 0 σ , from several trials. Then one hundred initial parameter sets for the algorithm BFGS can be generated to cover the variation range of all the parameters. Table 2. Central values and variation ranges (in brackets) for each parameter The 13 parameters of Bron and Besson yield function calculated from the experimental data of Table 1 are given in Table 3. During the identification process, the weight coefficient ω is set equal to 0.5. Indeed, for higher values of ω, especially for the low value of the equivalent plastic strains, the predicted tensile results were too far from the experiments. be observed for the θ r coefficients (Fig. 3), the prediction is excellent. 

Biaxial tensile test with cruciform specimen

Experiments

To simplify both the experimental database and the calibration of the yield function parameters, a second method based on data obtained from a cross biaxial tensile test was investigated. This test seems particularly interesting since different strain paths can be obtained simultaneously with a unique specimen [START_REF] Kuwabara | Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[END_REF].

A cruciform specimen shape has been designed and is shown in Fig. 7. Experiments on a servo-hydraulic testing machine have been performed (realized by LGCGM [START_REF] Zidane | Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets[END_REF]) with a constant velocity ratio

1 = y x v / v
imposed on four arms of the cruciform specimen;

1 mm.s 1 - = = y x v v
are the imposed velocities along the arms of the sample (cf. Fig. 7 for the frame definition).

Images of the central area of the specimen are recorded with a high resolution camera and a digital image correlation software CORRELA 2D (developed by LMS at the University of Poitiers) is used to compute the in-plane strain components. As shown in Fig. 8, a central square area of approximately 25x25 mm 2 was selected, leading to a total number of about 1600 material points. Major strain 1 ε and minor strain 2 ε were output at these material points and the strain path, characterized by the ratio . Such a distribution is presented in Fig. 9. There is a nearly equi-biaxial stress state in the central area. It then changes gradually to nearly uniaxial tensile stress state at the corner. The maximum and minimum principal strains along four diagonal paths indicated in Fig. 9 have been compared in Figs. 10 and11, respectively. The results obtained for the four paths are similar, whatever the selected path. A slight discrepancy is recorded near the free edge of the sample, the maximum relative gap being 1.7% for the major strain and 0.58% for the minor strain. An average value, both for minor and major strains, was then calculated over the four paths. This average is used in the following parts for the comparison with finite element simulation and identification procedure. 
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where the first term in the right-hand side part of eq. ( 13) depends only on the stress tensor for uniaxial tension in RD (only one non-zero component) normalized by the yield stress in RD and on the parameter set for the anisotropic yield criterion.

Due to the symmetry of the problem, only a quarter of the specimen is modeled.

Experimental forces x

F and y F given in Fig. 13 are imposed on the two arms of the cruciform specimen during the simulation process. Four node shell elements were used for the mesh, with a minimum size of 1 mm. Influence of the mesh size was investigated, in particular its influence on the major and minor strains, and stable predictions (accuracy of the same order that the one of experimental data) were obtained with the selected mesh.

The computational time is about ten minutes (processor i7-640M (2.8 GHz) with 4Go RAM) with these conditions. 

Parameter identification with biaxial tensile test data

Following the previous conclusion, that the strain distribution in the central area of the cruciform shape is sensitive to the yield criterion, identification of the material parameters based on the minimization of the gap between the evolution of major and minor strains along a diagonal path is performed in this section. Bron and Besson yield model is used in the numerical simulation of the biaxial tensile test.

A cost function is now defined to calculate the difference between the experimental and numerical principal strains:
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where experimental values 1 which makes a coupling between ABAQUS and MATLAB. The algorithm SIMPLEX is preferred in the identification process. In an optimization procedure involving finite element integrations with many parameters and long calculation times for each iteration, the SIMPLEX is well adapted. For a set of 13 parameters, the algorithm needs 14 initial sets, which are randomly chosen in the variation range of the parameters. These sets permit to efficiently cover the space of solutions. It can be emphasized that the initial parameter sets for this identification, compared to the identification with conventional tests, are very different. The variation range of each parameter is the same as the one used for the conventional tests and is given in Table 2.

During the optimization process, the principal strain field at time s . t 0 6 = is considered both in the experiments and in the numerical simulation. Table 5 gives the values of the newly identified parameters of Bron and Besson yield model after nearly 300 iterations. 
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Comparison of the two methods

Both methods involve mechanical tests with DIC local strain measure. However, in the case of conventional tests, the strain field can be confidently considered homogeneous, e.g. for simple shear test and an average shear strain γ of 0.3, a maximum relative gap of +/-5% was recorded, related to the accuracy of the strain measure [START_REF] Zang | Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension[END_REF]. This value is significantly lower than the strain range recorded in biaxial test, with an equivalent strain that ranges from 0.02 up to 0.12. Moreover, there is almost no strain path ratio variation over the selected areas for conventional tests whereas it evolves significantly for the biaxial test.

The experimental data represented in the plane ( ) 1 2 ε ε , corresponding to both the conventional tests and the biaxial test used in the identification procedure are shown in Fig. 17. For the first method, the sampling points occupy a larger area in the plane ( ) 1 2 ε ε , however the information is more discrete when compared to the approach with only the biaxial test. Indeed, a large number of strain path ratios are then investigated, though for a fixed strain level. A possibility to enrich this database would be to add other path than the diagonal one or use the same path but at different strain levels. Fig. 18 shows the predicted conventional tests with parameter set of Table 5. It can be seen that the overall trend and level are well respected for each type of test. Indeed, stress level in bulge test is well predicted up to an equivalent plastic strain of 0.2 as well as for simple shear test at 45°/RD. However, some discrepancies are evidenced. Indeed, no variation for the shear stress, whatever the orientation to the rolling direction, was predicted though it comes from experiments that the shear stress along RD is lower than the one at 45°/RD. Concerning the uniaxial tensile tests, though the stress level in RD is above the ones in 45° and 90° to RD in the experiments, a different tendency is predicted, with stress at 0° and 45° to RD well above the one at 90°/RD. It seems therefore that the uniaxial stress state is not well enough represented in the series of stress states along the diagonal direction for the biaxial test. Further work is under progress with taking into account other paths like longitudinal and transverse paths to output the strain data. 5) identified from the biaxial test Fig. 19 Comparison of two yield contours

Conclusion

Bron and Besson yield model has been used to predict the anisotropic behavior of material AA5086. 13 parameters of the yield model have been identified by two different methods. The first method is associated with conventional homogeneous tests: uniaxial tension, biaxial tension by hydraulic bulging and simple shear. To take into account the subsequent evolution of anisotropy, the identification process is performed with the material data at several plastic strains. The other method is based on only a biaxial test realized on a cruciform specimen. The identification is carried out with a comparison of experimental and numerical principal strains along a diagonal direction of the specimen central area. It is shown that (i) the numerical prediction of the principal strains is significantly dependent on the yield model (Bron and Besson and Hill 1948) and that [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF] the two methods give similar yield contours, except near the plane strain state. Finally, it can be concluded that a single biaxial tensile test seems sufficient to obtain all the material parameters of a complex yield criterion for AA5086 sheet.

  g. 0 σ , 45 σ and 90 σ ) and three anisotropic coefficients (e.g. 0 r , 45 r and 90 r ) obtained from the uniaxial tensile tests in different orientations to the rolling direction (RD); an equi-biaxial yield stress ( b σ ) and a biaxial coefficient ( b r ) from biaxial tensile test, usually hydraulic bulge test. As mentioned above, most of the previous works proposed identification based on the initial values of these data, measured at the elasto-plastic transition. For the classical Hill 1948 yield criterion [1], three values among the ones indicated above are needed to calibrate three parameters in the case of a plane stress state. For the same stress condition, four values are needed to determine Barlat 1991 yield criterion involving four parameters [9].

  made a comparison of Cazacu and Barlat 2001 yield model [18] identified either from initial yield values or from the ones at an accumulated plastic work of 20 MPa. It is clearly shown that the yield model identified at an accumulated plastic work of 20 MPa gives a better description of the material mechanical behavior than the one identified from the initial values. Wang et al. [19] also proposed a strain-dependent identification method by considering the variation trend of the material values at different plastic strain levels. Another approach without considering initial yield stress values consists in parameter identification over the temporal evolution of experimental data. Zang et al. [6] considered a combination of stress level in uniaxial tension, equi-biaxial tension and simple shear, both monotonic and Bauschinger tests, to identify Bron and Besson yield function. Bron and Besson [13] also proposed a similar identification strategy with the temporal evolution of stress levels in tensile tests, both on straight and U-notched samples. It can be concluded that due to the dispersion on initial yield stresses as well as the evolution of anisotropy with strain, considering only initial yield stresses does not give an accurate description of the mechanical behavior. In this paper, the experimental values were obtained at several plastic strain levels.

σ is the equivalent stress and 0 Yε

 0 a reference yield stress of the material. parameters can be calculated from three anisotropic coefficients θ r with are the plastic strain increments along the transverse direction and the normal direction respectively. Hill parameters F , G and N are defined by:

kαY

  are positive coefficients, the sum of which is equal to 1. Plastic yielding occurs when 0 have the same definitions as in Section 2.1. However, 0

3. 1

 1 Material data In this work, three uniaxial tensile tests (UT) along 0°, 45° and 90° according to the rolling direction, two simple shear tests (SS) along 0° and 45° and one bulge test have been considered to identify Bron and Besson yield model. Hill 1948 parameters were also identified from the three anisotropic coefficients for comparison's sake. Material data used in the identification process corresponding to three uniaxial tensile stresses ( 0 σ , 45 σ and 90 σ ) and three anisotropic coefficients ( 0 r , 45 r and 90 r ), two simple shear stresses ( 0 τ and 45 τ ), an equi-biaxial stress ( b σ ) and a biaxial coefficient ( b r ) are obtained at three different levels of the equivalent plastic strain p

σ

  and b r are respectively experimental anisotropic coefficients and biaxial coefficients calculated as average values over an equivalent plastic strain range from 0.02 to 0.1; M j r θ (Eq. 9) and M b r (Eq. 10) are predicted anisotropic coefficients and biaxial coefficients; are the predicted stress values at different plastic deformation levels. In Eq. (11), index S refers to the plastic strain levels whereas index j relates to the test orientation. S Y 0 , S=1,3, are the critical values, when yielding occurs, of the equivalent yield stress for the three equivalent plastic strains considered in the identification. ω is a weight coefficient introduced to change the relative importance of shear tests compared to tensile tests and bulge test in the optimization process. Indeed, the elasto-plastic transition in simple shear is particularly rounded, leading to an increased difficulty to determine the initial values of the yield stress in simple shear. Therefore, in order to reach a compromise between tension and simple shear, an optimum value of ω was determined by successive trials.
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 3 Figs. 3 to 6 show the results for both Bron and Besson and Hill 1948 yield criteria.
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ε and 2 ε are compared to the numerical values EF 1 ε and EF 2 ε

 12 . The index p in Eq. (14) stands for the number of points along the diagonal path. As the nodes used to output the strain components are different in the model and in the experiments, a linear interpolation of the experimental signals was performed. The minimization of the cost function is then performed with the software modeFRONTIER®
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 16 Fig.16(a) shows the predicted and experimental major and minor strain evolution
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 19 Fig.19gives a comparison between two yield contours calculated with parameters of
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 17 Fig. 17 Strain paths for the two identification methods

  

Table 3 .

 3 Anisotropic parameters of Bron and Besson yield function identified from conventional tests. Three different values for Y 0 have been identified, corresponding to each equivalent plastic strain level.

Table 1 ,

 1 and are presented in Table4.
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