
HAL Id: hal-01005601
https://hal.science/hal-01005601v1

Submitted on 12 Jun 2014 (v1), last revised 17 Jun 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Gudhi Library: Simplicial Complexes and
Persistent Homology

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, Mariette Yvinec

To cite this version:
Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, Mariette Yvinec. The Gudhi Library: Simplicial
Complexes and Persistent Homology. 2014. �hal-01005601v1�

https://hal.science/hal-01005601v1
https://hal.archives-ouvertes.fr

The Gudhi Library: Simplicial Complexes and

Persistent Homology

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec

INRIA, France
{clement.maria,jean-daniel.boissonnat,marc.glisse,mariette.yvinec}@inria.fr

Abstract. We present the main algorithmic and design choices that
have been made to represent complexes and compute persistent homol-
ogy in the Gudhi library. The Gudhi library (Geometric Understanding
in Higher Dimensions) is a generic C++ library for computational topol-
ogy. Its goal is to provide robust, efficient, flexible and easy to use imple-
mentations of state-of-the-art algorithms and data structures for compu-
tational topology. We present the different components of the software,
their interaction and the user interface. We justify the algorithmic and
design decisions made in Gudhi and provide benchmarks for the code.
The software, which has been developed by the first author, is available
at project.inria.fr/gudhi/software/.

Keywords: persistent homology, simplicial complex, software library,
computational topology, generic programming

1 Introduction

The principle of algebraic topology is to attach algebraic invariants to topological
spaces in order to classify them up to homeomorphism. One can consequently
study the property of a discrete algebraic structure (a sequence of homology
groups in our case) instead of studying a continuous domain directly, which would
be hard to handle algorithmically. Persistent homology [14, 16] may be considered
as a ”dynamic version” of this principle: given a sequence of topological spaces
connected by continuous maps, we study the corresponding sequence of homology
groups connected by group homomorphisms, induced by the topological space
maps. The whole sequence of groups together with their homomorphisms form an
algebraic structure (specifically a module) that we study. Very efficient methods
have been developped for computing persistent homology [1, 14] and its dual,
persistent cohomology [2, 11, 13]. The generality and stability with regard to
noise [9] of persistence have made it a widely used tool in practice.

An application of interest for computational topology is topological data anal-
ysis, where one is interested in learning topological invariants of a shape, sampled
by a point cloud. A popular approach is to construct, at different scales, an ap-
proximation of the shape using complexes built on top of the points, and then
compute the persistent homology of these complexes. This approach has been
successfully used in various areas of science and engineering, as for example in

2 Maria-Boissonnat-Glisse-Yvinec

sensor networks [10], image analysis [6], and data analysis [8], where one typically
needs to deal with big data sets in high dimensions and with general metrics.
The simplicial complex and persistent homology packages in Gudhi provide all
software components for this approach.

The challenge is twofold. On the one hand we need to design a generic li-
brary in computational topology, in order to adapt to the various configurations
of the problem: nature of the complexes (simplicial, cubical, etc) and their rep-
resentation, nature of the maps between them (inclusions, edge contractions,
etc), ordering of the maps (linear, zigzag, etc) and types of algorithm for per-
sistence (homology, cohomology). On the other hand, we need to implement a
high-performance library to handle complex practical examples.

We recall in Section 2 the definition of homology and persistent homology
constructed from simplicial complexes. In Section 3, we describe the design of
the Gudhi library. In Section 4, we discuss the implementation choices and the
user interface. Specifically, simplicial complexes are implemented with a simplex
tree data structure [4]. The simplex tree is an efficient and flexible data structure
for representing general (filtered) simplicial complexes. The persistent homology
of a filtered simplicial complex is computed by means of the persistent cohomol-
ogy algorithm [11, 13], implemented with a compressed annotation matrix [2].
The persistent homology package provides the computation of persistence with
different coefficient fields, including the implementation of the multi-field per-
sistence algorithm of [3], i.e. the simultaneous computation of persistence with
various coefficient fields. Finally, in Section 5 we discuss the future components
of the library and their integration in the design.

2 Theoretical Foundation of Persistent Homology

The theory of homology consists in attaching to a topological space a sequence
of (homology) groups, capturing global topological features like connected com-
ponents, holes, cavities, etc. Persistent homology studies the evolution – birth,
life and death – of these features when the topological space is changing. Conse-
quently, the theory is essentially composed of three elements: topological spaces,
their homology groups and an evolution scheme.

Simplicial Complexes: In computer science, topological spaces are repre-
sented by their discrete counterpart: (cell) complexes. On the following, we focus
on simplicial complexes, but our approach applies to all kinds of cell complexes.
Let V = {1, · · · , |V |} be a set of vertices. A simplex σ is a subset of vertices
σ ⊆ V . A simplicial complex K on V is a collection of simplices {σ}, σ ⊆ V ,
such that τ ⊆ σ ∈ K⇒ τ ∈ K. The dimension n = |σ| − 1 of σ is its number of
elements minus 1.

A simplicial map f : K → K′ between simplicial complexes K and K′,
with respective vertex sets V and V ′, is a map that sends every vertex v ∈
V to a vertex f(v) ∈ V ′, and every simplex [v0, · · · , vn] ∈ K to a simplex
[f(v0), · · · , f(vn)] ∈ K′. Note that they may be redundancy in the set {f(v0), · · · ,

The Gudhi Library 3

Indexing

Complex

Homology 0 0 0 0

10 3 42 5 6 7

〈[c]〉 〈[c]〉 〈[c]〉〈[c], [c′]〉

Fig. 1. Indexing of eight simplicial complexes and corresponding sequence of homology
groups in dimension 1.

f(vn)}, in which case the simplex image has lower dimension that its pre-image.
In the following, we focus on inclusions, which are a particular case of simplicial
maps, and discuss the case of general simplicial maps in Section 5.

Homology: For a ring R, the group of n-chains, denoted Cn(K,R), of K

is the group of formal sums of n-simplices with R coefficients. The boundary

operator is a linear operator ∂n : Cn(K,R) → Cn−1(K,R) such that ∂nσ =
∂n[v0, · · · , vn] =

∑n

i=0(−1)
i[v0, · · · , v̂i, · · · , vn], where v̂i means vi is omitted

from the list. The chain groups form a sequence:

· · · Cn(K,R)
∂n−−−→ Cn−1(K,R)

∂n−1

−−−→ · · ·
∂2−−−→ C1(K,R)

∂1−−−→ C0(K,R)

of finitely many groups Cn(K,R) and homomorphisms ∂n, indexed by the di-
mension n ≥ 0. The boundary operators satisfy the property ∂n ◦ ∂n+1 = 0 for
every n > 0 and we define the homology groups:

Hn(K,R) = ker ∂n/im ∂n+1

We refer to [15] for an introduction to homology theory and to [14] for an intro-
duction to persistent homology.

Indexing Scheme: ”Changing” a simplicial complex consists in applying a
simplicial map. An indexing scheme is a directed graph together with a traversal
order, such that two consecutive nodes in the graph are connected by an arrow
(either forward or backward). The nodes represent simplicial complexes and the
directed edges simplicial maps.

From the computational point of view, there are two types of indexing schemes
of interest in persistent homology 1: linear ones • −→ • −→ · · · −→ • −→ •
in persistent homology [16], and zigzag ones • −→ • ←− · · · −→ • ←− • in
zigzag persistent homology [7]. These indexing schemes have a natural left-to-
right traversal order, and we describe them with ranges and iterators. We focus
in the following on the linear case, and discuss the zigzag case in Section 5.

1 i.e. from which an interval decomposition of the persistence module exists: Gabriel’s
theorem [12] in quiver theory classifies these graphs.

4 Maria-Boissonnat-Glisse-Yvinec

FilteredComplex

typedef ... typedef

typedef

...

... Filtered complex

Coefficient fieldIndexing tag

PersistentHomology

CoefficientField

IndexingTag

Concept Model

Fig. 2. Overview of the design of the library.

In the following, we consider the case where the indexing scheme is induced
by a filtration. A filtration of a simplicial complex is a function f : K → R

satisfying f(τ) ≤ f(σ) whenever τ ⊆ σ. Ordering the simplices by increasing
filtration values (breaking ties so as a simplex appears after its subsimplices of
same filtration value) provides an indexing scheme.

We refer to Figure 1 for an illustration of the three components of the theory
and their connections. The figure pictures the linear indexing of eight simplicial
complexes connected by inclusions, and the corresponding sequence of homology
groups in dimension 1. Every inclusion induces a group homomorphism at the
homology level. Persistent homology studies this sequence of homology groups
connected by homomorphisms. Specifically, computing persistent homology con-
sists in computing a primary decomposition of this sequence of homology groups
(forming a module); the decomposition is usually represented by means of a
persistence diagram [14].

Remark: The reader may have found a category theory taste to this presenta-
tion of persistent homology. In particular, the vertical arrows in Figure 1 repre-
sent functors of categories. We refer to [5] for more details on the categorification
of persistent homology.

3 Design of the Library

A concept is a set of requirements (valid expression, associated types, etc) for a
type. If a type satisfies these requirements, it is a model of the concept. The gen-
eral idea under our design is to associate a concept per component presented in
Section 2: the three components of the theory (indexing, complex and homology)
are illustrated in Figure 1. Given two components related by a vertical arrow
in Figure 1, and two models A and B of their respective associated concepts, we
connect B with A through a template argument B<A>.

IndexingTag Concept: In order to describe the indexing scheme, we use a
tag IndexingTag that is either linear indexing tag or zigzag indexing tag,
corresponding to the two indexing schemes of interest mentioned above. The tag
is passed as template argument to a model of the concept FilteredComplex

(described below and representing filtered cell complexes).

The Gudhi Library 5

void compute_persistent_homology(FilteredComplex cpx) {

for(Simplex_handle sh : cpx.filtration_simplex_range()) {

int dim = cpx.dimension(sh);

update_cohomology_groups(dim, sh, cpx);

//inside update_cohomology_groups

for(Simplex_handle b_sh : cpx.boundary_simplex_range(sh))

{...}

//out

} } }

Fig. 3. Sample code for the computation of persistence, illustrating the use of a model
of concept FilteredComplex.

FilteredComplex Concept: We define the concept FilteredComplex that
describes the requirement for a type to implement a filtered cell complex. We
use the vocabulary of simplicial complexes, but the concept is valid for any type
of cell complex. The main requirements are the definition of:

1. type Indexing tag, which is a model of the concept IndexingTag, describing
the nature of the indexing scheme,

2. type Simplex handle to manipulate simplices,
3. method int dimension(Simplex handle) returning the dimension of a sim-

plex,
4. type and method Boundary simplex range boundary simplex range(

Simplex handle) that returns a range giving access to the codimension 1
subsimplices of the input simplex, as-well-as the coefficients (−1)i in the
definition of the operator ∂. The iterators have value type Simplex handle,

5. type and method Filtration simplex range filtration simplex range()

that returns a range giving access to all the simplices of the complex read in
the order assigned by the indexing scheme,

6. type and method Filtration value filtration(Simplex handle) that re-
turns the value of the filtration on the simplex represented by the handle.

Figure 3 illustrates the use of a model of the concept FilteredComplex. It
sketches the algorithm used for computing persistent homology via the approach
of [11, 13].

PersistentHomology Concept: The concept PersistentHomology describes
the requirement for a type to compute the persistent homology of a filtered
complex. The requirement are the definition of:

1. a type Filtered complex, which is a model of FilteredComplex and pro-
vides the type of complex on which persistence is computed,

2. a type Coefficient field, which is a model of CoefficientField and
provides the coefficient field on which homology is computed.

The requirements of the concept CoefficientField are essentially the defi-
nition of field operations (addition, multiplication, inversion, etc).

We refer to Figure 2 for a presentation of the concepts and their connections.

6 Maria-Boissonnat-Glisse-Yvinec

4 Implementation

In this section we describe how these concepts are implemented. The code will
be available soon at project.inria.fr/gudhi/software/.

Simplicial Complex: We use a Simplex Tree [4] to represent simplicial com-
plexes. The class Simplex tree is a model of FilteredComplex and hence fur-
nishes all requirements of the concept. Moreover, it furnishes algorithms to con-
struct efficiently simplicial complexes, and in particular flag complexes [14]. De-
tails on the implementation of the algorithms may be found in [4].

Persistent Homology: We use the Compressed Annotation Matrix [2] to im-
plement the persistent cohomology algorithm [11, 13] for persistence. This leads
to the class Persistent cohomology, which is a model of PersistentHomology.
The class Persistent cohomology allows the computation of the persistence di-
agram of a filtered complex, using the method compute persistent homology

(see Figure 3).

The coefficient fields available as models of CoefficientField are Field Zp

for Zp (for any prime p) and Multi field for the multi-field persistence al-
gorithm – computing persistence simultaneously in various coefficient fields –
described in [3].

Example of Use of the Library: Figure 4 illustrates the user interface for
constructing a flag complex [14] from a graph and computing its persistent ho-
mology with various coefficient fields.

Graph g; ... //compute the graph

Simplex_tree< linear_indexing_tag > st; //linear ordering

st.insert(g); //insert the graph as 1-skeleton of the complex

st.expand(5); //construct the 5-skeleton of the associated flag complex

Persistent_cohomology< Simplex_tree<linear_indexing_tag>, Multi_field >

pcoh; //persistence with "multi field coefficients" defined on a

simplex tree

pcoh.compute_persistent_homology(st,2,1223); //compute persistent

homology of st in all fields Zp for p prime between 2 and 1223

Fig. 4. User interface for the construction of a filtered flag complex with a simplex tree
and the computation of its persistent homology.

Experiments: Figure 5 presents timings Tst for the construction of flag com-
plexes with a simplex tree using the algorithm of [4], T ph

Z2
and T ph

Z1223
for the

The Gudhi Library 7

Data |P| D d r |K| Tst T
ph

Z2
T

ph

Z1223
T

ph

Z
2

1223

Bud 49,990 3 2 0.09 127 · 106 5.7 161 161 252
Bro 15,000 25 ? 0.04 142 · 106 5.8 252 252 380
Cy8 6,040 24 2 0.8 193 · 106 8.4 249 249 325
Kl 90,000 5 2 0.25 114 · 106 8.3 228 227 401
S3 50,000 4 3 0.65 134 · 106 7.2 176 176 310

Fig. 5. Timings in seconds for the various algorithms.

computation of persistent homology with coefficient is Z2 and Z1223 respec-
tively, using the implementation of [2], and T ph

Z
2

1223

for the simultaneous compu-

tation of persistent homology in the 200 coefficient fields Zp with p prime, for
2 ≤ p ≤ 1223, using the multi-field persistent homology algorithm described
in [3]. Experiments have been realized on a Linux machine with 3.00 GHz pro-
cessor and 32 GB RAM, for Rips complexes [14] built on a variety of data points.
Datasets are listed in Figure 5 with the size of points sets |P|, the ambient di-
mension D and intrinsic dimension d of the sample points (”?” if unknown), the
parameter r for the Rips complex and the size of the complex |K|. More details
about the implementation, the experimental protocol, the data sets as-well-as
additional experiments can be found in [2–4].

The average timings per simplex of the various algorithms are ranging be-
tween 4.08 · 10−8 and 7.28 · 10−8 seconds per simplex for the construction of
the simplex tree, between 1.27 · 10−6 and 2.00 · 10−6 seconds per simplex for
the computation of persistent homology with coefficient field Z2 or Z1223, and
between 1.68 · 10−6 and 3.52 · 10−6 seconds per simplex for the computation
of multi-field persistent homology in all fields Zp for p prime, 2 ≤ p ≤ 1223.
Note that most of the time for the computation of persistent homology is spent
computing boundaries in the simplex tree.

5 Future Components

The library may be extended in various directions that fit naturally in the design.
The first direction is to allow zigzag indexing schemes, by the creation of a
tag zigzag indexing tag. In this case, the method filtration simplex range

must indicate the direction of the arrows.

New implementations and models for FilteredComplex may be added. For
example, the construction of witness complexes [4] will be added to the class
Simplex tree. Additionnaly, new types of complexes (like cubical complexes)
and new data structures to represent them may be added to the library: in order
to compute their persistent homology, they only need to satisfy the requirements
of the concept FilteredComplex.

So far, only inclusions have been considered for simplicial maps between sim-
plicial complexes. As explained in [13], any simplicial map may be implemented
with a sequence of inclusions and edge contractions. We will consequently add

8 Maria-Boissonnat-Glisse-Yvinec

edge contractions as updates in the class Simplex tree and implement the in-
duced updates in the class Persistent cohomology (algorithms exist for edge
contractions in a simplex tree [4] and for the corresponding updates at the coho-
mology level [13]). This way, we will be able to compute persistent homology of
simplicial maps. In this case, the range provided by filtration simplex range

must indicate the nature of the map between complexes.
Future works include also the implementation of a class Field Q, model of

concept CoefficientField, for homology with Q coefficients. Finally the inter-
face between complexes and persistent homology allows us to implement more
persistent homology algorithms.

Acknowledgment This research has been partially supported by the European
Research Council under Advanced Grant 339025 GUDHI (Algorithmic Founda-
tions of Geometric Understanding in Higher Dimensions).

References

1. Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Comput-
ing persistent homology in chunks. In Topological Methods in Data Analysis and

Visualization III, pages 103–117. 2014.
2. Jean-Daniel Boissonnat, Tamal K. Dey, and Clément Maria. The compressed an-

notation matrix: An efficient data structure for computing persistent cohomology.
In ESA, pages 695–706, 2013.

3. Jean-Daniel Boissonnat and Clément Maria. Computing Persistent Homology with
Various Coefficient Fields in a Single Pass. Rapport de recherche RR-8436, INRIA,
December 2013.

4. Jean-Daniel Boissonnat and Clément Maria. The simplex tree: An efficient data
structure for general simplicial complexes. Algorithmica, pages 1–22, 2014.

5. Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology.
CoRR, abs/1205.3669, 2012.

6. Gunnar Carlsson, Tigran Ishkhanov, Vin Silva, and Afra Zomorodian. On the local
behavior of spaces of natural images. Int. J. Comput. Vision, 76:1–12, January
2008.

7. Gunnar E. Carlsson and Vin de Silva. Zigzag persistence. Foundations of Compu-

tational Mathematics, 10(4):367–405, 2010.
8. F. Chazal and S. Oudot. Towards persistence-based reconstruction in euclidean

spaces. In Proc. 24th. Annu. Sympos. Comput. Geom., pages 231–241, 2008.
9. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persis-

tence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.
10. V. de Silva and R. Ghrist. Coverage in sensor network via persistent homology.

Algebraic & Geometric Topology, 7:339–358, 2007.
11. Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent coho-

mology and circular coordinates. Discrete & Computational Geometry, 45(4):737–
759, 2011.

12. Harm Derksen and Jerzy Weyman. Quiver representations. Notices of the AMS,
52(2):200–206, 2005.

13. Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence
for simplicial maps. In Symposium on Computational Geometry, page 345, 2014.

The Gudhi Library 9

14. Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction.
American Mathematical Society, 2010.

15. James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984.
16. Afra Zomorodian and Gunnar E. Carlsson. Computing persistent homology. Dis-

crete & Computational Geometry, 33(2):249–274, 2005.

