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Abstract

Embedded systems development creates a need of new design, verification and validation technics. Formal methods appear as a

very interesting approach for embedded systems analysis, especially for dependability studies. The chosen formalism for this work

is based on Colored Petri Net (CPN)for two main reasons : the expressivity and the formal nature. Also, they model easily the

static and the dynamic natures of the studied systems. The main challenge of this work is to use existing models, which describe the

system structure and/or behavior, to extract the dependability information in a most general case and failure diagnosis information

in a particular case. The proposed approach is a CPN structural backward reachability analysis. It can be split in two parts. The first

one is to perform the proposed analysis : inverse CPN. It is obtained thanks to structural transformations applied on the original

CPN. The second part is the analysis implementation. This part needs some complementary concepts of which the most important is

the marking enhancement. The proposed approach is studied under two complementary aspects : algorithmic and theoretic aspects.

The first one proposes transformations for the CPN inversion and the analysis implementation. The second aspect (the theoretical

one) aims to offer a formal proof for the approach by applying two methods which are linear algebra and linear logic.

Keywords: Colored Petri Nets (CPN), Backward Reachability, Structural Analysis, Dependability, Embedded Systems, diagnosis.

1. Introduction

In the last few years, the part of embedded systems in elec-

tronic and computer-based devices is ever growing. These om-

nipresent systems are used in most tasks and activities like com-

munications, transportation or industrial processes. If we look

at mobil phones, for example, we can see easily that their com-

plexity increased highly in short period. What was, in the be-

ginning, a heavy and cumbersome device becomes a light er-

gonomic tablet which includes a multimedia station, office ap-

plications, a networks terminal (WiFi, Bluetooth, 3G), a game

console, etc. This amount of functionalities is necessary be-

cause of the harsh competition between manufacturers. This

phenomenon produces two strong constraints on the embedded

systems design process : 1) to market delays must be as short

as possible ; and 2) the proposed product has to contain more

functionalities than its rival. The product has also to respect

strong financial and dependability conditions.

To take into account the increasing requirements on embed-

ded systems, Methods and designing tools evolve in the same

way as the system evolution. These tools have to deal with

hardware increasing complexity, large size embedded software

and reduced design delays. In addition, the designed system

has to fulfill strict dependability requirements. Even for large

consumption products, the dependability requirements are very
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rigorous. The example of a mobil phone is very illustrative : an

entertainment application must not interfere with a voice call ;

the later must respect a low electromagnetic emission level with

a minimal energy consumption ; the battery, which must have

a long autonomy period, must not overheat ; the whole system

has to respect pollution norms. All these requirements are a

very synthetic overview.

In this economic context, one of the research issues is the

development of technics to take into account dependability re-

quirements in embedded system design as the classical methods

in this field (failure trees, reliability block diagrams, ...) reach

quickly their limits when confronted to new requirements. Dis-

crete event systems based modelling appears as an efficient way

to reach this objective in the way that models describe system

contents, components hierarchy, process events scheduling and

they are easily analysable.

To deal with the present research issues, some works (see

[1], [2], [3]) exploited the discrete event systems, and especially

Petri nets, to perform some diagnosis and dependability analy-

ses over different embedded systems types. The interest is not

only to analyse the system. It is also to do the analysis in a for-

mal framework thanks to mathematic tools like Linear Logic.

We undertake, in this work, to extend and to generalize this ap-

proach. We choose Colored Petri Nets (CPN) based modelling.

CPN are extension of Ordinary Petri Nets which integrates a

tokens differentiation semantics. This choice is motivated by

the large expressivity of CPN models, their mathematic basics

allowing formal analysis, their compliance with embedded sys-

tems modelling (like parallel processing, communication and

events). The CPN model can be easily analyzed by forward
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analysis, that means, by determining the causes we find con-

sequences. The use of CPN to model the embedded systems

gives some interesting issues. First of all, the CPN large expres-

sivity, and especially arc expressions, make the model analysis

more complicated than the case of Ordinary Petri Nets. Also,

the failure diagnosis is difficult because, in diagnosis, conse-

quences are known (a failure state is indicated using an alarm, a

red light, a profil deviation, ...) and we aim to know causes. As

in embedded systems, failures are very rare events, the forward

analysis can’t be applied by simulation.

This work studies a dual vision to the forward analysis called

backward analysis. It is more adapted to diagnosis and aims

to offer a design aided tool for dependable embedded systems.

The basic idea is to transform (invert) the model to drive the

analysis following consequences (usually which are failures).

The inversion is performed thanks to structural transformations.

The analysis is then driven on inversed models using comple-

mentary mechanisms such as the marking enhancement gen-

eralized to CPN. The algorithmic aspects are strengthened by

two theoretic studies: the first one for the local aspect (inver-

sion algorithms), the second one for global aspect (backward

reachability analysis).

This paper is outlined as follows: after this introduction, the

section 2 summarizes the related works in the Petri Nets In-

version Field. The section 3 presents a formal definition of a

Colored Petri Net and then details the algorithms to perform

the CPN inversion. The two following sections deal with theo-

retical aspects. The section 4 treats proofs using linear algebra

formalism. The section 5 treats proofs using Linear logic for-

malism. The presented approach is illustrated in the case study

of the section 6. Finally, the paper ends with a conclusion and

some propositions to future works.

2. Related works

This paper deals with the backward reachability analysis

based on an inverse CPN. The main objective is to perform a

diagnostic analysis using a Petri Nets based modelling without

the reachability graph with an exclusive use of the structure of

the model itself. The PN model (and its extensions) inversion

is based on different technics according to the objective and the

extension. For ordinary Petri Nets, works directed by H. Dem-

mou and R. Valette ([3], [4], [5]) propose the use of an inverse

Petri Net model. These ones are obtained by inverting arc direc-

tions in the original Petri Nets. The benefit of this method are

its theoretical and implemental simplicity. It is used to deriving

feared scenarios (which might lead the system to critical situa-

tion). But this method suffers from limitations when applying it

to Colored Petri Nets. Portinale, in [6], proposes the B-W Anal-

ysis. It is a backward reachability through Behavioral Petri Net

(BPN) models which introduce a (reduced) semantic of tokens

differentiation. Nevertheless, the proposed extension is very

particular and endowed with a limited expressivity. Concerning

the CPN class, Cho et al. [7] proposes a method inspired from

[8]. It is based on a modified version of the CPN fundamen-

tal equation. It allows to express a backward transition firing.

It allows also to consider the transition firing even if some to-

kens are missing. The problem of this method is the association

of each such transition firing with a predicate which can speed

down analysis and even make it impossible because of unde-

cidability introduced for each transition. In a very close context

to CPN, Muller and Schnieder [1] propose an approach using

High Level Petri Nets (HLPN). It generalizes, to HLPN, the du-

alization formula of [9] initially applied for Ordinary PN mod-

els. It transforms the model by changing places by transitions,

transitions by places and inverting arc directions. Physical in-

terpretation of modelled phenomena becomes very hard and the

practical application of this method shows that the main benefit

of the dualization is the limitation of some calculating intervals

but the analysis itself is still done on the original HLPN models.

3. Inverse Colored Petri Net

The Backward Reachability in CPNs is a dual concept to the

Forward Reachability. That is, if a marking Mf is reachable

from M0, we say that M0 is backward reachable from Mf .

By backward reachability we mean that M0 is the cause or the

source of Mf . Our contribution concerns firstly the generaliza-

tion of the backward reachability from the PN class to the CPN

class and secondly the development of adapted transformation

rules. The generalization implies a definition of an inverse CPN

which is obtained by applying the proposed transformations on

the original CPN.

3.1. Definition of Petri Net and Colored Petri Net

A Petri Net [10], called also an Ordinary Petri Net or a

Place/Transition Net, is a directed bipartite graph defined by the

4-tuple (P, T, Pre, Post), where: P is a finite set of places, T
is a finite set of transitions (P ∩ T = ∅), Pre is the backward

incidence application, Post is the forward incidence applica-

tion.

The notation of Colored Petri Net noted CPN [11] introduces

the notion of token types, namely tokens are differentiated by

colors, which may be arbitrary data values. Each place has

an associated type determining the kind of data that the place

may contain. A non-hierarchical CPN is defined by the 9-tuple

(Σ, P, T,A,N,C,G,E, I) where :

• Σ is a finite set on non-empty types,

• P is a finite set of places,

• T is a finite set of transitions,

• A is a finite set of arcs such that: P ∩ T = P ∩ A =
T ∩A = ∅,

• N is a node function. It is defined from A into P × T ∪
T × P ,

• C is a color function. It is defined from P ∪ T into Σ,

• G is a guard function. It is defined from T into expressions

such that:

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],
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• E is an arc expression function. It is defined from A into
expressions such that:

∀a ∈ A : [Type(E(a)) = C(p(a))MS∧Type(V ar(E(a))) ⊆ Σ]

Where p(a) is the place of N(a),

• I is an initialization function. It is defined from P into

closed expressions such that:

∀p ∈ P : [Type(I(p)) = C(p)MS ]

For practical reasons, we write E in a split form Pre and

Post (as used in [12]) such that Pre (resp. Post) is the back-

ward (resp. forward) incidence application. It is defined as E
where p(a) is the place of a part of N(a) defined from A to

P × T (resp. T × P ).

3.2. CPN transformation for the definition of an inverse CPN

Let R = (Σ, P, T,A,N,C,G,E, I) be a CPN and let R′ =
(Σ′, P ′, T ′, A′, N ′, C ′, G′, E′, I ′) be the inverse CPN of R. To

defineR′, we perform some transformations onR. These trans-

formations are directly dependent on the CPN structure. Con-

sequently, we have to define a transformation for each structure

case studied. Nevertheless, the most common transformations

in representative cases are presented in this section.

The following transformations (trivial, basic, parallel, para-

metric) are structure changes applied to CPN and result in in-

verse CPN. Their usefulness is to allow performing the back-

ward reachability analysis. Each transformation is a generic al-

gorithm applied on transitions type having same characteristics.

These characteristics are

⋆ the nature of arc expressions (constant, variable, function),

⋆ the number of functions using the same variable (none,

one, two or more),

⋆ arc orientation (input, output).

The combination of these three items leads to 81 possible

cases. This number decrease quickly because many associa-

tions are obsolete like input functions, output variables 1 and

functions without input variables. A second criterium reduces

the possible number of associations : the number of constants

and number of input arcs marked by the same variable have not

the effect on the transformation type to apply but their pres-

ence/absence influences. At the end, among 81 initial possible

cases, only 5 are relevant : input constant and output constant

(trivial transformation), input variable and exactly one output

function (basic transformation), input variable and no output

function or more than two output functions (parametric trans-

formations) and finally, input variable and more than one output

function using it (parallel transformation). Combinations of dif-

ferent transformations types are possible. An example will be

given to illustrate this case called mixed transformation.

1A variable associated to output arc is considered as an identity function
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Figure 1: Trivial and basic transformations for CPN inversion

3.2.1. Trivial and basic transformations

Figure 1-a- shows a trivial case of a CPN inversion. Arcs

(input and output) are marked with constants a, b. In this case,

it is enough to generalize the definition of the inverse PN to

CPN obtaining :

{
Pre′(p2, t) = Post(p2, t)
Post′(p1, t) = Pre(p1, t)

Note that, in the original CPN,M0 = 〈a〉.p1 givesM1 = 〈b〉.p2
by firing t. In the inverse CPNM1 = 〈b〉.p2 givesM0 = 〈a〉.p1
by firing t. Thus, we performed the backward reachability using

the inverse CPN.

Figure 1-b- shows the case where the input arc is marked with

a variable x, the output arc is marked by a function f(x) and a

guard G(x) can be associated to the transition t. Generalized

application of the rule shown before (inverting arcs directions)

can lead to the construction of an incorrect net. In this example,

the input arc would be marked with a function while the output

arc would be marked with the variable of this function. That

leads to the impossibility for the function evaluation. This is

why we suggest marking the input arc by the variable, the out-

put arc by the function f−1 and update the guard to express new

constraint associated to the transition. This assumes the neces-

sity to know whether the function f is reversible. If yes, it is

necessary to define its inverse noted f−1. This transformation

gives :






Pre′(p2, t) = Pre−1(p1, t)
Post′(p1, t) = Post−1(p2, t)
G′

t(Pre
′(p2, t)) = Gt(Post

−1(p2, t))

Pre−1(p1, t) denotes the transformation of the arc Pre(p1, t)
which is marked with a new variable defined on f−1 do-

main. Post−1(p2, t) denotes the transformation of the arc

Post(p2, t) which is marked by f−1 (the opposite reverse of

Post(p2, t) marking function).

3.2.2. Parametric transformations

Some CPN structures can’t be transformed to get determin-

istic markings in the backward reachability. The reason is that

the inversion process could be assimilated to mathematic oper-

ations whose solutions may be intervals. The CPN inversion,

in these cases, is parametric. That means that some additional
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Figure 2: Parametric transformations for CPN inversion

information, like color sets, are needed. Two cases follow :

the first treats a solution of multivariable equations, the second

treats with input variables which are associated with no output

functions.

Figure 2-a- shows a case where output arc is marked with a

multivariable function. In this case, the CPN is not directly re-

versible. The values of variables {x, y} can not be deduced by

knowing only the value of g(x, y). The partial (parametric) so-

lution proposed consists in finding the admissible values of one

variable knowing other variable values and the function result.

As illustrated in Figure 2-a-, the firing t (in inverse CPN) re-

quires tokens either in {p2,p3} or in {p1,p3}. Functions g−1
x (y)

and g−1
y (x) are partial inverses of g(x, y).

Figure 2-b- shows a case of a variable which is not associ-

ated with a function. We note that input arc expression is a

variable and output arc (or arcs) expression is constant. This

CPN inversion is similar to the case of Figure 1-a-, except the

arc Post′(p1, t) which is marked by a parametric expression

noted AnyV alue. It means that this arc expression can take all

values out of t in the set of the place p1 color.

3.2.3. Parallel transformations

The term ’parallel’ means the existence of a shared variable.

Figure 3 shows the case where the same variable is used by

more than one function (two functions in this case). To inverse

this CPN, we have to calculate the inverse of only one function

using the shared variable (which supposes existence of, at least,

one reversible function).

Let f be a reversible function. In the original CPN (shown

on the left in Figure 3), the transition t firing produces two to-

kens (in p2 and p3). Each token value results from a function

applied to the shared variable : function f to the token in p2 and

function h to the token in p3. The inverse CPN must produce a

token in p1 by firing t whose preconditions are p2 and p3. But

it is not enough to have tokens in p2 and p3 to fire t because

token values (in p2 and p3) must have coherent values towards

applied functions f and h. For this reason, we define a guard

associated to transition t. It checks that the value of f−1(x)
applied to h gives as the result the value of y (token initially in

p3). If the guard value is True, t will be fired, then the initial

marking of p1 will be found. If the guard value is False, t will

not be fired.
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Figure 3: Parallel transformation for CPN inversion

The algorithm describing the parallel transformation can be

written as follows:

Let R be a CPN containing a variable x (Pre(p, t) = x)

which is shared by n functions f1, f2, . . . , fn (Post(qi, t) =
fi(x), i = 1 . . . n) with f1 inversible. The inverse CPN is de-

fined by :

• Pre′(q1, t) = Pre−1(p, t),

• Pre′(qi, t) = Idi, i = 2 . . . n,

• Post′(p, t) = Post−1(q1, t),

• G′
t =

∧i=2
n [Pre′(qi, t) == fi(f

−1
1 (Pre′(q1, t)))].

3.2.4. Mixed/Complexe transformations

Transformations previously presented are ”simple”, easily

recognizable and transformable. However, in real models, tran-

sitions can gather some characteristics which don’t allow them

to be categorized in a unique transformation type (eg. para-

metric and parallel transition at the same time). The transfor-

mation of such transition is a mix of elementary transforma-

tions. To perform it, all transformation types to apply must

be identified and applied in a pertinent order. The procedure

often begins by parallel transformation, followed by the para-

metric, the basic and the trivial. This sequence is a general

indication. But for each case, the transformation have to use

the maximum available information and answers the expressed

need. In real use, the dynamic available information influences

the structural transformation choice to apply (practical exam-

ples can be found in the case study).

Figure 4 shows a mixed case where some input arcs are

marked with variables {x, y} and other arcs by constants {a, b}.
Output arcs are marked with constants {c} and reversible func-

tions {f, g}. This CPN inversion is a mix (generalization) of

a trivial and a basic transformations. For arcs marked with a

constant, it is sufficient to generalize the rule applied on PNs

(changing arcs direction). For the remaining arcs, we have to
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Figure 4: Mixed transformations for CPN inversion

apply the rule illustrated in Figure 1-b-. So, we have to as-

sociate each variable to its function in order to respect origine

places of arcs marked by variables and sink places which re-

ceive resulting tokens. The following constraint has to be ver-

ified in this case: each variable is used by one and only one

function. If not true, see the Parametric transformation.

3.3. Special transformations

Among the huge possible cases of generalized CPN struc-

tures, there exists some of them which transformation is diffi-

cult. The problem is directly related to the model itself. Whe

following presents some of the most frequent cases and pro-

poses solutions (tradeoffs) to perform the backward reachabil-

ity analysis.

3.3.1. Loop transformations

The models aimed with this study show a recurrent presence

loops. Characterization of these cycles can be very difficult

in CPN because of the token values evolution. In the case of

Ordinary Petri Nets, [13] reduces the number of feared paths

returned by the backward reachability by detecting cycles and

analyzing them only once. This method can not be generalized

to CPN since two successive executions of the same structural

cycle can produce tokens with very different values. An partial

solution can be found in some cases by applying, for example,

transitions agglomeration [12].

The minimal cycle is a loop between a place and a transition

representing a very simple timer or sampler. To avoid a rep-

etition of iterations, we propose the use of sequences, and es-

pecially, arithmetic and geometric sequences allowing to deter-

mine in only one operation the final value after a given number

of iterations or, by duality, to calculate the number of necessary

iterations to reach a value without having to simulate the loop.

So, the main idea here is to consider that the concerned loops

have a progression which can be compared to a sequence and

according to the form of arc expression, token values generated

by the loop execution can be considered as terms of sequences

and can be deduced easily.

3.3.2. Constraint programming transformations

The model inversion often supposes the existence of, at least,

one inversible function. This one gives source values for known

results. In some cases, the requested function is inversible by

pieces, inversible in a subset of the colors set, partially in-

versible or pseudo-inversible [14]. The problem is when the

inversible function does not exist. One of possible solutions is

the use of constraint programming [15]. This solution express

the relation between inputs and outputs in a constraint form in-

stead of a direct (function) form. The use of constraints implies

the introduction of the decidability notion. In other words, if

the constraints are resolved, the solution exists. In contrast, if

constraints are not resolved, no response can be made about the

existence on solution.

3.4. Supplementary mechanisms

The transformation rules presented above allow the inversion

of the CPN structure. That is, they allow to obtain a structure

on which the backward reachability can be performed. Some-

times, this analysis becomes impossible because the lack of in-

formation consisting on a partial knowledge of the system state.

So, in certain situations, the final marking (or the intermediate

marking) does not allow a complete analysis. This is why, in

order to analyse the inverse dynamic behavior, the following

complementary principles have to be introduced.

3.4.1. Potentially Valid Transition

In a marked CPN, a transition is potentially valid if it has, at

least, 1.) one precondition place marked by a token whose value

is compatible with the transition firing (i.e. token compatible

with arc expression and guard) ; and 2.) one precondition place

which is not marked by a token whose value is compatible with

the transition firing. Identifying this kind of transitions allows

the marking enhancement.

3.4.2. Marking Enhancement

The marking enhancement is a mechanism allowing to com-

plete the information about a model by adding assumptions

about the modelled system state (additional tokens). It is done

when constructing successor states. Sometimes, the immediate

successor of a given state (which is equivalent to fire a transi-

tion) can only be constructed with help of added tokens with

appropriate values in certain places. The marking enhancement

interpretation consists in assuming that the system is in some

given state allowing it to operate. This mechanism has to be

performed if only a part of the token distribution is available.

3.5. Partiel Order of transition firings

The partial order in CPN is a relation between transitions (not

necessary all transitions of the model) noted by ”≺” [2]. This

relation defines a precedence in transitions firing. For two tran-

sitions t1 and t2, the formula t1 ≺ t2 means that the firing of t1
occurs before the firing of t2 (all properties of this relation are

detailed in [2]). The notion of partial order is very important

in the backward reachability analysis in order to decide which

transition has to be fired first at each step of the analysis evolu-

tion. The partial order in the backward reachability is inverted

comparing to forward analysis. For example, if in the original

CPN, the relation t1 ≺ t2 is true so, in the inverse CPN, the

formula t2 ≺ t1 is also true.

5



4. Linear algebra

The structural analysis with backward reachability uses the

inverse CPN which is obtained by performing structural trans-

formations on the original CPN. Question asked then are : 1) are

transformation algorithms previously presented correct? and 2)

is the backward analysis performed thanks to inverse CPN cor-

rect?

The answer to these questions needs the study of two theoret-

ical aspects of CPN inversion. The first one, linear algebra, con-

cerns each transition as standalone. The definitions are inspired

from [12], [16], [17] and [18]. The methodology is inspired

from [12] concerning CPN theory and precisely Well Formed

Petri Nets (WPN). The second theoretical aspect (linear logic)

is detailed in section 5.

4.1. Definitions and preliminaries

4.1.1. Bilinear form

A form is an application of a vector space in his number set

K (the number corp is a number set defining external vectors

multiplication such as integers, reals or complexes). A Bilinear

form is an application defined on a couple of vectors x and y,

from the Cartesian product ofE×F that have the same number

corp. For a given application f , we write:

f : E × F → K
(x, y)→ f(x, y)

A form is said linear for its first variable if for each y0, the

application f which, to x, associates f(x, y0) is linear. In the

same way, the form is linear for its second variable if for each

x0, the application f which, to y, associates f(x0, y) is linear.

If the two previous proprieties are satisfied, the form is bilinear.

4.1.2. Similitudes

Let consider E to be a space provided with the bilinear form

φ : E × E → K. Let f : E → E be a linear application. We

define the symmetric bilinear form φf by

φf : E × E → K
(x, y)→ φ(fx, fy)

We say that f is a similitude of φ multiplier µ (noted also

µ(f)) if the following propriety is verified:

∀x ∈ E,∀y ∈ E, φ(fx, fy) = φf (x, y) = µφ(x, y)

The result produced by this definition is that the orthogonal ap-

plications are similitudes (whose multiplier is 1).

4.1.3. Equivalence between linear and bilinear forms

A color function can be defined either from Bag(C(t))2 to

Bag(C(p)) or fromC(t)×C(p) to N. The two forms are useful

2We note Bag(U) the multi set defined over U (U is a finite set). A Bag

(or multi set) is a non ordered set where the repetition is permitted. An element

of Bag(U) is noted
∑

u∈U au.u. Using Bag notion allow treatment of color

sets case which are characterized by the repetition of their values.

to define CPN transformations (developed later in this work). It

is why the same symbol is used in the two forms. The formula

that gives the relation between the two forms is expressed as

follows:

f(c) =
∑

c′∈C(p)

f(c′, c).c′

Where f(c) denotes the mapping of c to an item of Bag(C(p))
by f as a linear application and where f(c′, c) denotes the map-

ping of (c′, c) to an integer value. We note that no confusion

can appear since the first definition implies one argument while

the second definition implies two arguments.

4.1.4. Multi sets properties

• The Identity function of Bag(C) (noted Id) is defined as

Id(c) = c. This function can also be defined as Id(c′, c) =
(If (c = c′)1 else 0)

• A function f from Bag(C) to Bag(C) is orthonormal
if and only if there exists a substitution σ of C such that

f(c) = σ(c). The equivalent definition is: f(c′, c) =
(If (σ(c) = c′)1 else 0). We can also write this condition

as a similitude form [19]: ∀c ∈ C,∃c′ ∈ C ′, f(c, c′) = 1
and ∀c′ ∈ C ′,∃c ∈ C, f(c, c′) = 1

• The projection from Bag(C × C ′) to Bag(C) (noted

Proj) is defined by Proj(〈c, d〉) = c. The equivalent

definition is: Proj(c′, 〈c, d〉) = (If (c = c′)1 else 0).

• A function f from Bag(C) to Bag(C ′) is quasi-injective

if and only if ∀c′ ∈ C ′,∀c1 ∈ C,∀c2 ∈ C : f(c′, c1) 6=
0 ∧ f(c′, c2) 6= 0⇒ c1 = c2

• A function f from Bag(C) to Bag(C ′) is unitary if and

only if ∀c′ ∈ C ′,∀c ∈ C : f(c′, c) = 0 ∨ f(c′, c) = 1

4.1.5. Composition

Let f be a function from Bag(C) to Bag(C ′) and g a func-

tion from Bag(C ′) to Bag(C ′′). The composition of f and g
is a function g ◦ f from Bag(C) to Bag(C ′′) defined by :

g ◦ f(c) = g(f(c)) =
∑

c′′∈C′′

(
∑

c′∈C′

g(c′′, c′).f(c′, c)

)
.c′′

4.1.6. Orthonormalization of a transition

Let R be a CPN where R = (Σ, P, T,A,N,C,G,E, I), t
be a transition of R and f an orthonormal function of C(t).
The CPN Rr = (Σr, Pr, Tr, Ar, Nr, Cr, Gr, Er, Ir) obtained

by f − orthonormalization of t is defined by:

• Pr = P , Tr = T

• ∀t ∈ Tr,∀p ∈ Pr, Cr(t) = C(t) AND Cr(p) = C(p)

• ∀t′ ∈ Tr−{t},∀p ∈ Pr, Postr(p, t
′) = Post(p, t′) AND

Prer(p, t
′) = Pre(p, t′)

• ∀p ∈ P, Prer(p, t) = Pre(p, t) ◦ f AND Postr(p, t) =
Post(p, t) ◦ f

• ∀p ∈ Pr,Mr(p) = M(p)
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Figure 5: Color correspondance in CPN

4.2. Color correspondance in CPN

Let us consider the case illustrated in Figure 5. The CPN

is constituted of a set of two places {p, p′} and a set of only

one transition {h} such that the precondition of h is p and the

post condition of h is p′. The orthonormal function Pre(p, h)
is defined from Bag(C(h)) to Bag(C(p)). The function

Post(p′, h) is defined from Bag(C(h)) to Bag(C(p′)). So,

we have: Pre(p, h) : C ′ → C and Pre(p′, h) : C ′ → C ′′. The

goal is to express relation between C and C ′′.

By its definition, the function Pre(p, h) is orthonormal, i.e.

there exists a substitution σ of C such that f(c) = σ(c). Us-

ing this substitution, we define the inverse substitution σ−1.

This definition is possible thanks to a part of the orthonormal-

ity condition which is ∀c′ ∈ C ′,∃c ∈ C, f(c, c′) = 1. This

inverse substitution is associated to a new color function noted

Pre−1 defined from Bag(C(p)) to Bag(C(h)). Expressions

of Pre−1(p, h) and Post(p, h) can be expressed as follows:






Pre−1(p, h)(c) =
∑

c′∈C(h) Pre
−1(p, h)(c′, c).c′

for c ∈ C(p) (1)
Post(p′, h)(c′) =

∑
c′′∈C(p′) Post(p

′, h)(c′′, c′).c′′

for c′ ∈ C(h) (2)

Replacing c′ expressed in (1) by (2) gives :

∑
c′∈C(h) Pre−1(p, h)(c′, c).

∑
c′′∈C(p′) Post(p′, h)(c′′, c′).c′′

=
∑

c′′∈C(p′) c′′.Post(p′, h)(c′′, c′).
∑

c′∈C(h) Pre−1(p, h)(c′, c)

=
∑

c′′∈C(p′) c′′.
∑

c′∈C(h) Post(p′, h)(c′′, c′).P re−1(p, h)(c′, c)

= Post(p′, h) ◦ Pre−1(p, h)(c′′, c)

Note that the relation between C and C ′′ is expressed as

Post(p′, h)◦Pre−1(p, h) which is defined from C to C ′′. This

result can be obtained by orthonormalization of the transition

h with the orthonormal function Pre−1(p, h). This operation

composes Pre(p, h) with Pre−1(p, h) and also Post(p′, h)
with Pre−1(p, h). Note that Pre(p, h) ◦ Pre−1(p, h) equals

to identity (Id), which explains the result.

Since the two CPNs are equivalent, we define a relation

(noted ⋄) such that f ⋄ g = g ◦ f−1. This operator allows

to express that f is a precondition and g is a postcondition and

is useful for handling easily the symbolic operations applied to

incidence matrices of the CPN.
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Figure 6: Equivalence between generalized PN and Well-Formed PN

4.2.1. Dual CPN Notation

In this study, we exploit two different notations of CPN :

generalized PN and Well-Formed PN. The first one is very use-

ful to model real systems. It is implemented in softwares like

the CPN Tools3 ([20]). It marks input arcs (of a given tran-

sition) by variables and output arcs by functions. This nota-

tion is equivalent to the alternative one ([12]) which is useful

to perform formal proofs. In the second notation, a transition

takes its color values in a set defined by a cartesian product

C = C1 × · · · × Cn where each Ci corresponds to original

colors domain of an arc expression. So Prei = Proji(C)
noted Proji (or constant). Proji projects transition color val-

ues to its ith precondition place. Variables of output function

take their values in C. Figure 6 illustrates a concrete example.

C = C(t) = C1 × C2 × C3 × C4. The function f1 takes

its values in C1 such that C1 = Proj1(C) (that can be noted

Proj1). In the same manner, f2 takes its values in C2 which is

a projection of C on its second item.

4.3. CPN transformations proofs

The inversion applied to ordinary PN can be generalized to

CPN in two steps: 1) inversion of arcs direction and 2) CPN

functions transformation. The application of only the first step,

i.e. generalize the inversion method as announced for ordinary

PN, may lead to the construction of a CPN whose precondi-

tion expressions are neither orthonormal, nor unitary, nor quasi-

injective. This is why it is necessary to check and to transform

(second step).

4.3.1. Arcs inversion

This proof is illustrated in the trivial case where input arc

is marked by identity function (Id) and the output arc by a

function f . In this case, it is necessary to know whether f is

orthonormal. If yes, it is necessary to define its inverse f−1.

Applying the two steps mentioned above leads to associate the

input arc with the identity function Id and the output arc with

f−1.

The proof is a generalization of the demonstration applied in

Ordinary PN. The forward relation between places (one step)

is given by Pre.PostT and the backward relation (one step) is

3http://wiki.daimi.au.dk/cpntools
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PN

given by the transpose of this last matrix which is Post.PreT .

Let’s check these relations in the Trivial transformation case.

We have :

Pre =

(
Id
0

)
, Post =

(
0
f

)
, P re.PostT =

(
0 Id ⋄ f
0 0

)

So, the forward relation between the places is verified by the

expression Id ⋄ f = f ◦ Id−1 = f . In addition, we have back-

ward relation Post.PreT =

(
0 0

f ⋄ Id 0

)
which verifies a

relation from cartesian product of places color sets through the

term f ⋄ Id. As f ⋄ Id = Id ◦ f−1, the algorithm provides the

inverse CPN.

4.3.2. Mixed transformations

Figure 6 shows a mixed case noted with the two different

notations : generalized PN and Well-Formed PN. The proof of

this case merges those of trivial and basic transformations.

Proof:

Figure 7 illustrates the two steps allowing to inverse the CPN.

The first one is the inversion of arcs direction. It remains to

prove the transformation to the interpreted form of the CPN.

Let’s note by C colors domain of the transition such as C =
C1×C2× · · · ×Cn. We define fi : Ci → C ′, and a projection

Proji : C → Ci. The composition of the two functions is

defined by fi(Proji) : C → C ′.

Let’s note by C̃i The colors domain defined by

C̃i = C1 × . . . Ci−1 × C ′ × Ci+1 × · · · × Cn.

We define f̃i : C̃i → C ′ with f̃i(x) =
(proj1(x), . . . , P roji−1(x), fi(Proji(x)), P roji+1(x),
. . . , P rojn(x)). We define also a projection Proji : C̃i → C.

The composition of the two functions is defined by

Proji(f̃i) : C → C ′.

Note that f(Proji) and Proji(f̃i) gives the same result.

Proji(f̃i)(x)
= Proji(proj1(x), . . . , P roji−1(x), fi(Proji(x)),
P roji+1(x) . . . , P rojn(x))
= f(Proji)(x)

Finally, we define the function f̃−1
i such as

f̃−1
i (x) = (proj1(x), . . . , P roji−1(x), f

−1
i (Proji(x)),

P roji+1(x) . . . , P rojn(x))
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Figure 8: Mixed transformations proof for CPN inversion

The transformation is done thanks to orthonormalization se-

quence using f̃−1
i . For each function f̃−1

i , three different cases

are identified as illustrated in Figure 8.

Part a. Figure 8.a shows a part of the transition composed by

an input arc marked with the function fi ◦ Proji and an output

arc marked by Proji. The composition with the function f̃−1
i

gives the following results: In input arc side we have

fi ◦ Proji ◦ f̃
−1
i = fi ◦ f

−1
i ◦ Proj1

= Proji
In output arc side, we have Proj1 ◦ f̃

−1
i = fi ◦ Proji

We conclude that this composition produces a part of transi-

tion which can be evaluated (functions indexed by i).

Part b. Figure 8.b shows a part of the transition composed by

an input arc marked with the function fj ◦Projj (such as j 6= i)
and an output arc marked with the function Projj . The com-

position with the function f̃−1
i gives the following results. At

input arc side, we have fj◦Projj◦f̃
−1
i = fj◦Projj . At output

arc side, we have Projj ◦ f̃
−1
i = Projj . So, this composition

does not affect other functions that those indexed by i.

Part c. Figure 8.c shows the remaining part of the transition,

means, arcs marked with constants. Knowing that composition

does not affect constants, this still true for the composition with

f̃−1
i .

To complete the transition transformation, it is enough to re-

peat precedent steps for all functions marking input arcs.

4.3.3. Parallel transformations

As in previous inversions, the proof of the parallel transfor-

mation is composed of two steps. The first one is the inversion

of arc directions. So, it remains to prove the transformation

on the interpreted form of the inverse CPN. This proof can be

performed in the case of two parallel functions, and then, gen-

eralized for any number of parallel functions.

The transformation, as illustrated in Figure 9 can be done

by an orthonormalization of the transition. The choice of the

orthonormal function is arbitrary (f or g in Figure 9). This gives

two possible inverse CPNs which are equivalent. The scheme

Figure 9 left is obtained by a composition with g−1 and Figure 9

right is obtained by a composition with f−1.
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Figure 9: Proof of parallel transformations for CPN inversion

The two inverse CPNs are equivalent so that the functions

f−1 and g−1 are applicable to a subset of the transition color

domain c ∈ Bag(C(t)) where f−1(c) = g−1(c). For this color

subset, f ◦ g−1 = Id and g ◦ f−1 = Id. By substitutions in

arc expressions, illustrated in Figure 9 (left and right), identical

results are obtained. The inverse CPN obtained is endowed with

a restrictive condition about the color domains. This condition

is called guard and it is expressed with the notation related to

the transition.

5. Linear logic

The second theoretical aspect studied in this work aims to

prove the correctness of results obtained by the backward reach-

ability analysis using the whole (or a part) of the inverse CPN.

The proofs are based on the Linear Logic (LL) formalism. Pre-

vious studies, like [3] and [21], used LL to prove reachability

methods in ordinary PN but not in higher models. The chal-

lenge of this paper is to adapt and to use the LL formalism for

CPN proofs.

5.1. Introduction to Linear Logic

Linear Logic was introduced by Girard [22]. Its expressive

power is demonstrated by some very natural encodings of com-

putational models such as Petri Nets, counter machines, Tur-

ing machines and others [23]. The Linear Logic differs from a

classic logic by introducing the notion of a ressource. A clas-

sic logic deals with static propositions where each proposition

is either true or false. Because of the static nature of proposi-

tions in a classic logic, there may be duplicated [P ⇒ (P ∧P )]

and/or discarded [(P∧Q)⇒ P ]. Both of these propositions are

valid in classical logic for any P and Q. In Linear Logic, these

propositions are not valid because no information is available

about how the second P is produced (in the first proposition) or

where Q is consumed (in the second proposition). The rules of

Linear Logic imply that linear propositions stand for dynamic

properties or finite resources.

For example, let us consider the propositions E, C and T con-

ceived as resources: 1)E: one Euro, 2)C: cup of Coffee, 3)T:

cup of Tea. Consider the following axiomatization of a vending

machine: 1)E ⇒ C, 2)E ⇒ T . Then in classical logic, the

proposition E ⇒ (C ∧ T ) can be deduced. Which may be read

as ”With one Euro, I may buy both a cup of coffee and a cup

of tea”. Although this deduction is valid in classical logic, it

is a nonsense in the intended interpretation of propositions as

resources: two cups of hot drinks cannot be bought with one

Euro from the described vending machine.

In this work, we only use a fragment of the Linear Logic re-

lated to Petri Nets which is the MILL fragment (Multiplicative

Intuitionistic Linear Logic). This fragment contains a multi-

plicative connector TIMES (⊗) and a linear implication con-

nector (⊸). The TIMES connector traduces the accumulation

of resources. The propositionA⊗Ameans that two resourcesA
are available. The Linear implication (⊸) expresses the causal-

ity between production and consumption of resources. The

proposition A ⊸ B means that when the proposition A is con-

sumed, the proposition B is produced. The meta-connector ”,”

(comma) is cumulative [22].

5.2. Sequent calculus

The sequent calculus notation, due to Gentzen [24], is com-

posed of two sequences of formulas separated by a turnstile

symbol (⊢). The formula Γ,Γ′ ⊢ ∆,∆′ means that the con-

jonction of Γ and Γ′ allows to deduce the disjonction ∆ or ∆′.

A sequent calculus proof rule consists of a set of hypothesis se-

quents, written above a horizontal line, and a single conclusion

sequent, written below the line, as follow:

Hypothesis1 Hypothesis2
RuleattributeConclusion

The goal is to construct a proof tree. Starting from the se-

quent, and applying step by step some adapted rule, the proof

consists on eliminating the connectors. These rules are shown

in Figure 10 where : A is an atom ; F , G and H are formulas

; Γ and ∆ are blocs of formulas separated by commas. The at-

tribute indicates whether the rule is applied at left (L), at right

(R) or to the whole sequent (empty attribute).

id
A ⊢ A

Γ ⊢ F ∆, F ⊢ H
Cut

Γ,∆ ⊢ H

Γ, F,G,∆ ⊢ H
Exchange

Γ, G, F,∆ ⊢ H

Γ ⊢ F ∆, G ⊢ H
⊸L

Γ,∆, F ⊸ G ⊢ H

Γ,∆, F ⊢ G
⊸R

Γ,∆ ⊢ F ⊸ G

Γ, F,G ⊢ H
⊗L

Γ, F ⊗G ⊢ H
Γ ⊢ F ∆ ⊢ G ⊗R

Γ,∆ ⊢ F ⊗G

Figure 10: Sequent calculus rules of the MILL fragment

The interest of Linear Logic is that it provides, for example, a

natural and simple coding of Petri Net reachability [23]. Based

on the sequent calculus, Linear Logic helps to get a necessary

and sufficient condition of reachability from one marking to an-

other, thanks to the equivalence between the reachability in a

Petri Net and the provability of the corresponding sequent [25].
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Moreover Linear Logic gives the partial firing order of the dif-

ferent transitions in order to reach the final marking Mf from

an initial marking M0 [26].

5.3. Linear logic and Petri Nets

To translate a Petri Net to Linear Logic, a logical formula is

associated for each marking and each transition. The left hand

of the initial sequent must hold the list of all the transitions that

can be fired to obtain a marking Mf from an initial marking

M0. The building of the proof generates a proof tree beginning

by a sequent and finishing by the identity axiom. For a given

Petri Net, the translation is performed as follows:

• An atomic proposition P is associated with each place p
of the Petri Net,

• A single sequent using the multiplicative conjunction

TIMES (⊗), is associated with each marking, pre-

condition and post-condition of transition,

• For each transition t of the net, an implicative formula is

defined as follows:

t :
⊗

i∈Pre(pi,t)

Pi ⊸
⊗

o∈Post(po,t)

Po

To show the reachability between two markingsM0 andMf ,

the proof of the sequent M0, t1, . . . , tn ⊢ Mf is performed as

follows: first, the initial marking M0 is replaced by separate

atoms by applying the ⊗L rule as many times as necessary.

Then, by applying ⊸L, the causality relation of atoms (from

M0 to Mf ) can be extracted. Each time the ⊸L rule is ap-

plied, the⊗L rule is applied if necessary to separate atoms con-

nected with ⊗. The proof continues essentially at the right side

of the tree because after each application of the ⊸L rule, the

left member is proven by using, if necessary, the ⊗R rule. The

sequent proof ends when all implicative formulae (expressing

transitions) are eliminated.

5.4. Linear Logic and Colored Petri Nets

The application of Linear Logic to CPN reachability analy-

sis requiers a translation between the two models (from CPN

to Linear Logic). This translation has to respect the CPN char-

acteristics, particularly token types and arc expressions which

do not exist in ordinary PN. To express the token differentiation

and their value evolution in CPNs, the predicative Linear Logic

is very limited ; this is why, in this work, the first order Lin-

ear Logic was preferred. This section presents the chosen First

Order Multiplicative Intuitionistic Linear Logic (noted MILL1)

and then presents the translation algorithm.

5.4.1. First Order Multiplicative Intuitionistic Linear Logic

MILL1 language is defined as follows:

Alphabet:. The alphabet consists of disjoint sets: a set of vari-

able symbols (e.g. x, y), a set of function symbols (e.g. f , g, h),

a set of relation symbols (e.g. R, S, T ), the binary connectives

(⊗, ⊸) and quantifier ∀. Each language L is equipped with a

map from L to the set of natural integers ar : L → N. This

map ar stands for symbol arity.

Terms. Given a language L, the first-order terms over L are

defined by the syntactic category below:

τ ::= x
| f (τ1, . . . , τn)

where x ranges over variables and f belongs to the function

symbols of L such that ar(f) = n.

Formulas. First-order formulas of MILL are defined by the in-

ductive syntactic category below:

ϕ, φ ::= R (τ1, . . . , τn)
| ϕ⊗ φ
| ϕ ⊸ φ
| ∀x · ϕ

where R belongs to relation symbols of L such that ar(R) =
n and where the variable x occurrences in the formula ϕ are

bound in formula ∀x · ϕ by the universal quantifier. Variables

that are not bound by a quantifier are called free.

Sequents. If Γ is a multiset of formulas separated by ”,” and

ϕ is a formula then Γ ⊢ ϕ is a sequent. By taking Γ as a

multiset, we will implicitly assume that the sequent comma ”,”

is associative and commutative. Γ is called the antecedent of

the sequent and ϕ the succedent.

Proofs in MILL1 are given in terms of proof trees that are in-

ference rule composition over judgments. Judgments are pairs

of a set of formulas Γ and a formula ϕ that are written Γ ⊢ ϕ.

This means that the formula ϕ is a logical consequence of the

conjunction of those of Γ. Inference rules (n-ary) are relations

between n+ 1 judgments that are noted as follows:

Γ1 ⊢ ϕ1 · · · Γn ⊢ ϕn

Γ ⊢ ϕ

which means that it is sufficient to establish the below-rule

judgment Γ ⊢ ϕ if the above-rule ones hold; in other words,

to establish the below-rule judgment it is necessary to prove the

above-rule judgments Γi ⊢ ϕi (1 6 i 6 n). Inference rules of

MILL are given in Figure 11.

id
ϕ ⊢ ϕ

Γ, ϕ ⊢ φ
⊸r

Γ ⊢ ϕ ⊸ φ
Γ ⊢ ϕ φ,∆ ⊢ ψ

⊸l
Γ, ϕ ⊸ φ,∆ ⊢ ψ

Γ ⊢ ϕ ∆ ⊢ φ
⊗r

Γ,∆ ⊢ ϕ⊗ φ

Γ, ϕ, φ ⊢ ψ
⊗l

Γ, ϕ⊗ φ ⊢ ψ

Γ ⊢ ϕ
∀r (∗)

Γ ⊢ ∀x · ϕ

Γ, ϕ ⊢ ψ
∀lΓ,∀x · ϕ ⊢ ψ

The constraint (∗) requires that the variable x isn’t free in

formulas of Γ.

Figure 11: First-Order Multiplicative Intuitionistic Linear Logic
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5.4.2. Translation of a Colored Petri Net to MILL1

A logical formula is associated to each marking and each

transition. The left hand of the initial sequent must contain the

list of all the transitions that can be fired to obtain the marking

Mf from an initial marking M0. The building of the proof gen-

erates a proof tree beginning by a sequent and finishing by the

identity axiom. For a given CPN, the translation is performed

as follows:

• A unary atomic predicate R is associated with each place

p of the CPN,

• A single sequent using the multiplicative conjunction

TIMES (⊗), is associated with each marking, each pre-

condition and each post-condition of transition,

• To each transition t of the net, an implicative formula is
defined as follows:

t : ∀x1 . . . ∀xi





⊗

i∈P re(pi,t)

Ri(xi) ⊸

⊗

o∈P ost(po,t)

Ro(fo(Xo))





where: xi are variables marking the input arcs of t ; fo are

functions associated to the output arcs of t ; Xo are vectors

composed of different associations of xi.

The following example translates the CPN illustrated in Fig-

ure 12 to its equivalent in MILL1.

• places pi are translated by unary atomic predicates x 7→
Ri(x) where (1 6 i 6 5);

• the transition t1 is translated by the formula: ϕ1 =̂ ∀x ·(
R1(x) ⊸ R2

(
f(x)

)
⊗R4

(
g(x)

))

• transition t2 is translated by the formula: ϕ2 =̂ ∀y · ∀z ·(
R2(y)⊗R5(z) ⊸ R3

(
h(y, z)

))

• the initial state is translated by the formula: φ0 =̂ R1(i)⊗
R5(j)

• the final state is translated by the formula: φ =̂ R3(a) ⊗
R4(b)

The remaining of the example treats a case of reachability

between two markings M0 and Mf where: M0 = 〈i〉.p1 +
〈j〉.p5 andMf = 〈a〉.p3+〈b〉.p4. The reachability betweenM0

and Mf is obtained by the means of the judgment φ0, ϕ1, ϕ2 ⊢
φ following proof in MILL1 (see proof tree in Figure 13): first,

the initial state formula φ0 is treated by ⊗l, then the transition

σ1 is treated by ∀l and ⊸l. The result of the first transition

is treated by ⊗l. The second transition σ2 is treated twice by

∀l and ⊸l. The results of the second transition is treated by

⊗r. In a parallel direction, we treat the final state formula φ by

⊗r as well. We finally apply id rules and unify the remaining

equations by the substitution ς:

ς(a) = h
(
f(i), j

)

ς(b) = g(i)

6. Case study

This section shows a practical use of the backward reachabil-

ity (through an inverse CPN) presented in previous paragraphs.

The application example is inspired from the railway transport.

It consists in the tram braking system. The aim is to show,

through a case study, how to exploit efficiently the backward

reachability analysis. The organization of this section begins

with the specification of the studied system (in this paper, we

focus only on the braking system). It is followed by the detailed

modelling using CPN. The model includes complement infor-

mation about the functions calculating braking values and the

impact of each braking type on the vehicle speed. Then, finally,

the CPN inversion and the backward reachability analysis are

presented.

6.1. Specification

The driver has a control console (Figure 14.a) endowed with

traction/braking handle which gives effort orders (acceleration,

neutral, braking).

The acceleration or braking orders are transmitted to the dif-

ferent Traction Braking Electronics (TBE) which manage the

different train bogies (set of two axles). The common braking

mode, named service braking, is obtained by pulling the handle

beyond the neutral position but without pulling it thoroughly.

The extreme position of the handle causes an emergency brak-

ing (see below). In the case of the service braking, the TBE re-

alize the effort (variable according to the handle position) with

an electrodynamic brake. This braking mode uses also, when

necessary, the disc brake. To avoid frequent falls in the train,

the braking effort is modulated by the passengers load (mea-

sured by a weighing device). The device named anti-slip (anti

wheels locking, equivalent to ABS system in automotive world)

is also active in this mode.

The emergency braking is obtained by pulling the handle

thoroughly. It is maintained till the train stops. In this mode,

maximum deceleration performance is needed. So, TBE order

the maximum effort to the electrodynamic brake and the disc

brake, the modulation with the passengers weight and the anti-

slipping stay active. The sanding (injection of sand under the

wheels) is ordered for the whole train. In addition to this, elec-

tromagnetic skates (long electromagnet) are applied on the rail.
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Figure 14: Control console and skate views of a tramway

 

Handle Weighting Anti-slipping 

Service Emergency 

Electro Dynamic 

Brake Disc Brake Sanding Skate 

h h w w a 
a 

 awhf ,,1
  awhf ,,2

 e 
e 

 awf ,3
 

 awf ,4
 

 1..0h  
1h  

Figure 15: CPN model of the tramway braking system

6.2. Colored Petri Net Modelling

The CPN, shown in Figure 15 models the different braking

types cited in the specification: service braking and emergency

braking. Each braking type is represented by a transition which

links causes (pre conditions) and requested devices (post condi-

tions). The specification does not provide numerical values or

functions about orders to apply. Their choice has only limited

effects on the analysis. So these choices are made by authors to

demonstrate the progress and the contribution of the backward

reachability analysis.

The transition Service models the service breaking which

is engaged by the position of the handle (represented by the

place handle) beyond the neutral position but not in the maxi-

mal one. This condition is represented by the guard associated

to this transition. It allows the transition firing if the variable

m ∈]0..1[ like that 0 is the neutral position and 1 is the max-

imal one. The effort order value is proportional to the handle

position. It is modulated also by the weighting and the anti-

slipping (represented by the places having same names). The

values of the variables w and a (for weighting and anti-slipping

respectively) belong to the interval [0..1]. The output braking

order is sent to the electrodynamic brake. It is calculated by

the function f1(h,w, a) = 5h + 2w + a. When the cumu-

lated value of w and a is higher then a threshold (1, 5 in this

case), an order is sent to the disc brake calculated by the func-

tion f2(h,w, a) = 7h+ 2w + a.

The transition Emergency models the emergency braking

caused by pulling the handle to its maximal position. This
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Figure 16: Transformation of the transition Service

condition is represented by the guard m = 1 associated to

the transition. This braking causes an action over all braking

material devices. It sends orders, modulated by the weighting

and the anti-slipping, to the electrodynamic brake and the disc

brake calculated by the functions f3(p, a) = 5 + 2p + a and

f4(p, a) = 7 + 2p + a. It engages also the sanding and the

skates by a signal represented by an anonymous token e.

6.3. Colored Petri Net Model transformation

The transition Service is, at the same time, parallel and para-

metric. It is parallel because same input variables are used is

two output functions. The parametric property comes from

the output variables which are multi-variable functions. Sev-

eral transformations are possible, each one depends on the in-

put variable to calculate, but all of them have to respect the

two properties (parallel and parametric). One of possible trans-

formations is illustrated in Figure 16. The values of h and

w are assumed in their domaines. So the calculation is done

over the variable a using the partial inverse function f−1
1a (x) =

x − 5m − 2p. When calculating, the values that do not belong

to the color set of the Anti − Slipping place (so variable a)

are deleted. An additional guard is associated to the transition

according to the application of the parallel transformation. This

guard is written y = f2(f
−1
1 (x)) and

f−1
1 (x) = (h,w, a)

= (x−2w−a
5 , x−5h−a

2 , x− 5h− 2w)

f2(f
−1
1 (x)) = If (((3x− 15h− 4w − a)/2) < 1.5) Then

0
Else

(17x− 50h− 24w − 12a)/5

The transition Emergency, for the same reasons as the transi-

tion Service, is parallel and parametric. In addition, it is mixed

because it has constant arc expressions that produce anonymous

token e. One of the possible transformations of this transition

is illustrated in Figure 17. In the original CPN, the transition

firing is conditioned by the value h = 1. So, in the transformed

model, the expression of the arc (Emergency, Handle) is as-

sociated to the constant value 1. The Anti − slipping values

are calculated using the function f−1
3a (x,w) = x−2w−5. The

added guard express adequation between values of x and y like

that f4(f
−1
3 (x)) = 2x− 2w − a− 3.
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Figure 17: Transformation of the transition Emergency

6.4. Braking system Analysis

6.4.1. The Service Braking

The first analysis concerns the service braking. The process

consists in studying a braking which requires, at the same time,

the electrodynamic brake and the disc brake with a known value

on the first one (5 in this example). The aim is to find possible

command values applied to the disc brake and the control values

corresponding (weighting w and anti-slipping a). We consider

in this case that the handle position is known and constant: h =
0.5

The backward reachability analysis uses the inverse CPN and

takes into account, in the partial state, the value 5 of the electro-

dynamic brake and the value 0.5 of the handle. The (backward)

firing of the transition Service is done thanks to the marking

enhancement as the disc brake order, which is necessary on the

transition firing, is unknown. It is added as a complementary

assumption meaning that the disc brake device was activated.

Calculations use the guard associated to the transition and the

constraint 2w + a = 2.5 is obtained and easily verified in each

component of the triplet f−1
1 (x), which is itself a component

of the guard. The results are illustrated in Figure 18. The back-

ward analysis algorithm, which searches the input values, is

written as follows:

for p ∈ [0..1] do

a← 2.5− 2p
if 0 ≤ a ≤ 1 then

Return f2(f
−1
1 (x)) /*x = 5, m = 0.5*/

end if

end for

The conclusion of this case analysis is that the final

markingMf = 〈5〉.ElectroDynamicBrake is reachable, by

firing the transition Service, by the initial marking M0 =
〈0.5〉.Handle + 〈ŵ〉.Weighting + 〈â〉.AntiSlipping such

that â = 2.5 − 2ŵ and 0 ≤ â ≤ 1. The final

marking really reachable is the enhanced marking Mfe =
〈5〉.ElectroDynamicBreake + 〈ŷ〉.DiscBrake. The values

of ŷ, ŵ and â are the possible combination of y, w and a (re-

spectively) corresponding to the line segment shown in Fig-

ure 18.

To find same results in forward reachability analysis, the

search algorithm has to choose among all possible y val-
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Figure 18: Service braking analysis

ues those which are really possible using the constraint

f1(h,w, a) = 5 ∧ h = 0.5. But no constraint joins the vari-

ables w and a. The forward reachability analysis algorithm can

be written as follow:

for a ∈ [0..1] do

for p ∈ [0..1] do

if f1(m, p, a) = 5 then

Return f2(m, p, a)
end if

end for

end for

The difference between the two algorithms (backward reach-

ability and forward reachability) is their algorithmic complex-

ity. Knowing that the the complexity of f2 and f2(f
−1) are

strictly identical, the difference between the two is that the

second presented algorithm (forward reachability) includes two

nested loops whereas the first includes only one loop. This is

due to the inverse CPN which exploits the parallelism relation

(parallel transformation) thus introducing an a priori knowledge

reducing the calculation complexity.

6.5. The Disc Brake

The second analysis concerns the diagnosis of a particular

state of the disc brake. The known state is the command value

of the disc brake. In this case study, it is chosen as 9. The

purpose is to find initial states (M0) that could produce the final

partial state (Mf = 〈9〉.DiscBrake) knowing only this last

state. The analysis is done by backward reachability using the

inverse CPN marked with marking corresponding to Mf .

6.5.1. The transition Emergency

The inverse firing of the transition Emergency re-

quires a marking enhancement for Sanding, Skate and

ElectroDynamiBrake. In the first two places, the tokens

to add are anonymous (no calculus to do). However, token

values in ElectroDynamiBrake (the variable x) have to sat-

isfy the guard. To simplify the process, we rewrite the guard

to get x values knowing y. This guard can be written as
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Figure 19: Emergency Braking in case of Disc Brake case study

x = f3(f
−1
4 (y)) which gives x = 2y − 2w − a − 9 under

the constraint 2w + a = y − 7.

Applying an analogue approach as the one used in the pre-

vious case study, the possible order values of the electrody-

namic brake and the control values corresponding (weight-

ing and anti-slipping) are calculated. The results are il-

lustrated in Figure 19. The conclusion is that the mark-

ing Mf = 〈9〉.DiscBrake is backward reachable from

M0 = 〈1〉.Handle + 〈ŵ〉.Weighting + 〈â〉.AntiSlipping.

This reachability is conditioned by the marking enhancement.

The final marking really reachable is the enhanced marking

Mfe = 〈x̂〉.F reinElectroDynamique + 〈9〉.DiscBrake +
〈e〉.Sanding + 〈e〉.Skate. The values of x̂, ŵ and â are pos-

sible combinations of variables x, w and a (respectively) corre-

sponding to the line segment of Figure 19.

6.5.2. The transition Service

As for the transition Emergency, the backward firing of the

transition Service requires a marking enhancement. The place

to enhance is ElectroDynamicBrake. Token values in this

place (variable x) have to satisfy the guard. Since the value of

y is known, the guard is rewritten to calculate easily x values.

The new guard is written x = f1(f
−1
2 (y)). In this case, the

condition y 6= 0 in the function f2 is valid. So in the original

CPN, the condition p + a > 1.5 is valid and the token value

in DiscBrake (9 in this example) is obtained by applying the

formula 7m + 2p + 1. The new guard is given by (0 < m <
1)∧(3y−21m−4p−a > 3)∧(x = (19y−98h−24w−12a)/7)
under the constraint a = y − 7h− 2w.

By using the inverse CPN modified and completed, the pos-

sible order values applied to the electrodynamic brake and the

control values corresponding (weighting and anti-slipping) are

calculated. The results can’t be shown in a unique graphic

(too many variables). This is why they are drown in the

two schemas of Figure 20. The first one (Figure 20.a) shows

possible input combinations of variables h, w and a. The

second one (Figure 20.b) shows two input variables (h and

w) and corresponding x values. The conclusion is that the

14



 
 

 

 
 

-a- 

-b- 

(w,h,a)=(0.5,1,1) 

(w,h,a)=(1,0.85,1) 

(w,h,a)=(1,0.92,0.5) 

(a,w,x)=(1, 0.5,7) 

(a,w,x)=(0.5,1,7.14) 

(a,w,x)=(1,1,7.28) 

Figure 20: Service Braking in case of Disc Brake case study

marking Mf = 〈9〉.DiscBrake is backward reachable by

M0 = 〈ĥ〉.Handle + 〈ŵ〉.Weighting + 〈â〉.AntiSlipping.

This reachability is conditioned by the marking enhancement.

The final marking really reachable is the enhanced marking

Mfe = 〈x̂〉.ElectroDynamicBrake + 〈9〉.DiscBrake. The

values of x̂, ĥ, ŵ and â are possible combinations of variables

x, h, w and a (respectively) corresponding to the illustrated val-

ues in Figure 20.

6.5.3. Summary of the Disc Brake case study

The backward reachability analysis of the final marking con-

sidered in this case study (Mf = 〈9〉.DiscBrake) shows that it

is reachable by two different paths (Figure 21). Each path repre-

sents a specific scenario and needs complementary information

about the system final state. This is why the final marking was

enhanced to assume coherent system states.

7. Conclusion

The diagnostic and dependability issues in embedded sys-

tems are very large and not easy to deal with. This work fo-

cuses on a particular aspect which is model based verification
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Figure 21: Backward reachability tree of Disc Brake case study

and analysis. The main objective is to propose a formal method

for: 1) looking for sources of a known failure (diagnosis) ; 2)

performing analysis to verify/validate a system relatively to a

given specification and, in case of need, to propose a correction

of the system to satisfy the specification.

Such a study needs an appropriate model that can represent

the structure and the dynamic behavior of the system and that

has also a formal basis. The chosen model is a Colored Petri

Net (CPN) and in this work we propose a structural analysis by

backward reachability using inverse models. The CPN inver-

sion is a research issue because of the model structure. Some

solutions can be found in literature ([2], [7], [3], [1]). We pro-

posed a generalization of the method of [3] based on inverse

CPN. The basic idea is to define some elementary transforma-

tions, each one is appropriate to a specific transition structure

type. These transformations can be combined to express a very

large amount of possible cases. The definition of the inverse

CPN is the first part of the contribution. The second part aims

the backward analysis. To achieve this, complementary mecha-

nisms were defined to drive the analysis and to deal with a lack

of information.

The inverse CPN and the complementary mechanisms are

first presented in an intuitive way. To consolidate the formal

aspect of the proposed approach, two theoretical studies were

presented. The first formalism (linear algebra) proves the per-

tinence of presented transformation algorithms in a local way

by focusing in a single transition. The second formalism (linear

logic) aims to prove the correctness of the performed backward

analysis using the inverse CPN. This is done by adapting the

LL fragment that has to be used in a CPN context and which is

MILL1 (First Order Multiplicative Intuitionistic Linear Logic).

When the translation MILL1/CPN is made, the reachability is

proven thanks to sequent calculus.

To test the proposed method, a practical case inspired from
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railway domain was studied. It treats a specification of a

tramway braking system. The system was modelled using CPN

and then the inverse CPN was generated. The backward analy-

sis answers efficiently a sequence of diagnostic and V&V ques-

tions and the approach proves its usefulness.
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