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Sparse oracle inequalities for variable selection via

regularized quantization

Clément Levrard

Abstract

We give oracle inequalities on procedures which combines quantization

and variable selection via a weighted Lasso k-means type algorithm. The

results are derived for a general family of weights, which can be tuned to

size the influence of the variables in different ways. Moreover, these the-

oretical guarantees are proved to adapt the corresponding sparsity of the

optimal codebooks, if appropriate. Even if there is no sparsity assumption

on the optimal codebooks, our procedure is proved to be close to a sparse

approximation of the optimal codebooks, as has been done for the Gener-

alized Linear Models in regression. If the optimal codebooks have a sparse

support, we also show that this support can be asymptotically recovered,

giving an asymptotic upper bound on the probability of misclassification.

These results are illustrated with Gaussian mixture models in arbitrary

dimension with sparsity assumptions on the means, which are standard

distributions in model-based clustering.

1 Introduction

Let P be a distribution over Rd. Quantization is the problem of replacing P
with a finite set of points, without loosing too much information. To be more
precise, if k denotes an integer, a k points quantizer Q is defined as a map from
Rd into a finite subset of Rd with cardinality k. In other words, a k-quantizer
divide Rd into k groups, and assigns each group a representative, providing both
a compression and a classification scheme for the distribution P .

The quantization theory was originally developed as a way to answer signal
compression issues in the late 40’s (see, e.g., [GG91]). However, unsupervised
classification is also in the scope of its application. Isolating meaningful groups
from a cloud of data is a topic of interest in many fields, from social science to
biology.

Assume that P has a finite second moment, and letQ be a k points quantizer.
The performance of Q in representing P is measured by the distortion

R(Q) = P‖x−Q(x)‖2,

where Pf means integration of f with respect to P . It is worth pointing out
that many other distortion functions can be defined, using ‖x−Q(x)‖r or more
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general distance functions (see, e.g., [Fis10] or [GL00]). However, the choice of
the Euclidean squared norm is convenient, since it allows to fully take advan-
tage of the Euclidean structure of Rd, as described in [Lev15]. Moreover, from
a practical point of view, the k-means algorithm (see [Llo82]) is designed to
minimize this squared-norm distortion and can be easily implemented.

Since the distortion is based on the Euclidean distance between a point
and its image, it is well known that only nearest-neighbor quantizers are to be
considered (see, e.g., [GL00] or [Pol82]). These quantizers are quantizers of the
type x 7→ argminj=1,...,k ‖x− cj‖, where the ci’s are elements of Rd and are
called code points. A vector of code points (c1, . . . , ck) is called a codebook, so
that the distortion takes the form

R(c) = P min
j=1,...,k

‖x− cj‖2.

It has been proved in [Pol81] that, whenever P‖x‖2 < ∞, there exists optimal
codebooks, denoted by c∗.

Let X1, . . . , Xn denote an independent and identically distributed sample
drawn from P , and denote by Pn the associated empirical distribution, namely,
for every measurable subset A, Pn(A) = 1/n |{i|Xi ∈ A}|. The aim is to design
a codebook from this n-sample, whose distortion is as close as possible to the
optimum R(c∗). The k-means algorithm provides the empirical codebook ĉn,
defined by

ĉn = argmin
1

n

n
∑

i=1

min
j=1,...,k

‖Xi − cj‖2 = argminPn min
j=1,...,k

‖x− cj‖2.

Unfortunately, if P (p) 6= 0, where P (p) denotes the marginal distribution of P

on the p-th coordinate, then ĉ
(p)
n = (ĉ

(p)
1 , . . . , ĉ

(p)
k ) may not be zero, even if the

p-th coordinate has no influence on the classification provided by the k-means.

For instance, if c∗,(p) = 0, and P (p) has a density, then ĉ
(p)
n 6= 0 almost surely.

This suggests that the k-means algorithm does not provide sparse codebooks,
even in the case where some variables plays no role in the classification, which
can be detrimental to the computational tractability and to the interpretation
of the corresponding clustering scheme in high-dimensional settings.

Consequently, when d is large, a variable selection procedure is usually per-
formed preliminary to the k-means algorithm. The variable selection can be
achieved using penalized BCCS strategies, as exposed in [CWLX14] or [WT10].
Though these procedures offer good performance in classifying the training sam-
ple X1, . . . , Xn, under the assumption that the marginal distributions P (p) are
independent, no theoretical result on the prediction performance has been given.
An other way to perform variable selection can be to select coordinates whose
empirical variances are larger than a determined ratio of the global variance,
following the idea of [SB08]. This algorithm has shown good results on practical
examples, such as curve clustering (see, e.g., [ABCP13]). However, there is no
theoretical result on the prediction performance of the selected coordinates.
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Algorithms combining variable selection through PCA and clustering via
k-means, like RKM (Reduced k-means, introduced in [DSC94]) and FKM (Fac-
torial k-means, introduced in [VK01]), are also very popular in practice. Some
results on the performance in classifying the sample X1, . . . , Xn have been de-
rived in [TCKV10] under strong conditions on P . In addition, some asymp-
totic prediction results on these procedures have been established in [Ter14]
and [Ter15], showing that both the resulting codebook and its distortion con-
verge almost surely to respectively a minimizer of the distortion constrained on
a lower-dimensional subspace of Rd and the distortion of the latter, following
the approach of [Pol81]. However, these methods could be insuitable for inter-
preting which variables are relevant for the clustering. In addition, no bounds
on the excess distortion are available to our knowledge, and the choice of the
dimension of the reduction space remains a hard issue, tackled in our procedure
by a L1-type penalization.

In fact, excess risk bounds for procedures combining dimensionality reduc-
tion and clustering are mostly to be found in the model-based clustering liter-
ature (see, e.g., [MM13] for a L0-type penalization method, and [Mey13] for a
L1-type penalization method). This approach, consisting in modeling P via a
Gaussian mixture with sparse means through density estimation via constrained
Maximum Likelihood Estimators, is clearly connected to ours. In fact, most of
the derivation for the oracle inequalities stated in this paper use the same tools,
drawn from empirical process theory. Nevertheless, no results on the conver-
gence of the estimated means (i.e., model consistency) have been derived in this
framework, and this model-based approach theoretically fails when P is not
continuous, unlike k-means one (see, e.g., [Lev15]).

This paper exposes a theoretical study of a weighted Lasso type procedure
adapted to k-means, as suggested in [SWF12]. Results are given for a general
family of weights, encompassing the weights proposed in [SWF12] as well as
those proposed in [vdG08] in a Generalized Linear Models for regression setting.
To be more precise, we provide non-asymptotic excess distortion bounds along
with model consistency results, under weaker conditions than ones required in
[SWF12] (for instance, the coordinates are not assumed to be independant), and
adapting the sparsity of the optimal codebooks. Interestingly, the excess distor-
tion bounds are valid in the case where it may exist several optimal codebooks,
contrary to results in [SWF12] and [vdG08]. These results are illustrated with
Gaussian mixture distributions, often encountered in model-based clustering lit-
erature, showing at the same time that optimal codebooks can be proved to be
unique for this type of distributions, under some conditions on the variances of
the components of the mixture.

The paper is organized as follows. Some notation are introduced in Section
2, along with the Lasso k-means procedure and the different assumptions. The
consistency and prediction results are gathered in Section 3, and the proof of
these results are exposed in Section 4. At last, the proofs of some auxiliary
results are given in the Appendix section.
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2 Notation

Let x be in Rd, then the p-th coordinate of x will be denoted by x(p). Through-
out this paper, it is assumed that, for every p = 1, . . . , d, there exists a sequence
Mp, such that |x(p)| ≤ Mp P -almost surely. In other words P is assumed to
have bounded marginal distributions P (p). To shorten notation, the Euclidean
coordinate-wise product

∏d
p=1 [−Mp,Mp] will be denoted by C. To frame quan-

tization as a contrast minimization issue, let us introduce the following contrast
function

γ :

{
(

Rd
)k × Rd −→ R

(c, x) 7−→ min
j=1,...,k

‖x− cj‖2 ,

where c = (c1, . . . , ck) denotes a codebook, that is a kd-dimensional vector.
The risk R(c) then takes the form R(c) = R(Q) = Pγ(c, .), where we recall
that Pf denotes the integration of the function f with respect to P . Similarly,
the empirical risk R̂n(c) can be defined as R̂n(c) = Pnγ(c, .), where Pn is
the empirical distribution associated with X1, . . . , Xn, in other words Pn(A) =
1/n |{i|Xi ∈ A}|, for every measurable subset A ⊂ Rd. The usual k-means
codebook ĉn is then defined as a minimizer of R̂n(c).

It is worth pointing out that, since the support of P is bounded, then there
exist such minimizers ĉn and c∗ (see, e.g., Corollary 3.1 in [Fis10]). In the
sequel, the set of minimizers of the risk R(.) will be denoted by M. Then, for
any codebook c, the loss ℓ(c, c∗) may be defined as the excess distortion, namely
ℓ(c, c∗) = R(c)−R(c∗), for c∗ in M.

Let c1, . . . , ck be a sequence of code points. A central role is played by the
set of points which are closer to ci than to any other cj ’s. To be more precise,
the Voronoi cell, or quantization cell associated with ci is the closed set defined
by

Vi(c) =
{

x ∈ Rd| ∀j 6= i ‖x− ci‖ ≤ ‖x− cj‖
}

.

It may be noted that (V1(c), . . . , Vk(c)) does not form a partition of Rd, since
Vi(c)∩Vj(c) may be non empty. To address this issue, the Voronoi partition as-
sociated with c is defined as the sequence of subsets Wi(c) = Vi(c)\(∪i>jVj(c)),
for i = 1, . . . , k. It is immediate that the Wi(c)’s form a partition of Rd, and
that for every i = 1, . . . , k,

W̄i(c) = Vi(c),

where W̄i(c) denotes the closure of the subset Wi(c). The open Voronoi cell is
defined the same way by

o

V i(c) =
{

x ∈ Rd| ∀j 6= i ‖x− ci‖ < ‖x− cj‖
}

,

and the following inclusion holds, for i in {1, . . . , k},
o

V i(c) ⊂ Wi(c) ⊂ Vi(c).
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The risk R(c) then takes the form

R(c) =
k
∑

i=1

P
(

‖x− ci‖21Wi(c)(x)
)

,

where 1A denotes the indicator function associated with A. In the case where
P (Wi(c)) 6= 0, for every i = 1, . . . , k, it is clear that

P (‖x− ci‖21Wi(c)(x)) ≥ P (‖x− ηi‖21Wi(c)(x)),

with equality only if ci = ηi, where ηi denotes the conditional expectation of P
over the subset Wi(c), that is

ηi =
P (x1Wi(c)(x))

P (Wi(c))
.

Moreover, it is proved in Proposition 1 of [GLP07] that, for every Voronoi
partitionW (c∗) associated with an optimal codebook c∗, and every i = 1, . . . , k,
P (Wi(c

∗)) 6= 0. Consequently, any optimal codebook satisfies the so-called
centroid condition (see, e.g., Section 6.2 of [GG91]), that is

c∗i =
P (x1Wi(c∗)(x))

P (Wi(c∗))
.

As a remark, the centroid condition ensures that M ⊂ Ck, and, for every c∗ in
M, i 6= j,

P (Vi(c
∗) ∩ Vj(c

∗)) = P
({

x ∈ Rd| ∀i′ ‖x− c∗i ‖ = ‖x− c∗j‖ ≤ ‖x− c∗i′‖
})

= 0.

A proof of this statement can be found in Proposition 1 of [GLP07]. According
to [Lev15], for every c∗ in M, the following set is of special interest:

Nc
∗ =

⋃

i6=j

Vi(c
∗) ∩ Vj(c

∗).

To be more precise, the key quantity is the margin function, which is defined as

p(t) = sup
c
∗∈M

P (Nc
∗(t)),

where Nc
∗(t) denotes the t-neighborhood of Nc

∗ . As shown in [Lev15], bounds
on this margin function (see Assumption 2 below) can provide interesting results
on the convergence rate of the k-means codebook, along with basic properties
of optimal codebooks.

In order to perform both variable selection and quantization, we introduce
the Lasso k-means codebook ĉn,λ as follows.

ĉn,λ ∈ argmin
c∈Ck

Pnγ(c, .) + λIŵ(c), (1)
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where ŵ is a possibly random sequence of weights of size d, and Iŵ() denotes
the penalty function

Iŵ(c) =

d
∑

p=1

ŵp‖c(p)‖. (2)

Let us recall here that c(p) denote the vector (c
(p)
1 , . . . , c

(p)
k ) made of the p-th

coordinates of the different codepoints. The results exposed in the following
section are illustrated with three sequences of weights, corresponding to differ-
ent codebooks: the plain Lasso codebook, defined by the deterministic sequence
ŵp = 1, the normalized Lasso codebook, defined by ŵp = σ̂p, and the threshold
Lasso codebook, which is a slight modification of the original Lasso-type pro-

cedure mentioned in [SWF12] and is defined by ŵp = 1/(δ ∨ ‖ĉ(p)n ‖), where ĉn
denotes the k-means codebook and δ a parameter to be tuned. It is likely that
other families of weights may be of special interest, for instance combining nor-
malization and threshold. Consequently the results are derived for an arbitrary
family of weights satisfying some convergence conditions.

These L1-type penalties have been designed to drive the irrelevant (p)-th co-

ordinates c
(p)
1 , . . . , c

(p)
k together to zero (see, e.g., [Bac08]), according to different

criterions. To describe the influence of the different coordinates, the following
notation are adopted. Let S ⊂ {1, . . . , d} denote a subset of coordinates, then
for any vector x in (Rd)ℓ and set A ⊂ (Rd)ℓ, ℓ being a positive integer, xS will
denote the vector in (R|S|)ℓ corresponding to the coefficients of x on variables
in S, and AS will denote the set of such xS , for x in A. Moreover, let PS

denote the marginal distribution of P over the set R|S|. We may then define
the restricted distortions and variances as follows:















σ2
S = PS‖x‖2,

σ̂2
S = PS

n ‖x‖2,
R∗

S = minc∈CS
PSγ(c, .),

R̂S = minc∈CS
PS
n γ(c, .),

where the vector x is element of R|S|. Elementary properties of the distortion
show that, if S = S1 ∪ S2, with empty intersection, then















σ2
S = σ2

S1
+ σ2

S2
,

σ̂2
S = σ̂2

S1
+ σ̂2

S2
,

R∗
S ≥ R∗

S1
+R∗

S2
,

R̂S ≥ R̂S1 + R̂S2 .

(3)

These elementary properties will be of importance when choosing which coor-
dinate to select. A special attention will be paid to the subsets of variables
formed by the support of codebooks. To be more precise, for every codebook
c in Ck, we define the support S(c) of c by S(c) = {j ∈ {1, . . . , d} |c(j) 6= 0}.
The following Proposition gives a first glance at which variables are in S(ĉn,λ).
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Proposition 2.1. Let p be in {1, . . . , d}. If

√

σ̂2
p − R̂p <

ŵpλ

2
,

then
ĉ
(p)
n,λ = (ĉ

(p)
n,λ,1, . . . , ĉ

(p)
n,λ,k) = (0, . . . , 0).

According to Proposition 2.1, the Lasso k-means procedures may be thought
of as a multimodularity test on every coordinate, in the spirit of [JW14]. This
result ensures that, if the distortion of the codebook (0, . . . , 0) is close to the
optimal empirical distortion, on the p-th coordinate, then the Lasso k-means

will drive the p-th variable to 0. For the plain Lasso, the differences
√

σ̂2
p − R̂p

are uniformly thresholded, whereas for the normalized Lasso, the threshold in λ
is applied on the ratios R̂p/σ̂

2
p. This point suggests that the normalized Lasso

may succeed in recovering informative variables with small ranges.
We introduce now the assumptions which will be required to derive theoret-

ical results on the performance of the Lasso codebooks. To deal with the case
of possibly several optimal codebooks, we introduce the following structural
assumption on P .

Assumption 1. For every c∗ in M and c in Ck, if S(c) ( S(c∗), then R(c) >
R(c∗).

Assumption 1 roughly requires that no optimal codebook has a support
stricly contained in the support of another optimal codebook. This is obviously
the case if P has a unique optimal codebook, up to relabeling.

Assumption 2 (Margin Condition). There exists r0 > 0 such that

∀t ≤ r0 p(t) ≤ c0(P )t, (4)

where c0(P ) is a fixed constant, defined in [Lev15].

As exposed in [Lev15], Assumption 2 may be thought of as a margin con-
dition for squared distance based quantization. Some examples of distributions
satisfying (4) are given in [Lev15], including Gaussian mixtures under some con-
ditions. Roughly, if P is well concentrated around k poles, then (4) will hold. It
is also worth mentioning that the condition required in [SWF12] seems stronger
than the condition required in Definition 2, since it requires P to have a unique
optimal codebook, to be a mixture of components centered on the different op-
timal code points, and that the Hessian matrix of the risk function located at
the optimal codebook is positive definite.

Moreover, Assumption 2 is a sufficient condition to ensure that some el-
ementary properties that are often assumed are satisfied, as described in the
following Proposition.

Proposition 2.2. If P satisfies Assumption 2, then
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i) M is finite,

ii) there exists κ′
0 > 0 such that, for every c in Ck, ‖c−c∗(c)‖2 ≤ κ′

0ℓ(c, c
∗),

where c∗(c) ∈ argmin
c
∗ ‖c− c∗‖.

Moreover, if P satisfies Assumption 1, then there exists a constant κ′′
0 such

that, for every c∗ in M and S(c) ( S(c∗), we have

‖c− c∗‖2 ≤ κ′′
0ℓ(c, c

∗).

The two first statements of Proposition 2.2 are to be found in Proposition
2.2 of [Lev15], the proof of the third statement is given in Section 4.2. Propo-
sition 2.2 may be thought of as a generalization of the positive Hessian matrix
condition of [Pol82] to the non-continuous case. It also allows to deal with the
case where P has several optimal codebooks. In the following, we denote by κ0

the quantity κ′
0 ∨ κ′′

0 , whenever Assumption 2 and Assumption 1 are satisfied.
In addition to Assumption 2, we assume that the weights ŵp satisfy a uniform

concentration inequality around some deterministic weights, as stated below.

Assumption 3 (Weights concentration). There exists a sequence of determin-
istic weights wp > 0, p = 1, . . . , d, and a constant κ1 < 1 such that

P

(

sup
p=1,...,d

∣

∣

∣

∣

ŵp

wp
− 1

∣

∣

∣

∣

> κ1

)

:= r1(n) −→
n→∞

0. (5)

Assumption 3 is obviously satisfied for the plain Lasso (ŵp = 1). The fol-
lowing proposition ensures that this statement remains true for the two other
examples of weights. For any sequence wp, we denote by T (w) the quantity
supp=1,...,dMp/wp. With a slight abuse of notation, T (σ) and T (δ) will refer to

the sequences σp and 1/(‖c∗,(p)‖ ∨ δ), where the latter is well defined when P
has a unique optimal codebook.

Proposition 2.3.

For ŵp = σ̂p, if 1 > κ1 >
T 2(σ)

√
log(d)√

2n
, then Assumption 3 holds with

wp = σp and r1(n) = e
−
(√

2nκ1
T2(σ)

−
√

log(d)
)2

.

For ŵp = 1/(‖ĉ(p)n ‖ ∨ δ), let M be defined as M =
√

M2
1 + . . .+M2

d . If

1 > κ1 > C0
M

√
k√

nδ
, for a fixed constant C0, Assumption 2 is satisfied, and c∗ is

unique (up to relabeling), then Assumption 3 holds with wp = 1/(‖c∗,(p)‖ ∨ δ)

and r1(n) = e
−
(√

nδκ1
C0M

−
√
k
)2

.

The proof of Proposition 2.3 follows from standard concentration inequali-
ties, and can be found in the Section 5.1 of the Appendix. At first sight, the
assumption that c∗ is unique seems quite restrictive. However, as exposed in
Section 3.3, it can be shown that Gaussian mixtures satisfy this property, pro-
vided that the variances of the components are small enough. In fact, if P has
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several optimal codebooks, there is no intuition about toward which one ĉn will
converge, hence the difficulty of defining deterministic limit weights for ŵp.

At last, we define the following quantities λ0 and λ1 which will play the role
of minimal values for the regularization parameter λ, as exposed in [vdG08].







λ0 = 16
√
2π
√

k log(kd)
n T (w),

λ1(x) = eλ0

(

1 +
√

u+x
k log(kd)

)

,
(6)

where x > 0 and u = log

(

‖w‖2
2

√
n√

log(kd)

)

. These two quantities come from empirical

process theory, their roles are explained in Section 4. Roughly, λ0 is the minimal
value of the regularization parameter which ensures that the empirical risk is
close to the true risk uniformly on Ck, and λ1(x) is the minimal value which
ensures that the deviation between empirical and true risk may be compared to
the norm Iw uniformly on Ck.

3 Results

3.1 Oracle inequalities for the Lasso k-means

Following the approach of [MM11], Lasso type procedures may be thought of as
model selection procedures over L1 balls. Theorem 3.1 below is the adaptation
of this idea for the Lasso k-means procedures.

Theorem 3.1. Suppose that Assumption 3 is satisfied, for some constant κ1 <
1, and choose

λ ≥ λ1(x)

1− κ1
,

for some x > 0, where λ1 is defined in (6). Then, with probability larger than
1− r1(n)− e−x, we have

ℓ(ĉn,λ, c
∗) ≤ inf

r>0
inf

Iw(c)≤r
(ℓ(c, c∗) + (3− κ1)λ(r ∨ λ0)) .

A direct implication of Theorem 3.1 is that ℓ(ĉn,λ, c
∗) ≤ 4λ(Iw(c

∗) ∨ λ0).
Hence, choosing λ ∼ λ1(x) gives a convergence rate for ℓ(c, c∗) of T (w)/

√
n,

up to a log(n) factor. If T (w) is fixed, i.e. does not depend on n, this rate is
roughly the same as the rate of convergence of the k-means codebook without
margin assumption, as shown in [BDL08]. It is the case for the plain and
normalized Lasso, but also for the threshold Lasso if δ is chosen as n−α, α > 0
for instance. Indeed, for n large enough, T (n−α) = inf{p|c∗,(p) 6=0} Mp/‖c∗,(p)‖
is a fixed quantity. Since Iw(c

∗) = |S(c∗)| in this case, we get ℓ(ĉn,λ, c
∗) .

|S(c∗)|λ ∼ |S(c∗)|/√n, up to a log(n) factor, showing that the distortion of the
threshold Lasso adapts the sparsity of c∗ when n is large enough.

However, if P satisfies Assumption 2 and Assumption 1 in addition, further
results may be derived, following the approach of [vdG08]. To this aim, we
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defined, for a fixed codebook c∗ and a weight family w, the set of w-sparse
approximations of c∗ at order λ by

Mλ(c
∗) =

{

argmin
S(c)⊂S(c∗)

3R(c) + 8κ0λ
2‖wS(c)‖2

}

,

where κ0 = κ′
0 ∨ κ′′

0 , as defined below Proposition 2.2. Then, the closest w-
sparse approximation of c∗ may be defined as c∗λ(c

∗) ∈ argmin
c∈Mλ(c∗)

‖c− c∗‖.
With a slight abuse of notation, the w-sparse approximation of a codebook c

is defined by c∗λ(c) = c∗λ(c
∗(c)). It is immediate that, for the plain Lasso,

‖wS(c)‖ = |S(c)| = ‖c‖0, whereas for the normalized Lasso, ‖wS(c)‖ = σS(c).
For the threshold Lasso, ‖wS(c)‖ has the slightly more intricate expression

‖wS(c)‖2 =
1

δ2

∣

∣

∣S(c) ∩ {j|‖c∗,(j)‖ ≤ δ}
∣

∣

∣+
∑

S(c)∩{j|‖c∗,(j)‖>δ}

1

‖c∗,(j)‖2 .

However, it is easy to see that ‖wS(c)‖ ≤ |S(c)|/δ. If we assume that the optimal
codebooks c∗ are sparse, some guarantees on the support of the c∗λ(c

∗)’s may
be given. To be more precise, the following subset of variables is introduced

(S+)c =
⋂

c
∗∈M

S(c∗)c.

S+ may be thought of as the generalized support over optimal codebooks, ex-
tending the definition of these sets from the unique optimal codebook case. If P
has a unique optimal codebook, it is immediate that S+ = S(c∗). However, even
if all the codebook are sparse, S+ may not be sparse. For instance, if d = k = 2
and P is a pointwise distribution with support (−1,−1), (−1, 1), (1,−1), (1, 1)
equally weighted, then every optimal codebook has at least one zero coordinate,
whereas S+ = {1, 2}.

From its definition, it is straightforward that S(c∗λ(c
∗)) ⊂ S+, for c∗ in M.

Nevertheless, in the case where S+ = {1, . . . , d}, the c∗λ(c∗)’s may still have zero
coordinates. In fact, c∗λ(c

∗) may be thought of as tradeoff between distortion
and size of the support, the latter being measured by ‖w‖2S. As in the empirical
case of Proposition 2.1, this tradeoff property may be illustrated in the following
way.

Proposition 3.1. Let p be in {1, . . . , d}. If

σ2
p −R∗

p <
8λ2κ0w

2
p

3
,

then, for every c∗ in M,

c
∗,(p)
λ (c∗) = (0, . . . , 0).

The proof of Proposition 3.1 is given in Section 4.4. Proposition 3.1, as
well as Proposition 2.1, may be thought of as a comparison between the risk of

10



optimal codebooks and the risk of the codebook 0, on the p-th variable. It is
worth noticing that, for the plain Lasso and threshold Lasso, the comparison is
based on the difference σ2

p−R∗
p, whereas for the normalized Lasso only the ratio

R∗
p/σ

2
p is to be considered. Once more, this point suggests that the sparse w-

approximation may not be sensitive to coordinate-wise dilations in this case. We
are now in position to state sharper oracle results, on both the excess distortion
and the convergence of the Lasso k-means codebooks.

Theorem 3.2. Suppose that Assumption 1, Assumption 2 and Assumption 3
are satisfied. If

λ ≥ 2λ1(x)

1− κ1
,

where λ1 is defined in (6), then, with probability larger than 1− r1(n)− e−x, we
have

ℓ(ĉn,λ, c
∗) + λ(1− κ1)Iw(ĉn,λ, c

∗
λ(ĉn,λ)) ≤

[

3ℓ(c∗λ, c
∗)

+ 8κ0λ
2‖wS(c∗

λ
(ĉn,λ))‖2 ∨ 3λλ0

]

. (7)

A consequence of Theorem 3.2 is ℓ(ĉn,λ, c
∗) ≤ 8κ0λ

2‖wS(c∗(ĉn,λ))‖2 ∨ 3λλ0,
which provides an oracle inequality adapting the sparsity of the c∗(ĉn,λ)’s. For
instance, considering the plain Lasso, provided that c∗ 6= 0 for some c∗, (7)
leads to ℓ(ĉn,λ, c

∗) ≤ 8(κ0 ∨ 1)|S(c∗(ĉn,λ))|λ2 ≤ 8(κ0 ∨ 1)|S+|λ2. However,
Theorem 3.2 also deals with the case where the c∗’s are not sparse, comparing
the Lasso k-means codebook ĉn,λ to the closest sparse w-approximations, for
which Proposition 3.1 yields a reduced support whenever λ is large enough.

Theorem 3.2 may be considered as an application of Theorem 2.1 in [vdG13]
to the k-means case, with a slight improvement in the analysis of the complexity
term (see Section 5.3 in the Appendix for more details). The numerical constants
in Theorem 3.2 have been arbitrarily fixed for clarity sakeness, note however that
a more general version of Theorem 3.2 can be derived the same way as Theorem
2.1 in [vdG13].

At last, it is worth pointing out that ℓ(ĉn,λ, c
∗) ≤ 8κ0λ

2‖wS(c∗(ĉn,λ))‖2∨3λλ0

provides a convergence rate in 1/n, up to a log(n) factor, when λ ∼ λ1 and w
does not depend on n. Interestingly, this rate is the convergence rate of the
k-means codebook ĉn, when P satisfies a margin condition, as described in
[Lev15]. For the plain Lasso, if S(c∗(ĉn,λ)) = {1, . . . , d}, this inequality may

even be written as ℓ(ĉn,λ, c
∗) ≤ κ0

kM2

n log(n) log(kd), where M2 is the radius of

the smallest Euclidean ball containing C. Since ℓ(ĉn, c
∗) ≤ C0κ0

kM2

n , according
to Theorem 3.1 in [Lev15], the distortions of the Lasso k-means and the k-means
codebooks may be compared when n >> log(kd).

Note that for the threshold Lasso, the choice δ ∼ n−α, 0 ≤ α < 1/2 still
leads to convergence rates in |S(c∗)| log(n)/n, when c∗ is unique. This result
may be then compared with the asymptotic convergence rate of O(nλ2) given in
Theorem 1 of [SWF12], which holds with stronger requirements on P and when

11



nλ tends to infinity. In this particular case of a unique optimal codebook, further
consistency results may be derived, as described in the following subsection.

3.2 Consistency of the threshold Lasso k-means

Throughout this subsection we assume that there exists a unique optimal code-
book c∗, up to relabeling. Let j be in S(c∗)c. Then Theorem 2 in [SWF12]

established that ĉ
(j)
n,λ → 0 in probability under strong assumptions on P . To

be more precise, it is assumed in [SWF12] that P|V ∗
j

= c∗j + εj, where P|V ∗
j

denotes the conditional law of P on the optimal Voronoi cell centered at the
j-th optimal code point c∗j , εj has independent coordinates, and the εj’s are in-
dependent. Theorem 3.3 below gives a generalization of this result, along with

a convergence rate for P(ĉ
(j)
n,λ 6= 0).

Theorem 3.3. Suppose that Assumption 2 and Assumption 3 are satisfied.

For ŵp = 1/(δ ∨ ‖ĉ(p)n ‖), with δ = n−α, 0 < α < 1/2, choose the regularization
parameter as λ ∼ n−α. Then, for every j in S(c∗)c, we have

P
(

ĉ
(j)
n,λ 6= 0

)

=
n→∞

O
(

e−n1−2α
)

. (8)

Moreover, for every j in S(c∗), we have

P
(

ĉ
(j)
n,λ = 0

)

=
n→∞

O
(

e−n1−2α
)

. (9)

The choice λ ∼ n−α has been made to optimize the convergence rate of the
misclassification probabilities. However, this choice leads to suboptimal conver-
gence rate for ℓ(ĉn,λ, c

∗) in Theorem 3.2, which is then of order n−2α. In fact,
we only need λ ≥ λ1(yn), for log(n) = o(yn), and λ tending to 0 to ensure that
this model consistency result holds. Thus, the choice λ & λ1(log(n)

(1+ε))), for
a positive ε, provides both model consistency and almost optimal convergence
of ℓ(ĉn,λ, c

∗).
To apply Theorem 3.3, checking that c∗ is unique remains a hard issue when

d > 1. The following section gives an example where this problem can be tackled
using straightforward consequences of Assumption 2.

3.3 Quasi-Gaussian mixture example

The aim of this section is to illustrate the consistency results exposed in Theorem
3.3 with a typical clustering example, namely Gaussian mixture distributions.
In general, a Gaussian mixture distribution P̃ may be defined by its density

f̃(x) =

k̃
∑

i=1

θi

(2π)d/2
√

|Σi|
e−

1
2 (x−mi)

tΣ−1
i (x−mi),

where k̃ denotes the number of components of the mixture, and the θi’s denote
the weights of the mixture, which satisfy

∑k
i=1 θi = 1. Moreover, themi’s denote

12



the means of the mixture, so that mi ∈ Rd, and the Σi’s are the d× d variance
matrices of the components. In this case, we define the active set S̃ as S(m),
where m denotes the codebook with code points the mi’s. For convenience
it is assumed that S̃ = {1, . . . , d′}, with d′ < d. We restrict ourselves to the
case where the number of components k̃ is known, and match the size k of the
codebooks.

Since the support of a Gaussian random variable is not bounded, we de-
fine the “quasi-Gaussian” mixture model as follows, truncating each Gaussian
component. Let the density f of the distribution P be defined by

f(x) =

k
∑

i=1

θi

(2π)d/2Ni

√

|Σi|
e−

1
2 (x−mi)

tΣ−1
i (x−mi)1B(0,M) ,

where Ni denotes a normalization constant for each Gaussian variable. To
ensure that this model is close to the Gaussian mixture model, M has to be
chosen large enough, say M ≥ 2 supj=1,...,k ‖mj‖ for instance. Let σ2 and σ2

−
denote the largest and smallest eigenvalues of the Σi’s. Then the following
proposition states that, provided that σ is small enough, a model consistency
result can be derived for the threshold Lasso.

Proposition 3.2. Assume that σ− ≥ c−σ, for some constant c−. Then there
exists a constant σ+ such that, if σ ≤ σ+, then Assumption 2 holds, and c∗ is
unique.

Moreover, if (Σi)pq = 0, for every (i, p, k) in {1, . . . , k}× {1, . . . , d′}× {d′ +
1, . . . , d}, then, for every j ≥ d′+1, the threshold Lasso with exponent α satisfies

P
(

ĉ
(j)
n,λ 6= 0

)

=
n→∞

O
(

e−n1−2α
)

.

The assumption on the covariance matrices requires that the variable in
S̃ are independent from the variables in S̃c. As shown in Section 4.7, this
strong requirement ensures in fact that the support of the optimal codebook is
contained in S̃. Proposition 3.2 then directly follows from Theorem 3.3.

The first part of Proposition 3.2 extends the results of Proposition 3.2 in
[Lev15] to arbitrary dimension d. It also enhances the results of this Proposition,
showing that there exists a unique optimal codebook instead of finitely many
ones.

It is worth noting that Proposition 3.2 is valid when k = k̃. When k differs
from k̃, Assumption 2 may not be satisfied. For instance, if P is rotationnaly
symmetric and k, d ≥ 2, then M cannot be finite, which contradicts Proposition
2.2.
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4 Proofs

4.1 Proof of Proposition 2.1

Let W1, . . . ,Wk be the Voronoi partition associated with ĉn,λ, and let L(ĉn,λ)
be the matrix of assignments, defined by

L(ĉn,λ)i,j = 1Xi∈Wj
.

Suppose that ĉ
(p)
n,λ 6= 0, where ĉ

(p)
n,λ denotes the vector (ĉ

(p)
n,λ,1, . . . , ĉ

(p)
n,λ,k)

t, and

denote by X(p) the vector (X
(p)
1 , . . . , X

(p)
k )t. Then the Karush-Kuhn-Tucker

condition, for this penalized empirical risk minimization strategy, ensures that
(see, e.g., the proof of Theorem 2 in [SWF12])

−2√
n
L(ĉn,λ)

t
(

X(p) − L(ĉn,λ)ĉ
(p)
n,λ

)

+
√
nλ

ŵpĉ
(p)
n,λ

‖ĉ(p)n,λ‖
= 0. (10)

Since L(ĉn,λ)
t
(

X(p) − L(ĉn,λ)ĉ
(p)
n,λ

)

is the following vector of size k

(

∑

Xi∈W1

(X
(p)
i − ĉ

(p)
n,λ,1), . . . ,

∑

Xi∈Wk

(X
(p)
i − ĉ

(p)
n,λ,k)

)

,

it may be noted that

∥

∥

∥L(ĉn,λ)
t
(

X(p) − L(ĉn,λ)ĉ
(p)
n,λ

)∥

∥

∥

2

=

k
∑

j=1

n2
j (c̄

(p)
j − ĉ

(p)
n,λ,j)

2,

where nj denotes the number of sample vectors Xi’s in Wj , and c̄j denotes
the empirical mean of the sample over the set Wj , that is c̄j = 1

nj

∑

Xi∈Wj
Xi.

Denote by p̂j the empirical weight of Wj , i.e. p̂j = nj/n, then

1

n2

∥

∥

∥
L(ĉn,λ)

t
(

X(p) − L(ĉn,λ)ĉ
(p)
n,λ

)∥

∥

∥

2

≤
k
∑

j=1

p̂j(c̄
(p)
j − ĉ

(p)
n,λ,j)

2,

where p̂j ≤ 1 has been used. Let Q1 be the quantizer which maps Wj to c̄j ,
then it is easy to see that

k
∑

j=1

p̂j(c̄
(p)
j − ĉ

(p)
n,λ,j)

2 = R̂p(ĉn,λ)− R̂p(Q1),

where we recall that R̂p(Q) = P
(p)
n ‖x−Q(x)‖2, for any quantizer Q.

Denote by ĉ
(−p)
n,λ the codebook that has p-th coordinate 0 and the same

coordinates as ĉn,λ otherwise, and let Q2 be the quantizer which maps Wj to

ĉ
(−p)
n,λ,j . Then, by definition, R̂(ĉn,λ) + Iŵ(ĉn,λ) ≤ R̂(ĉ

(−p)
n,λ ) + λIŵ(ĉ

(−p)
n,λ ), and
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R̂(ĉ
(−p)
n,λ ) ≤ R̂(Q2). Thus, direct calculation leads to σ̂2

p ≥ R̂p(ĉn,λ), according

to (3). Since R̂p(ĉn,λ)− R̂p(Q1) ≤ σ̂2
p − R̂p, (10) ensures that

λŵp

2
≤
√

σ̂2
p − R̂p.

4.2 Proof of Proposition 2.2

As mentioned below Proposition 2.2, a proof of the two first statements can be
found in the proof of Proposition 2.2 in [Lev15]. The last statement follows from
the compactness of

{

c ∈ Ck|S(c) ( S(c∗)
}

and the fact that M is finite, know-
ing that R() is continuous (see, e.g., Lemma 4.1 in [Lev15]). This ensures that
infc∗∈M infS(c)(S(c∗) ℓ(c, c

∗) ≥ c > 0, for some constant c, whenever Assump-

tion 1 is satisfied. Since Ck is bounded, sup
c
∗∈M,S(c)(S(c∗) ‖c− c∗‖2/ℓ(c, c∗)

is finite.

4.3 Proof of Theorem 3.1

We recall here that T (w) denotes the quantity T (w) = maxp=1,...,dMp/wp. Let

also M̄(w) be defined as
√
k‖w‖2T (w). It is immediate that, for every c in Ck,

Iw(c) ≤ M̄(w). Moreover, we define γ̄ by

γ̄(c, x) = min
j=1,...,k

−2 〈x, cj〉+ ‖cj‖2,

for every c in Ck and x in Rd. The prediction results of this paper are based
on the following concentration inequality, which connects the deviation of the
empirical processes (P − Pn)γ̄(c, .) to the Iw norm.

Proposition 4.1. Suppose that w is a deterministic sequence of weights. De-

note by u the quantity log

(

‖w‖2√n√
log(kd)

)

. If we denote by

λ0 = 16
√
2π

√

k log(kd)

n
T (w),

then, for every x > 0, denoting by

λ1 = eλ0

(

1 +

√

u+ x

k log kd

)

,

we have, for any fixed c′ in Ck, with probability larger than 1− e−x,

sup
Iw(c−c

′)≤2M̄(w)

|(P − Pn)(γ̄(c, .) − γ̄(c′, .))|
Iw(c− c′) ∨ λ0

≤ λ1. (11)

Proposition 4.1 may be thought of as a slight generalization of inequality
(7) in [vdG13]. Its proof, given in Section 5.2 of the Appendix, differs from the
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original one by the use of Gaussian complexities rather than Talagrand’s generic
chaining principle to derive a multivariate contraction principle. We are now in
position to prove Theorem 3.1.

We recall here that λ ≥ λ1

1−κ1
. From Assumption 3, it easily follows that

(1 − κ1)Iw(c) ≤ Iŵ(c) ≤ (1 + κ1)Iw(c), with probability larger than 1 − r1(n).
On this event, we have, for every c in Ck,

Pnγ̄(ĉn,λ, .) + λ(1− κ1)Iw(ĉn,λ) ≤ Pnγ̄(c, .) + λ(1 + κ1)Iw(c).

Using (11), with c′ = 0, it follows that

P γ̄(ĉn,λ, .) ≤ P γ̄(c, .) + λ(1 + κ1)Iw(c) + λ1(Iw(c) ∨ λ0)

+ λ1(Iw(ĉn,λ) ∨ λ0)− λ(1− κ1)Iw(ĉn,λ). (12)

If Iw(ĉn,λ) > λ0, adding −P γ̄(c∗, .) on both sides leads to

ℓ(ĉn,λ, c
∗) ≤ ℓ(c, c∗) + λ(1 + κ1)Iw(c) + λ1(Iw(c) ∨ λ0).

Hence
ℓ(ĉn,λ, c

∗) ≤ inf
r>0

inf
Iw(c)≤r

ℓ(c, c∗) + 2λ(r ∨ λ0).

If Iw(ĉn,λ) ≤ λ0, (12) may be written

ℓ(ĉn,λ, c
∗) ≤ ℓ(c, c∗) + 2λ(Iw(c) ∨ λ0) + λ(1 − κ1)λ0,

hence
ℓ(ĉn,λ, c

∗) ≤ inf
r>0

inf
Iw(c)≤r

ℓ(c, c∗) + (3− κ1)λ(r ∨ λ0).

4.4 Proof of Proposition 3.1

Let S be a subset of {1, . . . , d}, and let p be in S such that

σ2
p −R∗

p <
8κ0λ

2w2
p

3
.

Denote by c∗S an optimal codebook with support S, that is

c∗S = argmin
S(c)=S

R(c).

Then, according to (3), we may write

R(c∗S\{p})−R(c∗S) ≤ R∗
S\{p} + σ2

(S\{p})c − (R∗
S\{p} +R∗

p)− σ2
Sc

≤ σ2
p −R∗

p.

Therefore

3R(c∗S\{p}) + 8λ2κ0‖wS\{p}‖2 < 3R(c∗S) + 8λ2κ0‖wS‖2.
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4.5 Proof of Theorem 3.2

Let c be a fixed codebook in Ck, and c′ be another codebook in Ck. Following
the notation of [vdG13], with a slight abuse of notation, we denote by Iw,1(c

′−c)
and Iw,2(c

′ − c) the quantities

{

Iw,1(c
′ − c) = Iw((c

′ − c)S(c)),
Iw,2(c

′ − c) = Iw((c
′ − c)Sc(c)).

The following result is derived from Lemma A.4 in [vdG08].

Lemma 4.1. Let c and c′ be in Ck, and denote by c∗ = c∗(c′). If S(c) ( S(c∗)
or c∗(c) = c∗, for any δ > 0, we have

2λIw,1(c
′ − c) ≤ 1

δ
ℓ(c, c∗) +

1

δ
ℓ(c′, c∗) + 2δκ0λ

2‖wS(c)‖2. (13)

The proof of Lemma 4.1 can be found in [vdG08]. For the sake of complete-
ness it is briefly recalled here.

Proof of Lemma 4.1. Using Cauchy-Schwarz inequality, it is easy to see that

2λIw,1(c
′ − c) ≤ 2λ

√

∑

p∈S(c)

w2
p‖c′ − c‖

≤ 2λ

√

∑

p∈S(c)

w2
p(‖c′ − c∗‖+ ‖c− c∗‖).

Using the inequality 2ab ≤ κ0δa
2 + 1

δκ0
b2 and Proposition 2.2 leads to

2λIw,1(c
′ − c) ≤ 1

δ
(ℓ(c, c∗) + ℓ(c′, c∗)) + 2δκ0λ

2‖wS(c)‖2.

Equipped with this Lemma, we are in position to prove Theorem 3.2. By
definition, ĉn,λ satisfies

Pnγ̄(ĉn,λ, .) + λIŵ(ĉn,λ) ≤ Pnγ̄(c, .) + λIŵ(c).

Using Proposition 4.1, we get

P γ̄(ĉn,λ, .) + λIŵ,2(ĉn,λ − c) ≤ P γ̄(c, .)

+ λIŵ,1(ĉn,λ − c) + λ1(λ0 ∨ Iw(ĉn,λ − c)). (14)

If Iw(ĉn,λ−c) > λ0, then adding −P γ̄(c∗, .) on both sides an using Assumption
3 leads to

ℓ(ĉn,λ, c
∗) + (1− κ1)λIw,2(ĉn,λ − c) ≤ ℓ(c, c∗)

+ (1 + κ1)λIw,1(ĉn,λ − c) + λ1Iw(ĉn,λ − c).
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Hence, if c∗(c) = c∗(ĉn,λ) = c∗ or S(c) ( S(c∗),

ℓ(ĉn,λ, c
∗) + [(1− κ1)λ− λ1] Iw(ĉn,λ − c)

≤ ℓ(c, c∗) + 2λIw,1(ĉn,λ − c)

≤ 3

2
ℓ(c, c∗) +

1

2
ℓ(ĉn,λ, c

∗) + 4κ0λ
2‖wS(c)‖2,

according to Lemma 4.1, with δ = 2. Noting that λ1 ≤ (1− κ1)λ/2 yields

ℓ(ĉn,λ, c
∗) + (1 − κ1)λIw(ĉn,λ − c) ≤ 3ℓ(c, c∗) + 8κ0λ

2‖wS(c)‖2.

If Iw(ĉn,λ − c) ≤ λ0, then combining Assumption 2.3 with (14) entails

ℓ(ĉn,λ, c
∗) + (1− κ1)λIw(ĉn,λ − c) ≤ ℓ(c, c∗) + 2λIw,1(ĉn,λ − c) + λ1λ0

≤ ℓ(c, c∗) + 3λλ0.

Since c∗λ(ĉn,λ) satisfies S(c∗λ(ĉn,λ)) ( S(c∗(ĉn,λ)) or c∗(ĉn,λ) = c∗(c∗λ(ĉn,λ)),
choosing c = c∗λ gives the result.

4.6 Proof of Theorem 3.3

Let j be in S(c∗)c. Theorem 3.3 follows from the Karush-Kuhn-Tucker con-
dition, as in [SWF12], combined with some standard deviation bounds, which
are listed below. Throughout this derivation, K will denote a generic positive
constant not depending on n.

Proposition 4.2. For every x in Rd, let G(j)(x, c∗) denote the k dimensional
vector

(

x(j)1W1(c∗)(x), . . . , x
(j)1Wk(c∗)(x)

)

.

Then, we have

P
[∥

∥(P − Pn)G
(j)(., c∗)

∥

∥ ≥ Kn−α
]

= O(e−n1−2α

),

P
[

sup
c∈Ck |(Pn − P )

∑

i6=p 1Wi(c)∩Wp(c∗) | ≥ Kn−α
]

= O(e−n1−2α

).

Assume that ĉ
(j)
n,λ 6= 0, then the K.K.T condition yields

2√
n
‖L̂X̂(j)‖ =

∥

∥

∥

∥

∥

√
nλŵj

ĉ
(j)
n,λ

‖ĉ(j)n,λ‖
+

2√
n
L̂tL̂ĉ

(j)
n,λ

∥

∥

∥

∥

∥

≥
√
nλŵj ,

since L̂tL̂ is positive. According to Assumption 3, it follows that
√
nλŵj ≥

(1−κ1)n
1/2, with probability larger than 1− r1(n), when n is large enough. On

the other hand, we have

‖L(ĉn,λ)X(j)‖ ≤ ‖L(c∗)X(j)‖+ ‖(L(ĉn,λ)− L(c∗))X(j)‖
≤ n‖PnG

(j)(., c∗)‖+M (j)nPn

∑

i6=p

1Wi(ĉn,λ)∩Wp(c∗) .
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According to the centroid condition, PG(j)(., c∗) = 0. Thus, it follows from

Proposition 4.2 that ‖PnG
(j)(., c∗)‖ ≤ Kn−α with probability 1 −O(e−n1−2α

).
Lemma 4.2 in [Lev15] ensures that

P
∑

i6=p

1Wi(ĉn,λ)∩Wp(c∗) ≤ p(K‖ĉn,λ − c∗‖) ≤ K‖ĉn,λ − c∗‖,

according to Assumption 2. Moreover, since ‖wS(c∗)‖ tends to
∑

i∈S(c∗)
1

‖c∗,(i)‖ ,

Theorem 3.2 yields ℓ(ĉn,λ, c
∗) ≤ Kλ2, with probability larger than 1− r1(n)−

O(e−n1−2α

), for n large enough. On the same event, Proposition 2.2 gives ‖ĉn,λ−
c∗‖ ≤ Kλ, which leads to

Pn

∑

i6=p

1Wi(ĉn,λ)∩Wp(c∗) ≤ Kn−α,

with probability larger than 1 − r1(n) − O(e−n1−2α

), according to Proposition
4.2. Then the K.K.T condition entails

(1− κ1)n
1/2 ≤ Kn1/2−α,

with probability larger than 1 − r1(n)− O(e−n1−2α

), which is impossible when

n is large enough. Noting that r1(n) = O(e−n1−2α

), according to Proposition 3,
gives the result.

Conversely, if j is in S(c∗) and ĉ
(j)
n,λ = 0, then the K.K.T condition yields

2

n
‖L(ĉn,λ)X̂(j)‖ ≤ λŵj .

Since wj tends to 1/‖c∗,(j)‖ and ‖PG(j)(., c∗)‖ > 0, according to the centroid
condition, using the same concentration bounds as above leads to a contradic-
tion.

4.7 Proof of Proposition 3.2

The first part of Proposition 3.2 is derived from the following Lemma, which ex-
tends Proposition 3.2 of [Lev15]. We denote by B̃ the quantity infi6=j ‖mi −mj‖.
Lemma 4.2. Denote by η = supj=1,...,k 1−Ni. Then the risk R(m) may be
bounded as follows.

R(m) ≤ σ2kθmaxd

(1− η)
, (15)

where θmax = maxj=1,...,k θj. For any 0 < τ < 1/2, let c be a codebook with a

codepoint ci such that ‖ci −mj‖ > τB̃, for every j in {1, . . . , k}. Then we have

R(c) >
τ2B̃2θmin

4

(

1− 2σ
√
d√

2πτB̃
e−

τ2B̃2

4dσ2

)d

, (16)
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where θmin = minj=1,...,k θj. At last, if σ
− ≥ c−σ, for any τ ′ such that 2τ+τ ′ <

1/2, we have

∀t ≤ τ ′B̃ p(t) ≤ t
2k2θmaxM

d−1Sd−1

(2π)d/2(1 − η)cd−σ
d
e−

[ 12−(2τ+τ′)]
2
B̃2

2σ2 , (17)

where Sd−1 denotes the Lebesgue measure of the unit ball in Rd−1.

The proof of Lemma 4.2 follows from direct calculation, as in the proof of
Proposition 3.2 of [Lev15]. For the sake of completeness it is given in Section
5.5 of the Appendix.

Let τ and τ ′ be positive quantities satisfying 2τ + τ ′ < 1/2, and τ ′ >
8
√
2Mτ/(1−2τ)B̃. According to (15) and (16), if σ is small enough, then every

optimal codebook c∗ satisfies supj=1,...,k ‖mj − c∗j‖ ≤ τB̃, up to relabeling code
points.

On the other hand, (17) ensures that, for σ small enough, P satisfies As-
sumption 2 with radius r0 ≥ τ ′B̃. Let c∗ be an optimal codebook. According
to i) of Proposition 2.2 in [Lev15], no other optimal codebook can be found in a
ball of radius (1−2τ)B̃τ ′/4

√
2M centered at c∗. Since (1−2τ)B̃τ ′/4

√
2M > 2τ ,

this proves that c∗ must be unique.
To apply Theorem 3.3, we need to show that S(c∗) ⊂ S̃. Suppose that there

exists j ≥ d′+1 such that c∗,(j) 6= 0. Let s denote the orthogonal transformation
defined by s(x1, . . . , xd′ , xd′+1, . . . , xd) = (x1, . . . , xd′ ,−xd′+1, . . . ,−xd). Since
(Σi)p,q = 0, for every (i, p, k) in {1, . . . , k} × {1, . . . , d′} × {d′ + 1, . . . , d}, P is
invariant through composition by s. Hence s(c∗) is an optimal codebook, and
c∗ 6= s(c∗), which contradicts the fact that c∗ is unique.

5 Appendix

5.1 Proof of Proposition 2.3

Hoeffding’s inequality ensures that, for every p = 1, . . . , d, σ̂2
p/σ

2
p−1 is a subgaus-

sian random variable with variance bounded by T (σ)4/4n. For a comprehensive
introduction to subgaussian random variables and its application to empirical
process theory, the interested reader is referred to [Mas07]. Applying Theorem
3.12 in [Mas07] and a bounded difference concentration inequality (see, e.g.,
Theorem 5.1 in [Mas07]) yields, with probability larger than 1− e−y,

max
p=1,...,d

∣

∣

∣

∣

∣

σ̂2
p

σ2
p

− 1

∣

∣

∣

∣

∣

≤ T (σ)2
√

log(d)√
2n

(

1 +

√

y

log(d)

)

.

Noting that 2n > T (σ)2
√

log(d) and y < log(d)

(

2n

T (σ)2
√

log(d)
− 1

)2

leads to

the result.
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For the threshold Lasso with unique optimal codebook, Theorem 3.1 in
[Lev15], combined with Assumption 2, provides a constant C0 such that

‖ĉn − c∗‖ ≤ C0M

√

k

n

(

1 +
x

k

)

,

with probability larger than 1− e−x. Since, for every p in {1, . . . , d},
∣

∣

∣

∣

∣

‖c∗,(p)‖ ∨ δ

‖ĉ(p)n ‖ ∨ δ
− 1

∣

∣

∣

∣

∣

≤

∣

∣

∣‖c∗,(p)‖ ∨ δ − ‖ĉ(p)n ‖ ∨ δ
∣

∣

∣

δ
≤ ‖ĉn − c∗‖

δ
,

the results easily follows.

5.2 Proof of Proposition 4.1

For a fixed c in ck, denote by Zr(c) the following random variable

Zr(c) = sup
Iw(c′−c)≤r

|(P − Pn)(γ̄(c
′, .)− γ̄(c, .))| .

The following proposition gives a non-asymptotic bound on Zr(c).

Proposition 5.1. Suppose that w is deterministic. Let x > 0, and c be a fixed
codebook. Then, with probability larger than 1− e−x,

Zr(c) ≤ 16
√
2π

√

k log(kd)

n
rT (w)

(

1 +
1

4
√
π

√

x

k log(kd)

)

.

The proof of Proposition 5.1 is postponed to the next subsection. Proposition
4.1 derives from a peeling argument, as in Section 3.4 of [vdG13], combined with
Proposition 5.1. Let a be the smallest integer such that e−(a−1)2M̄(w) ≤ λ0,
and take u0 = log(a) (we recall here that M̄(w) =

√
k‖w‖2T (w) is an upper

bound on Iw(c), for c in Ck). Then it is easy to see that u0 ≤ u, where u is
defined in Proposition 4.1. We may write

P

(

sup
Iw(c′−c)≤2M̄(w)

|(P − Pn)(γ̄(c
′, .)− γ̄(c, .))|

Iw(c′ − c) ∨ λ0
≥ λ1

)

≤
a
∑

j=2

P









sup
Iw(c′−c)≤2e−(j−1)M̄(w)

Iw(c′−c)≥2e−jM̄(w)

|(P − Pn)(γ̄(c
′, .)− γ̄(c, .))|

2e−jM̄(w)
≥ λ1









+ P

(

sup
Iw(c′−c)≤λ0

|(P − Pn)(γ̄(c
′, .)− γ̄(c, .))|

2e−(a−1)M̄(w)
≥ λ1

)

≤
a
∑

j=1

P

(

Z2e−(j−1)M̄(w) ≥ 2e−(j−1)M̄(w)λ0

(

1 +

√

u+ x

k log kd

))

≤ ae−ue−x,

where the last inequality follows from Proposition 5.1. Noticing that ae−u ≤ 1
proves the result.
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5.3 Proof of Proposition 5.1

This proof is a slight modification of the proof of Theorem 3.1 in [Lev15],
and mainly relies on the use of Gaussian complexities combined with Slepian’s
Lemma (see, e.g., Theorem 3.14 in [Mas07]). First, it may be easily noticed
that, for every j = 1, . . . , k, if Iw(c

′ − c) ≤ r, then, for all x in Rd,
∣

∣−2
〈

x, c′j
〉

+ ‖c′j‖2 + 2 〈x, cj〉 − ‖cj‖2
∣

∣ ≤ 4rT (w),

which leads to
‖γ̄(c′, .)− γ̄(c, .)‖∞ ≤ 4rT (w).

As a consequence, a bounded difference concentration inequality (see, e.g., The-
orem 5.1 in [Mas07]) yields, with probability larger than 1− e−x,

Zr(c) ≤ EZr(c) + 4rT (w)

√

2x

n
.

It remains to bound from above EZr(c). According to the symmetrization
principle (see, e.g., Section 2.2 of [Kol06]), combined with Lemma 4.5 of [LT91],
we may write

EZr(c) ≤ 2

√

π

2
EXEg sup

Iw(c′−c)≤r

1

n

n
∑

i=1

gi(γ̄(c
′, Xi)− γ̄(c, Xi)),

where the gi’s are independent standard Gaussian variables. Let X1, . . . , Xn

and c be fixed, and define, for c′ such that Iw(c
′ − c) ≤ r the Gaussian process

Yc
′ =

n
∑

i=1

gi(γ̄(c
′, Xi)− γ̄(c, Xi)).

Since, for every codebooks c′1 and c′2,

(γ̄(c′1, Xi)− γ̄(c′2, Xi))
2 ≤ max

j=1,...,k
8
〈

c′1,j − c′2,j, Xi

〉2
+ 2(‖c′1,j‖2 − ‖c′2,j|2)2,

it is easy to see that

Var(Y
c
′
1
− Y

c
′
2
) ≤

n
∑

i=1

k
∑

j=1

8
〈

c′1,j − c′2,j, Xi

〉2
+ 2n

k
∑

j=1

(‖c′1,j‖2 − ‖c′2,j‖2)2.

To derive bounds on the Gaussian complexity defined above, the following com-
parison result between Gaussian processes is needed.

Theorem 5.1 (Slepian’s Lemma). Let Yt and Nt, t in V, be some centered real
Gaussian processes. Assume that

∀t1, t2 ∈ V Var(Yt1 − Yt2) ≤ Var(Nt1 −Nt2),

then
E sup

t∈V
Yt ≤ 2E sup

t∈V
Nt.
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A proof of Theorem 5.1 can be found in Theorem 3.14 of [Mas07]. Denote
by V the set of codebooks c′ in Ck such that Iw(c

′ − c) ≤ r. Now introduce,
for c′ such that Iw(c

′ − c) ≤ r, the following Gaussian process

Nc
′ = 2

√
2

n
∑

i=1

k
∑

j=1

〈

c′j − cj , Xi

〉

ξi,j +
√
2n

k
∑

j=1

(‖c′j‖2 − ‖cj‖2)ξ′j ,

where the ξ’s and ξ′’s are independent standard Gaussian random variables.
Note that, for all c′1 and c′2 in V , Var(Y

c
′
1
−Y

c
′
2
) ≤ Var(N

c
′
1
−N

c
′
2
). Consequently,

applying Theorem 5.1 yields

Eg sup
Iw(c′−c)≤r

Yc
′ ≤ 2Eξ,ξ′ sup

Iw(c′−c)≤r

Nc
′ .

It follows that

Eξ,ξ′ sup
Iw(c′−c)≤r

Nc
′ ≤ Eξ sup

Iw(c′−c)≤r

2
√
2

n
∑

i=1

k
∑

j=1

〈

c′j − cj , Xi

〉

ξi,j

+ Eξ′ sup
Iw(c′−c)≤r

√
2n

k
∑

j=1

(‖c′j‖2 − ‖cj‖2)ξ′j .

The first term of the right side can be bounded as follows.

Eξ sup
Iw(c′−c)≤r

2
√
2

n
∑

i=1

k
∑

j=1

〈

c′j − cj , Xi

〉

ξi,j

≤ 2
√
2Eξ sup

Iw(c′−c)≤r

k
∑

j=1

〈

c′j − cj,

n
∑

i=1

ξi,jXi

〉

≤ 2
√
2Eξ sup

Iw(c′−c)≤r





k
∑

j=1

d
∑

p=1

wp|c′(p)j − c
(p)
j |



max
j,p

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

≤ 2
√
2krEξ max

j=1,...,k,p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

.

Note that, for every (j, p), the random variable
∑n

i=1
ξi,jX

(p)
i

wp
is Gaussian, with

variance bounded by nT 2(w). Consequently, applying Theorem 3.12 in [Mas07]
gives

Eξ max
j=1,...,k,p=1,...,d

∣

∣

∣

∣

∣

n
∑

i=1

ξi,jX
(p)
i

wp

∣

∣

∣

∣

∣

≤ T (w)
√

2n log(kd).
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In turn, the second term of the right side may be bounded by

Eξ′ sup
Iw(c′−c)≤r

√
2n

k
∑

j=1

(‖c′j‖2 − ‖cj‖2)ξ′j

≤
√
2nEξ′ sup

Iw(c′−c)≤r

k
∑

j=1

(

d
∑

p=1

wp|c′(p)j − c
(p)
j |2Mp

wp

)

∣

∣ξ′j
∣

∣

≤ 2
√
2nT (w)Eξ′ sup

Iw(c′−c)≤r

I(c′ − c)

√

√

√

√

k
∑

j=1

ξ′2j

≤ 2T (w)r
√
2nk.

Combining these two bounds leads to

EZr(c) ≤ 16
√
2π

√

k log(kd)

n
rT (w).

5.4 Proof of Proposition 4.2

For every u in Rk, we denote by Yu the random variable
〈

u,G(j)(., c∗)
〉

, so that

‖(P − Pn)G
(j)(., c∗)‖ = sup‖u‖≤1 (P − Pn)Yu := Y . Since, for every u such

that ‖u‖ ≤ 1, |Yu| ≤ Mj a.s., a bounded difference inequality yields (see, e.g.,
Theorem 5.1 in [Mas07]), with probability larger than 1− e−x,

Y ≤ EY +Mp

√

2x

n
.

An upper bound on EY may be derived the same way as in the proof of Propo-
sition 5.1: introducing some Rademacher random variables εi, i = 1, . . . , n, and
using the symmetrization principle, we get

EY ≤ 2EX,ε sup
‖u‖≤1

〈

u,
1

n

n
∑

i=1

εiG
(j)(Xi, c

∗)

〉

≤ 2

n

√

√

√

√EX,ε

∥

∥

∥

∥

∥

n
∑

i=1

εiG(j)(Xi)

∥

∥

∥

∥

∥

2

≤ 2Mp√
n
,

according to Cauchy-Schwarz and Jensen’s inequalities. Choosing x = n1−2α

gives the first concentration inequality of Proposition 4.2.
Now consider the {0, 1}-valued random variables Yc, indexed by Ck, de-

fined by Yc = 1⋃
i6=p Wi(c)∩Wp(c∗). According to [Pol82], the sets {⋃i6=p Wi(c) ∩

Wp(c
∗)|c ∈ Ck} have finite VC-dimension, sayD. Using the well-known Vapnik-

Chervonenkis bound (see, e.g., [BBL05]), combined with a bounded difference

24



concentration inequality yields

PnYc ≤ PYc +K

√

D

n

(

1 +

√

x

D

)

,

with probability larger than 1 − e−x, for every c in Ck, and for some absolute
constant K. Choosing x = n1−2α provides the second inequality of Proposition
4.2.

5.5 Proof of Lemma 4.2

The proof of Proposition 4.2 follows from the Proof of Proposition 3.2 in [Lev15].
To give an upper bound on R(m), we may write

k
∑

i,j=1

θi

(2π)d/2Ni

√

|Σi|

∫

Wj(m)

‖x−mj‖2e−
1
2 (x−mi)

tΣ−1
i (x−mi)1B(0,M)(x)dx

≤
k
∑

i=1

θi

(1− η)(2π)d/2
√

|Σi|

∫

Rd

‖x−mi‖2e−
1
2 (x−mi)

tΣ−1
i (x−mi)dx

≤
k
∑

i=1

θi
(1− η)(2π)d/2

∫

Rd

‖
√

Σiu‖2e−
1
2 ‖u‖

2

du,

where
√
Σi denotes the square root of the matrix Σi. Since Σi has its largest

eigenvalue bounded by σ2, it follows that ‖
√
Σiu‖2 ≤ σ2‖u‖2, for every u in Rd.

We deduce that

R(m) ≤ σ2kθmax

(2π)d/2(1 − η)

∫

Rd

‖u‖2e− 1
2‖u‖

2

du

≤ σ2kθmaxd

(1− η)
,

which proves (15). Now let c be a codebook, and let i be such that ‖ci−mj‖ >

τB̃, for every j in {1, . . . , k}, with τ < 1/2. Since B(mi, τB̃/2) ⊂ B(0,M), we
may write

R(c) >

∫

B(mi,τB̃/2)

(

τB̃

2

)2
θi

(2π)d/2
√

|Σi|
e−

1
2 (x−mi)

tΣ−1
i (x−mi)dx

>
θminτ

2B̃2

4(2π)d/2

∫

√
Σi

−1B(0,τB̃/2)

e−
1
2 ‖u‖

2

du

>
θminτ

2B̃2

4(2π)d/2

∫

B(0, τB̃
2σ )

e−
1
2 ‖u‖

2

du.
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Since, for every positive r,
[

−r/
√
d, r/

√
d
]d

⊂ B(0, r), and
∫∞
r

e−r2/2dr ≤
e−r2/2/r, it follows that

R(c) >
θminτ

2B̃2

4(2π)d/2

(

2

∫ τB̃

2σ
√

d

0

e−
r2

2 dr

)d

>
τ2B̃2θmin

4

(

1− 2σ
√
d√

2πτB̃
e−

τ2B̃2

4dσ2

)d

,

which proves (16). At last, let τ ′ be such that 2τ + τ ′ < 1
2 , and let y be in

Nc
∗(τ ′B̃). Then, for every i in {1, . . . , k}, we have ‖mi−y‖ ≥

[

1
2 − (2τ + τ ′)

]

B̃.
Hence

f(y) ≤ kθmax

(2π)d/2(1− η)σd
−
e−

[ 12−(2τ+τ′)]2B̃2

2σ2 .

Since σ− ≥ c−σ and λ(Nc
∗(t)) ≤ 2tkMd−1Sd−1, straightforward calculation

leads to (17).
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