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to find a solution and its optimality is proven. The NP-Completeness of the general case is then shown.
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Tél : (33 3) 81 40 28 01 – Fax : (33 3) 81 40 28 09 – e-mail : isabelle.gabet@ens2m.fr





Ordonnancement adaptatif de tâches basé sur le pronostic pour
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Abstract

In the field of production scheduling, this paper addresses the problem of optimizing the
useful life of a heterogeneous distributed platform composed of identical parallel machines
and which has to provide a given production service. Each machine is supposed to be able to
provide several throughputs corresponding to different operating conditions. The purpose
is to provide a production scheduling that maximizes the production horizon. The use of
Prognostics and Health Management (PHM) results in the form of Remaining Useful Life
(RUL) allows to adapt the schedule to the wear and tear of machines. This work comes
within the scope of Prognostics Decision Making (DM). The key point is to configure the
platform, i.e., to select the appropriate profile for each machine during the whole production
horizon so as to reach a total throughput based on a customer demand as long as possible.

In the homogeneous case, the Longest Remaining Useful Life first algorithm (LRUL)
is proposed to find a solution and its optimality is proven. The NP-Completeness of the
general case is then shown. A Binary Integer Linear Programming (BILP) model which
allows to find optimal solutions for fixed time horizons has been defined. As solving such a
BILP is NP-Complete, solutions can however be computed in reasonable time only for small
size instances of the problem. Many heuristics are then proposed to cope with large scale
decision problems and are compared through simulation results. Exhaustive simulations
assess the efficiency of these heuristics. Distance to the theoretical maximal value comes
indeed close to 5% for the most efficient ones.

1 Introduction

An impressive amount of work has been done in the field of production scheduling. The most
common cases studied are single machine scheduling, identical, uniform and unrelated parallel
machine scheduling and open shop, flow shop and job shop scheduling [14]. As far as a lot
of different hypothesis can be taken into account and combined in different ways, the number
of possibilities is very huge. The problem tackled in this report concerns the scheduling of
a platform composed of many heterogeneous parallel machines, performing independent and
identical tasks. All the machines are supposed to be independent and of similar type. At each
time, the platform has to deliver a given global throughput based on a customer demand. The
total provided throughput is determined by the sum of each throughput of machines that are
currently running. The platform can be seen as a distributed environment where machines
fulfill a shared global task. The purpose is to manage the platform and implement a production
schedule which allows to provide at least a given service level requested by consumers as long
as possible.

All the machines are not supposed to be in use at any time because the target throughput
can be reached by using only a subset of the machines within the platform or because some
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2 Nathalie Herr et al

machines are not available. In literature on scheduling theory, machines are commonly assumed
to be continuously available during the whole considered production horizon [25, 19]. This
assumption may not be valid in a real production situation due to wear and tear on machines
which involves shutdowns due to breakdowns or maintenance operations [29]. In the considered
problem, as each machine is assumed to be independent, the breakdown of one of them does
not necessarily entail a shutdown of the whole platform. Maintenance is nevertheless required
in the long term. Guarantying the availability of production systems is although an important
requirement, especially in the power generation domain [8]. Shutdown periods can be minimized
by gathering maintenance operations. This allows to reduce the costs due to the use of material
and human resources and to production shutdown periods as well. To manage such a grouping,
some maintenance actions might need to be postponed. Dietl et al. [11] proposed for instance
to match the time to failure of different tools used in each station of a transfer line by derating
them in such a way that a maximum of tools can be maintained at the same time. Grouping
maintenance actions can also be necessary because maintenance is challenging. For instance,
many works have been carried out to optimize the maintenance of wind farms [22, 4]. For the
maintenance of such systems, especially offshore ones, complex aspects like weather conditions,
requirement of non-traditional resources, skilled technicians, expensive hired services or spare
parts have indeed to be considered. Kovacs et al. [22] proposed a mixed-integer programming
formulation for the problem of optimizing the scheduling of maintenance actions for wind farms.
Minimization of maintenance costs has been studied by Besnard et al. [4] who proposed an
opportunistic maintenance optimization model for offshore wind power systems.

It is assumed that the platform can be totally shutdowned for maintenance and that the
needed service is provided by an other platform when maintenance is performed. All the ma-
chines can in that case be maintained in the same time. The objective is then to maximize the
production horizon of the whole platform between two maintenance periods. The key point is
to be able to take the wear and tear of machines into consideration in the scheduling process.
Prognostics and Health Management (PHM) can comply with these needs in that it can help
to know the time left before occurrence of a failure. Its Prognostics phase is indeed dedicated
to estimate the Remaining Useful Life (RUL) of machines in service [28, 23]. The use of PHM
results is furthermore consistent with our objectives in that PHM aims at maintaining equip-
ment operational performance over time, improving their usage and increasing their availability
while avoiding failures and minimizing maintenance costs [5, 16].

The organisation of the report is as follows: Section 2 discusses related work. The tackled
problem is detailed in Section 3 and is illustrated through a motivating example in Section 4. An
optimal resolution and complexity results are then provided in Section 5. An optimal approach
using a BILP is described in Section 6 and sub-optimal solutions are proposed in Section 7.
The provided heuristics are then compared through simulation results (Section 8). This work
is finally concluded in Section 9.

2 Related work

As pointed out by Haddad et al. [16], PHM has been shown to provide many benefits for the
health management of systems such as avoiding failures, increasing availability, minimizing loss
of remaining life, optimizing resource usage or reducting no-fault-founds. These benefits are
strongly tied to the decision part of PHM process whose main purpose is to determine appro-
priate maintenance actions in response to prognostics predictions [18, 1]. The post-prognostics
decision process concentrates appropriate decisions onto one equipment whereas Prognostic De-
cision Making (PDM) extends decisions to a whole system. Prognostic Decision Making aims
also at choosing an appropriate system configuration [2]. Our work falls within this latter case.
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Prognostics-based Scheduling 3

Temporal segmentation for decision framework has been introduced by Bonissone et al. [5].
They identified three types of decisions in the segment dealing with multiple and repeated de-
cisions: tactical, operational and strategic. According to the frequency on which the decisions
have to be taken, diagnostics and prognostics fit with tactical level (seconds, minutes, hours).
Decisions for process control in such timeframes suits with on-line scheduling and rescheduling.
The part that concerns frequency from nanoseconds to seconds describes configurations that are
encountered in electronic, electro-mechanical and control domains. Operational level is adapted
to lower frequency decision process as production or maintenance planning and off-line schedul-
ing. Our work falls within these two short-term and mid-term levels of the decision making
process, in which many applications are studied. We can cite the aerospace domain [2, 7] and
applications on wind turbines [16], electronic systems [28] or cutting tools [6].

Most of the studies proposed in the literature focus on maintenance planification. PHM
enables indeed maintenance to be planned on the basis of actual component or system health
state [7]. Many contributions are proposed in the form of maintenance policies that minimize
life cycle costs. Sandborn et al. [28] endeavor to determine when scheduled maintenance makes
sense for electronic systems. Haddad et al. [16] proposed an optimization consisting in finding
an optimum subset of offshore turbines to be maintained, given information on their degrada-
tion, availability requirement and costs constraints. Balaban et al. [2] developed a prototype
algorithm that uses probabilistic methods and prognostics information in generation of action
policies for aerospace applications. In the same area, a PHM and Maintenance data integration
tool that enables various available diagnostic and prognostics methods to be used in a real
environment has been proposed by Camci et al. [7] for fighter aircrafts. Asmai et al. [1] used
the data-driven approach to implement an intelligent maintenance prognosis tool. Incorporated
into the maintenance decision process, this tool can be used to recommend better maintenance
planning. In the same paper, it is pointed out that acknowledging the RUL information can
also be very useful for production scheduling. Indeed, this quantity gives information about
the status of equipment before proceeding with new production jobs. This can help avoiding
material waste and production loss due to equipment breakdown in the middle of an operation.
Decisions could therefore take several forms: immediate machine shutdown in order to avoid
further damage, machine operation modification in such a way as to reduce the load, continua-
tion of normal operation [16], preventive intervention, production rescheduling, etc. The use of
prognostics results in the form of RUL can then be extended to modify operational conditions
or mission profiles in order to accomplish the main objectives of the mission [23, 20]. Balaban et
al. [3] proposed such an application on a hardware testbed based on a planetary rover platform
and considering many fault modes such as mechanical deterioration, electronic faults or low
remaining battery charge. The objective is not only to determine the RUL of a component, but
also to suggest actions that can optimize vehicle maintenance, ensure mission safety, or extend
mission duration. The idea that is conveyed is the following: if decisions are made with respect
to the system health evolution over time, the mission effectiveness can be maximized before
energy and health budgets are exceeded. In case of a fault occurrence, a new mission plan may
have to be defined. Reconfiguration of the vehicle can also be considered in order to extend
the RUL of the affected component as long as needed to ensure achievement of the mission
objectives.

Such kind of reconfiguration that affects the system production rate can be found in schedul-
ing literature. Variable-speed scheduling is for instance a generalization of standard multiple
machine scheduling because not only the assignment of jobs to machines has to be managed, but
also the time used by jobs on machines [32, 24, 31]. Tooling machines are for example variable-
speed machines, insofar as they can be run at different speeds [11]. The notion of reconfiguration
can also be found in the field of scientific computing and more precisely in scheduling of multi-
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processor tasks. Processors capable of global Dynamic Voltage and Frequency Scaling (DVFS)
have been developed and allow the manipulation of the voltage and frequency when the com-
putational load is not perfectly balanced [30, 21]. Many applications have been proposed in
the literature [27, 9, 33]. Three main objectives can be highlighted among these papers using
reconfiguration. The first one is the makespan, i.e., total length of the schedule, minimiza-
tion [32, 24, 27]. The second one is the minimization of energy consumption [30, 21, 9, 33].
This objective is linked with the third one that consists in minimizing production costs [32, 30].

The objective set in this paper can not be classified in these three categories. The point is
to configure a set of machines so as to maximize the production horizon. A second objective
is to use all the considered machines to their full potential in order to minimize maintenance
costs by grouping maintenance operations. Scheduling which is taken into consideration differs
furthermore from the general definition. We seek indeed to schedule considering prognostics
information. We consider prognostics-based scheduling, which can be defined as a scheduling
that takes the wear and tear of equipments into account and that adapts to remaining use-
ful life (RUL). Scheduling appears then to be part of the PHM Decision Process, as far as
prognostics results are used to determine the length of time intervals between two maintenance
operations. Prognostics-based scheduling complies with main goal of scheduling that is achiev-
ing an optimal usage of resources. Such a kind of scheduling could furthermore be adaptive, as
it may respond to disruptions or to knowledge of new informations dynamically over time [10].

3 Problem statement

3.1 Framework

The application that is addressed in this paper is based on a platform composed of a set M

of m machines Mj , with j ∈ J = {1, . . . ,m} (M = {M1, . . . ,Mm}), performing independent
and identical tasks. All the machines can be used in parallel as a global system. Machines
are supposed to be always supplied with power or raw material required for the production.
The provided result is a given service level that is measured as a throughput, i.e., number of
pieces performed or amount of matter (a) treated per unit of time (ut). At each time the
global throughput ρtot provided by the platform is determined by the sum of each throughput
of machines Mj that are currently running. Note that the platform has to deliver a given global
throughput σ = σ(t). This latter one is based on a customer demand, which can be variable
and defined as a function of time. The platform can be seen as a distributed environment where
machines that are currently running fulfill a shared global task such that ρtot ≥ σ.

3.2 Controlled running profiles

As previously developed, the performance of a machine may vary during its use and this variation
can be controlled, for instance through voltage, power or speed scaling. We propose to exploit
this characteristic to optimize the use of the considered platform. Each machine is supposed
to be able to provide several throughputs. In a PHM context, each throughput corresponds
to a certain operating condition. It is moreover assumed that each machine is monitored and
associated with a prognostics module that gives a RUL value depending on both its past and its
future usage. As highlighted by Elghazel and al. [12], the way to consider operating conditions,
especially future ones in RUL estimation, still needs deep studying. So we assume in this
paper that each needed RUL value is known and that RUL evolution depends on the operating
conditions, that is on the running profile in which the machine is used.

We define a running profile as a controlled machine profile involving a certain throughput
and associated with a certain RUL. n running profiles are defined for each machine Mj : Ni,j =

FEMTO-ST Institute
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(ρi,j ,RULi,j), with i ∈ I = {0, . . . , n − 1}. Let N0,j be the nominal running profile of machine
Mj , where immediate throughput ρ0,j and output Q0,j = ρ0,j×RUL0,j are the most significant.
This nominal running profile has the minimum RUL. By comparison, a sub-nominal profile
provides a lowest throughput, but its associated RUL is longer (see figure 1(a)) such that
Q0,j > Q1,j > . . . > Qn−1,j with ρ0,j > ρ1,j > . . . > ρn−1,j and RUL0,j < RUL1,j < . . . <
RULn−1,j . Each running profile corresponds to an operating condition and impacts differently
the wear and tear of the machine and therefore its operational time. Considering several running
profiles seems to be interesting in that the combination of two or more running profiles allows
to reach an operational time that is greater than when considering only the nominal running
profile N0,j . Without taking efficiency into account, Figure 1(b) shows that it is possible to run
a machine Mj for longer than the RUL of the nominal profile RUL0,j by using three different
running profiles N0,j , N1,j and N2,j . Of course, in counter part, the amount of work done with
this machine in both proposed scenarios is lower than it would be with the nominal profile only.
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Figure 1: Running modes

It is assumed that the RUL evolution is not impacted by the order of the selected Ni,j among
the machine lifespan. The second scenario proposed in Figure 1(b) shows that an appropriate
selection ofNi,j allows to extend the useful life even beyond RUL1,j . As showed in the motivating
example in Section 4, one can take advantage of the use of many running profiles to optimize
the scheduling of a set of machines.
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3.3 Decision problem

The problem tackled in this paper is the optimization of the useful life of a platform such as
defined in the framework (see Section 3.1). The objective is to provide a prognostics-based
scheduling as defined in Section 2 by configuring the platform so as to reach the demand as
long as possible. All the machines are not supposed to be in use at any time because of their
RUL or because the target throughput σ can be achieved by using only a subset of the available
machines within the platform. RUL is assumed to be constant in time when the machine is
not used. It is moreover assumed that overproduction should be avoided as far as possible.
Overproduction leads indeed either to costly stocks or to losses if the production can not be
stored. Allowing overproduction can however allow to extend a platform useful life (see Scenario
S2 in Section 4). The key point is then to be able to find the appropriate configuration for each
machine during its lifespan.

One way to tackle the problem consists in discretizing the time into periods ∆T . This
approach is not so far from realistic constraints, since one can imagine that one period could be
one day or one week in a real case. The production horizon T can then be expressed as follows:
T = K×∆T , with ∆T the length of one time period and K the number of periods for which the
demand level σ is reached. If the demand σ is a function of time σ(t), we assume that σ(t) = σk
is a constant value within the period k for all t and all k such that (k − 1)∆T < t ≤ k∆T and
1 ≤ k ≤ K.

Considering discretized time, the problem consists in choosing, for each period of time k, a
subset of machines to be used and an associated running profile for each of them. Using the
notations defined in this section, the problem tackled here can be described by the following
notational form: maxK(σk | ρi,j |RULi,j). This general notation stands for the problem of
finding a schedule that maximizes the production horizon K∆T , considering a required service
level σk as a global throughput to be reached for each time period k (1 ≤ k ≤ K}) and a
set of machines Mj (1 ≤ j ≤ m), each with n running profiles Ni,j = (ρi,j ,RULi,j) for (0 ≤
i < n). This notation allows to express different associated problems as the one that considers
a homogeneous platform with a constant demand σ such that each machine Mj has only one
running profile and provides the same production level ρ0,j = ρj = ρ and RUL0,j = RULj

(n = 1): maxK(σ | ρ |RULj).

4 Motivating example

Before going further, it may be helpful to consider a naive motivating example. This example
aims at illustrating that using a machine within its more efficient profile is not always suitable
for improving the useful life of the platform. The purpose is to show that considering different
running profiles for machines can be a good deal to extend a platform production horizon while
respecting a given targeted global throughput, even if the efficiency decreases when the useful
life increases.

Let us consider four machines (M = {M1,M2,M3,M4}) with which we plan to produce at
least a global throughput reaching at least the demand σ = 450 as long as possible. At t = 0,
M1 is able either to produce ρ0,1 = 450 for one period of time or to produce ρ1,1 = 125 for
three periods of time; at t = 0, each other machine Mj (j = 2, 3, 4) is able to produce either
ρ0,j = 350 for one period of time or ρ1,j = 75 for three periods of time (see Table 1). These
profiles respect the profile model introduced before (ρi,j ×RULi,j < ρi−1,j ×RULi−1,j). ∀t > 0,
each profile Ni,j (0 ≤ i < n and 1 ≤ j ≤ m) depends on the usage of Mj in the past. The
selected running profiles (Ni,j = (ρi,j ,RULi,j)) are given in Table 1 as a function of time for the
three scenarios presented in Figure 2.
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Table 1: Running profile (Ni,j = (ρi,j ,RULi,j)) for each machine and for each of the 3 scenarios
shown in Figure 2 as a function of time

t = 0 t = ∆T t = 2∆T t = 3∆T

sc
en

ar
io

S
1

(T
=

∆
T
)

M1

(450,1) (450,0) (450,0) (450,0)
(125,3) (125,0) (125,0) (125,0)

M2

(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M3

(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

M4

(350,1) (350,1) (350,1) (350,1)
(75,3) (75,3) (75,3) (75,3)

sc
en

ar
io

S
2

(T
=

2∆
T
)

M1

(450,1) (450,0) (450,0) (450,0)
(125,3) (125,0) (125,0) (125,0)

M2

(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M3

(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M4

(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

sc
en

ar
io

S
3

(T
=

3∆
T
)

M1

(450,1) (450,0) (450,0) (450,0)
(125,3) (125,2) (125,1) (125,0)

M2

(350,1) (350,0) (350,0) (350,0)
(75,3) (75,0) (75,0) (75,0)

M3

(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M4

(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

The main idea of the first scenario S1 is to run each machine using its more efficient profile
without allowing overproduction. One can see in Figure 2(a) that in this case the platform
runs for four periods of time but the targeted throughput is achieved only for one period ∆T
by using M1. For each of the three last periods (t > ∆T ), the delivered throughput does not
reach the demand σ since ρ0,2, ρ0,3, ρ0,4 < σ. Considering the objective, the useful life of the
platform, i.e., the scheduling horizon, is then one period (T = ∆T ) for this scenario S1.

When overproduction is allowed (Scenario S2 ), two machines can be used in parallel and the
scheduling horizon is increased to two periods (see Figure 2(b) with T = 2∆T ). M1 is used for
0 ≤ t < ∆T and M2 and M3 are used in parallel for ∆T ≤ t < 2∆T . For t ≥ 2∆T , RUL0,2 = 0
and RUL0,3 = 0 and ρ0,4 < σ. If the production is stopped after two periods, some potential
still remains. The machine M4 has indeed never been used and does not need maintenance yet.
The schedule proposed in Figure 2(b) is optimal under the previous assumptions.

Machines should then be used in another running profile to extend the production horizon.
One can see in Figure 2(c) that the third scenario S3 consisting in using the machine M1

with a lower throughput allows to reach the targeted throughput for three periods. Indeed, by
using M1 for three periods with a throughput ρ1,1 = 125, its contribution can be added to the
one of one of the other machines (ρ0,j = 350 with j = 2, 3, 4) at each period. After having
been used for one period, for each Mj with j ≥ 2, RUL0,j = RUL1,j = 0. After the third
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period, RUL1,1 = RUL0,1 = 0 for machine M1 also. Because of the small number of alternative
scenarios, it is easy to see that any other schedule can not reach the constraint σ = 450 for a
larger number of periods (T ≥ 3∆T ). K = 3 for T = 3∆T is then an optimal solution to the
problem maxK(σk | ρi,j | RULi,j). Compared with S2, an extra period has been allowed in S3
although the efficiency of M1 has been reduced.
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Figure 2: Motivating example

5 Optimal resolution and complexity results

Several classes of the general problem can be considered, depending on the machine throughput
values and their RUL. In the following, some complexity results are demonstrated for different
problem classes.

5.1 Homogeneous equipment case

First, consider the maxK(σ | ρ |RULj) problem. In this case, the total required throughput
is constant (σ) and of the form (q − 1)ρ < σ ≤ qρ (q ∈ N

∗), with q the minimal number of
parallel machines necessary to reach σ for each time period and ρ the throughput provided by
each machine Mj . This problem can be stated as follows: how can q machines, from a set of m
machines, be used at each time period so as to maximize the schedule horizon?

Let’s consider the problem with discrete preemption allowed. In this case, the use of each
machine may be started or interrupted at the beginning of each time period. In the following,
we denote K (M , q) the horizon of the optimal schedule for maxK(σ | ρ |RULj). Let RULj(k)
be the RUL of machine Mj at time k×∆T . A relaxation of this problem can also be considered
when the time is considered as continuous. In this case, preemption is allowed at each time and
the maximal production horizon is denoted Kcont(M , q)×∆T , with:

Kcont(M , q) =

∑

1≤j≤mRULj(0)

q
(1)
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Kcont(M , q) corresponds to an upper bound for K (M , q), reachable in only very limited
scenarios. It can be seen as a geometric resolution which does not always comply with a
permitted running of machines. As an example, consider three machines M1, M2 and M3, with
RUL1(0) = 1, RUL2(0) = 1 and RUL3(0) = 4. According to Equation 1, if two machines are
used in parallel (q = 2),

Kcont(M , q) =
1 + 1 + 4

2
= 3.

Machines M1 and M2 can for instance be used in parallel for one unit of time. Then, at time
∆T , RUL1(1) = RUL2(1) = 0 and RUL3(1) = 4. To reach Kcont(M , q) = 3, machine M3 has
to be used in parallel with itself during two periods, which is actually not possible.

5.1.1 An associated problem

The problem at stake in this section appears to be very similar to a classical parallel machine
scheduling problem. Pinedo [26] considered the problem Pq|prmp|Cmax where m jobs have to
be scheduled on q parallel resources with the objective of minimizing the makespan Cmax. A
parallel can be drawn between the two problems. The q machines running in parallel that we
consider here are equivalent to the q parallel resources considered by Pinedo. The m machines
that have to be used are equivalent to the m jobs that Pinedo aimed at scheduling. RUL0,j of a
machine Mj is equal to a job processing time (pj) and entirely wear out a machine is the same
as finish a job. The main difference is the objective function. Pinedo minimized the duration
of the schedule while we aim at maximizing the schedule horizon. Our problem can however be
reduced to the classical problem of parallel machines detailed earlier. In [26], Pinedo suggested
to use the LRPT algorithm (Longest Remaining Processing Time first) to treat this problem
and provided the following theorem: “LRPT yields an optimal schedule for Pq|prmp|Cmax in
discrete time” [26]. With no precedence constraint between tasks and if preemption is allowed,
the LRPT schedule is by construction active, nondelay and with no idle-time. This result is
consistent with our requirement to meet the fulfillment of the demand for each time period.

5.1.2 Optimal greedy algorithm

The maxK(σ | ρ |RULj) problem can be optimally solved using the Longest Remaining Useful
Life first greedy algorithm (LRUL). This algorithm is based on the same principle as the LRPT
(Longest Remaining Processing Time first) algorithm proposed by Pinedo [26] to find an optimal
schedule for the classical parallel machine scheduling problem Pq|prmp|Cmax in discrete time.
LRUL algorithm consists in choosing first the machines having the longest remaining useful life,
when discrete preemption is allowed. At the beginning of each time period k (1 ≤ k ≤ K), the
q machines having the longest RUL at time k are scheduled for one period.

5.1.3 maxK(σ | ρ |RULj) complexity

To find the complexity we first need to demonstrate some lemmas.

Lemma 1. If q < m and max1≤j≤m(RULj) ≥ Kcont(M , q), then K (M , q) = K (M ′, q − 1),
with M ′ = M \ {Mj′ s.t. RULj′ = max1≤j≤m(RULj)}.

Lemma 1 states that solving a problem complying with its conditions is equivalent to solving
the same problem without considering the machine with the greatest RUL. This reduction to
an equivalent problem is illustrated in Figure 3.
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Proof. If max1≤j≤m(RULj) ≥ Kcont(M , q), the machine with the largest RUL is used all
through the scheduling horizon. The maximal number of periods that can be completed, say
K (M , q), is not limited by this machine. K (M , q) can then be found by solving the problem
without taking into account the machine with the largest RUL and with a reduced number of
machines (q − 1) necessary to reach the updated required throughput (σ − ρ). That concludes
the proof.
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Figure 3: Simplification of a problem falling within the scope of Lemma 1

Lemma 2. If q < m, RULj(0) ≥ 1 (1 ≤ j ≤ m) and max1≤j≤m(RULj(0)) ≤ Kcont(M , q), an
optimal schedule can be found to the maxK(σ | ρ |RULj) problem using the Largest Remaining
Useful Life first greedy algorithm (LRUL) and K (M , q) = ⌊Kcont(M , q)⌋.

Proof. By construction, by using the LRUL algorithm and since RULj(0) ≥ 1 for all 1 ≤ j ≤ m,
it always exists q machines such that RULj(k) ≥ 1 for all 0 ≤ k ≤ k1, with

k1 =











∑

1≤j≤m

(RULj(0)− 1)

q










.

When k = k1 + 1, RULj(k1 + 1) ≤ 1 for all 1 ≤ j ≤ m and

∑

1≤j≤m

RULj(k1) = m+ r, with r =
∑

1≤j≤m

(RULj(0)− 1) mod q.
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At time k1∆T , k1 periods have been completed and the demand can be reached for ⌊(m+ r)/q⌋
more periods. It is then possible to find a schedule that uses the LRUL algorithm and that
completes k1 + ⌊(m+ r)/q⌋ periods. We have:

k1 +

⌊

m+ r

q

⌋

=











∑

1≤j≤m

(RULj(0)− 1)

q










+

⌊

m+ r

q

⌋

=

∑

1≤j≤m

(RULj(0)− 1)

q
−

r

q
+

m+ r

q
−

r′

q
with r′ = (m+ r) mod q.

=

∑

1≤j≤m

RULj(0)−m+m− r + r

q
−

r′

q

=

∑

1≤j≤m

RULj(0)

q
−

r′

q

And finally:

K (M , q) = k1 +

⌊

m+ r

q

⌋

=











∑

1≤j≤m

RULj(0)

q










= ⌊Kcont(M , q)⌋ .

That concludes the proof.

Theorem 1. An optimal solution to the problem maxK(σ | ρ |RULj) can be computed in poly-
nomial time in O(Kcont(M , q)×m× log(m)).

Proof. We aim at showing the complexity of finding an optimal schedule for maxK(σ | ρ |RULj)
in any cases.

• Straightforward cases:

K (M , q) =











0 if q > m (2.1)
∑

1≤j≤mRULj(0) if q = 1 (2.2)

min1≤j≤m(RULj(0)) if q = m (2.3)

(2)

If q > m, all the available machines are not enough to provide the total required through-
put σ. The production horizon is then zero (see Equation (2.1) and Figure 4(a)).

If q = 1, only one machine can be used at once in each time period. All the machines can
then be used totally, one after another. The maximal production horizon is then obtained by
adding the initial RUL from all the machines (see Equation (2.2) and Figure 4(c)).

If q = m, all the available machines have to be used in parallel to reach the demand σ.
The maximal production horizon is then limited by the lowest RUL (see Equation (2.3) and
Figure 4(b)).

For these three first cases, the solution of maxK(σ | ρ |RULj) can thus be found respectively
in O(1), O(m) and O(m).
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Figure 4: Straightforward cases

• Other cases:

K (M , q) =











∑

1≤j≤m

RULj(0)

q










(3)

if q < m and RULj(0) ≥ 1 (1 ≤ j ≤ m)

We assume that we are in the conditions defined within Lemma 2. Otherwise, Lemma 1
insures that it exists an equivalent problem without machines which RUL are greater than
Kcont(M , q). According to Lemma 2, an optimal schedule to the problem is obtained thanks to
LRUL algorithm with a horizon given by Equation (3). As maximum Kcont(M , q) sorting of the
m machines have to be performed during the scheduling, the complexity of the used algorithm
is in O(Kcont(M , q)×m× log(m)).

5.2 NP-Completeness in the general case

The general case is maxK(σk | ρi,j |RULi,j). We prove in this section that this problem is
NP-Complete in the strong sense.

Theorem 2. Finding an optimal solution to the problem maxK(σk | ρi,j |RULi,j) is NP-Complete
in the strong sense.

Proof. The NP-Completeness of the general problem will be demonstrated by proving that the
special case maxK(σ | ρj | 1) is NP-hard in the strong sense.

Let us consider the following decision problem: given a horizon of K periods, is there a
schedule that allocates machines over time such that the demand σ is reached for every period
k (1 ≤ k ≤ K)? In other words, if Mk ⊂M is the set of machines that are scheduled within the
period k, ∀k ≤ K, is

∑

j|Mj∈Mk
ρj ≥ σ? The problem is in NP: given a schedule of K periods

of time, it is easy to check in polynomial time whether it is valid or not. The NP-Completeness
is obtained by reduction from 3-PARTITION [13] which is NP-Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION: given an integer B and 3K positive integers
a1, a2, . . . , a3K such that for all j ∈ {1, . . . , 3K}, B/4 < aj < B/2 and with

∑K
j=1

aj = KB,
does exist a partition I1, . . . , IK of {1, . . . , 3K} such that for all k ∈ {1, . . . ,K}, |Ik| = 3 and
∑

j∈Ik
aj = B? We build the following instance I2 of our problem with K periods, each period

FEMTO-ST Institute
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k having a length of time ∆T = 1 and with a demand σk = σ = B for 1 ≤ k ≤ K. There are
3K machines Mj in M with RULj = 1 and ρj = aj for all 1 ≤ j ≤ 3K = m. Clearly, the size
of I2 is polynomial in the size of I1. We now show that I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ k ≤ K, machine Mj is assigned to Mk within
the period k with j ∈ Ik and ρj = aj . Then, we have

∑

j|Mj∈Mk
ρj = σ =

∑

j∈Ik
aj = B and

therefore the constraint on the demand is respected for the K periods. We have a solution to I2.
Suppose that I2 has a solution. Let Mk be the set of machines allocated to the period k such

that for all machines Mj ∈Mk with j ∈ Ik,
∑

j∈Ik
ρj = σ = B. Because of ρj , |M| = |Ik| = 3.

Since the demand σ has to be reached for the K periods, the solution is a 3-PARTITION.
We have proven that the problem maxK(σ | ρj | 1) is NP-Complete in the strong sense.

Since this problem is a special case of maxK(σk | ρi,j |RULi,j), it is sufficient to prove the NP-
Completeness of maxK(σk | ρi,j |RULi,j). This concludes the proof.

5.3 Bounds

To improve the bounding accuracy and to speed up the solver, particularly for large instances,
upper and lower bounds for K (M , q) are supplied for the general maxK(σ | ρi,j |RULi,j) prob-
lem.

5.3.1 Upper bound

An upper bound Kmax can be provided as defined in Equation (4). This equation is a general-
ization of Equation (1) that defines an upper bound Kcont(M , q) for the special case considered
in Section 5.1. If all the machines are used with their running profile that provides the best out-
put (say Qi,j = ρi,j ×RULi,j) and if the total required throughput σ is constant over time, then
KMAX is the theoretical maximal number of periods for which the demand σ can be reached.
This upper bound is only reachable under very restrictive conditions, i.e., if no overproduction
is performed during the whole scheduling horizon and if no potential remains at the end of the
schedule.

Kmax =











∑

1≤j≤m

max0≤i<n (ρi,jRULi,j)

σ










(4)

In practice, Kmax is never reached. In the same way as for Kcont(M , q) for the homogeneous
equipment case (see Equation 1 in Section 5.1), the construction of this upper bound can be
seen as a geometric filling of a rectangle whose width corresponds to the demand σ and whose
length is maximal knowing the previous width (see Figure 5). The surface area of this rectangle
is then commensurate with the global potential of the set of machines. The solution that is
obtained does not comply with two important constraints of the general problem. The time
discretizing is first not observed. The time is considered as continuous and preemption is allowed
at each moment. A change in the configuration (machines/running profiles) is then allowed
at each time. The global potential is secondly spread in the rectangle without considering the
throughput characteristics of each machine. Throughputs that can be provided by each machine
are then not necessarily observed at each time.

5.3.2 Lower bounds

Many lower bounds can be defined. In each scenario, all the machines are supposed to be used
in their nominal running profile N0,j providing the maximal throughput ρ0,j and associated
with the minimum RUL, RUL0,j .
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Figure 5: Construction of Kmax

First lower bound, Kmin1, is obtained when all the available machines are used in parallel.
The maximal production horizon is then limited by the lowest RUL (see Equation (5) and
Figure 6(a)).

Kmin1 = min1≤j≤m(RULmin,j) (5)

For the second lower bound, machines are supposed to be sorted by a descending order of
their RUL0,j . We are searching for the first machine Mj∗ with j∗ = jmin such that:

j∗
∑

j=0

ρ0,j ≥ σ.

Kmin2 corresponds to the RUL of machine Mj∗ (see Equation (6) and Figure 6(b)).

Kmin2 = RUL0,j∗ (6)

A third lower bound that extends the principle used for Kmin1 can be defined (see Fig-
ure 6(c)). The idea is to form many groups of machines such as each group allows to reach the
demand σ. Worst case is considered for each group, that is, the overproduction is supposed to
be maximal. In this case, the total throughput is the following:

ρtot = σ +max1≤j≤m(ρ0,j)− 1

We are searching for the number of groups of machines j3 that can be built under the previous
assumptions. j3 is given by:

j3 =















m
∑

j=1

ρ0,j

ρtot















=















m
∑

j=1

ρ0,j

σ +max1≤j≤m(ρ0,j)− 1















The production horizon is limited by the minimal RUL in each group of machines and Kmin3 is
then defined by Equation (7), assuming the machines are sorted by an ascending order of their
RUL.

Kmin3 =

j3
∑

j=1

RUL0,j (7)
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Figure 6: Lower bounds

6 Optimal approach

Let’s consider the following scheduling problem: maxK(σ | ρi,j |RULi,j). A first approach based
on an exact resolution method can be considered to cope with this problem.

6.1 Decision problem

The decision problem can be described as follows: does exist a schedule to achieve the constant
given service σ during a given number of time periods K, considering the current health state
of all machines, i.e., the value of {RULi,j s.t. 0 ≤ i ≤ N − 1 and 1 ≤ j ≤M} ?

For this problem, denoted DPK , one can propose an Integer Linear Program (ILP (DPK))
using binary variables.

6.1.1 Variables

Let ai,j,k s.t. 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m and 1 ≤ k ≤ K be the variables of the decision problem.
ai,j,k is defined as a bivalent variable. ai,j,k = 1 if machine Mj is used with the running profile
Ni during the period k ; ai,j,k = 0 otherwise.

Using this set of variables involves that machines are supposed to be able to change of
running profile at the beginning of each period.

6.1.2 Constraints

The constraints of the decision problem DPK should express the need to reach the required
production throughput and the limitation on the use of the machines, due to their functioning
and to their RUL.

The first set of constraints concerns the production throughput. The required service σ
should be reached for all time periods. This can be expressed by the following inequalities:

∀k,
M
∑

j=1

N
∑

i=1

(ai,j,k × ρi,j) ≥ σ (8)

The second set of constraints sets that a machine Mj can only be used once per period k,
in only one running profile Ni:

∀k, ∀j,
N
∑

i=1

ai,j,k ≤ 1 (9)
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Finally, the last set of constraints is due to the remaining useful life of each machine. We
can consider that during a given period k, if a machine Mj is used with the running profile Ni,
then it cuts the remaining useful life by ∆T/RULi,j . Consequently, due to the value of RULof
the machine Mj , the following inequalities express that each machine could not be used more
than its initial RUL:

∀j,
n
∑

i=1

∑K
k=1

ai,j,k ×∆T

RULi,j

≤ 1 (10)

6.2 Associated optimization problem

The previous described Integer Linear Program, denoted ILP (σ,M ,K) allows without any
objective function to answer the following question: does exist a configuration of all the machines
such that the required throughput σ could be reached during at least K periods ?

6.2.1 Minimizing the production loss

One can use this model to obtain solutions where an objective would be to limit the loss of
production. What is called loss of production here is the difference between the resulting
throughput of a given configuration (list of machines used during the period of time, with the
running profile for each machines) and the required one (ρi,j − σ). The production loss for a
given period k is then as follows:

φk =
M
∑

j=1

N
∑

i=1

(ai,j,k × ρi,j)− σ (11)

A first optimization problem that can be addressed is consequently the minimization of the
total production loss

∑K
k=1

φk. This will almost correspond to keep a maximum potential of
production for the set of machines M as long as possible.

6.2.2 Maximizing the production horizon

As presented in section 3, we propose to solve the problem where the set of machines M has
to produce the given global throughput σ as long as possible. Besides the previous model can
compute a solution to reach a global throughput σ, it is not sufficient since it is designed for a
given number of periods K. It can nevertheless be useful to determine the greatest number of
periods during which a given platform M is able to produce a throughput greater or equal to
the demand σ. First, one can determine two bounds of this number. The first one is an upper
bound, Kmax, defined in Section 5.3.1 (see Equation 4). The worst lower bound Kmin is 0. The
three lower bounds defined by Equations (5),(6) and (7) (see section 5.3.2) can be considered.
If a heuristic algorithm can provide a solution, the corresponding production horizon could also
be considered as a better lower bound.

Since one can compute these two bounds, Kmax and Kmin, finding the maximum number
of periods that can be reached for a given demand σ with a given platform M can be done
using a dichotomy search approach. This approach is detailed in Algorithm 1.

ILP (DPK) is in fact a Binary Linear Program and solving such a binary linear program is
NP-Complete. However, as shown in Section 8, efficient solvers as [17] or [15] are able to give
solutions in limited time only for small problem instances. For more realistic problem sizes,
defining scalable heuristics is mandatory. Thanks to the previous ILP , a validation of these
heuristics is proposed in section 8 for small size instances of the problem.
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Algorithm 1: Dichotomy search procedure to find the maximum number of periods K
using the ILP (DPK)

Remark: for this algorithm, we call ILP (σ,M ,K) the integer linear program described in
section 6.1 and LP (σ,M ,K) its rational relaxation
Kmin ← Kmin

Kmax ← Kmax

while Kmax −Kmin > 0 do

K ← (Kmin +Kmax)/2
if LP (σ,M ,K) has a solution then

if ILP (σ,M ,K) has at least one solution then

Kmin ← K
else

Kmax ← K

else

Kmax ← K

return K

7 Sub–optimal approaches

The optimal solution can not be computed using the BIP defined in the previous section as soon
as platforms with a large number of machines and/or with a large number of running profiles
are considered. In order to deal with large scale problems, four polynomial time heuristics that
allocate for each period of time enough machines to reach the targeted throughput as long as
possible are then proposed. Each heuristics follows its own strategy to select the machines and
an associated running profile for each of them so as to define its contribution to the global
production within the current period. A first strategy consists in defining the schedule period
by period. A new selection of machines is performed for each period and is applied only for
one period of time. The RUL of the selected machines are updated at the end of each period
to take their usage into account. The whole process is then iterated until the set of available
machines is not able to reach σ any more. An other strategy consists in applying the same
selection on many periods. The number of periods on which a solution can be applied is limited
by the selected machine having the smallest RUL. Each RUL of the selected machines is then
updated as for the first strategy and the process is iterated with the remaining set of available
machines. The number of periods K that are successfully completed represents the useful life
of the platform.

One can see that the strategy working by group of periods cannot be used as it is when
a variable demand σk is considered. It could nevertheless easily be adapted by applying each
selection on the minimum of the two following values: (1) smallest RUL of the selected machines
and (2) length of the time interval in which the targetted demand remains constant. Regardless
of the two strategies, three different types of heuristics can be distinguished. First heuristics
provides a random schedule. Second type comprises greedy heuristics and last one uses a
dynamic programming based algorithm. An illustration based on the initial set of machines
described in Figure 7 is given for each heuristics in the following sections.
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Figure 7: Initial set of machines

7.1 Basic heuristics

7.1.1 H–RAND: Random assignment heuristics

This first heuristics builds the schedule period by period. For each period k, just as much couples
machine/running profile as needed are randomly selected among those that are available so as
to reach at least the demand σ. The process, detailed in Algorithm 2, is stopped as soon as a
period can not be completed. This can happen even if there is enough potential left to reach
the demand σ. In each period, the remaining available machines depends indeed on the first
choices made by the heuristics.

This naive heuristics mainly serves as a basis for comparison and assesses the interest of
defining more complex and smart heuristics to extend the useful life of the system to a number
of periods closed to the optimal one. A solution provided by H–RAND and based on the set of
machines described in Figure 7 is given in Figure 8.
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Figure 8: Schedule obtained with H–RAND

7.1.2 H–LRF: Largest RUL First heuristics

This heuristics works by group of periods and aims at considering each machineMj using its pro-
file associated to the largest RUL, that is the profile providing the lowest throughput: Nn−1,j =
(ρn−1,j ,RULn−1,j). We recall that ρn−1,j = min0≤i<n(ρi,j) and RULn−1,j = max0≤i<n(RULi,j)
for any machine Mj ∈M . A subset of machines having the greatest RUL is selected until the
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Algorithm 2: H–RAND: Random assignment heuristics

Data: σ: throughput demand
ρmax: maximal throughput reachable with the considered set of machines
list: list of available couples machine/running profile Ni,j , with RULi,j ≥ 1
solk: list of couples machine/running profile Ni,j selected for the period k
ρtot: total throughput provided by the solution solk
input : σ

set of initial couples Ni,j = (ρi,j ,RULi,j) for each machine j and running profile i
output: sol = (sol1, sol2, . . . , solk): list of solutions for each completed period

repeat
k ← 0
ρmax ←

∑

j|Mj∈M
ρmax,j

sol← ∅
ρtot ← 0
if ρmax ≥ σ then

while (ρtot < σ) & (list is not empty) do
Ni,j ← choose randomly a machine and an associated running profile in list
if the selected machine Mj is not already used in solk then

solk ← solk +Ni,j

ρtot ← ρtot + ρi,j
list← list−Ni,j

Use the selected machines for one period of time
Update the RUL of the selected machines to take their usage into account
k ++

until ρtot ≥ σ

return sol = (sol1, . . . , solk)

global throughput ρtot reaches at least the demand σ. If the available machines are not sufficient
to reach σ (ρtot < σ), all the available machines are selected and the throughput of the machine
Mj having the largest RUL is increased by selecting Ni−1,j in spite of Ni,j if possible. This
process is iterated within the current period until ρtot ≥ σ. While the global throughput ρtot
exceeds the demand σ, the selected machine providing the maximal throughput ρmax,j such
that ρmax,j is lower or equal to the overproduction (i.e., ρmax < ρtot − σ) is erased from the
solution. The solution is applied to the maximum number of periods, which corresponds to the
smallest RUL of the solution. The process, detailed in Algorithm 3 and illustrated in Figure 9,
is stopped as soon as a period can not be completed anymore.
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time
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N1,3
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Figure 9: H–LRF operating principle

Figure 10 represents a solution provided by H–LRF for the set of machines considered in
this section (see Figure 7).
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Algorithm 3: H–LRF: Largest RUL First heuristics

Data: σ: throughput demand
ρmax: maximal throughput reachable with the considered set of machines
list: list of available couples machine/running profile Ni,j , with RULi,j ≥ 1
solk: list of couples machine/running profile Ni,j selected for the period k
ρtot: total throughput provided by the solution solk
input : σ

set of initial couples Ni,j = (ρi,j ,RULi,j) for each machine j and running profile i
output: sol = (sol1, sol2, . . . , solk): list of solutions for each completed period

repeat
k ← 0
ρmax ←

∑

j|Mj∈M
ρmax,j

if ρmax ≥ σ then
solk ← all available machines in their running profile associated to the largest RUL
(Nn−1,j = (ρmin,j ,RULmax,j))
ρtot ← total throughput provided by solk
while ρtot < σ do

Select the machine in solk having the maximal RUL in a more nominal running
profile (Ni−1,j in spite of Ni,j)

while ρtot > σ do
solk ← solk− Ni,j with machine Mj providing the maximal throughput ρmax,j from
the solution such that ρmax,j < ρtot − σ

Use the selected machines for a number of periods equal to the smallest RUL of solk
Update the RUL of the selected machines to take their usage into account
k ++

until ρtot ≥ σ

return sol = (sol1, . . . , solk)
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Figure 10: Schedule obtained with H–LRF

7.1.3 H–HOF: Highest Output First heuristics

The heuristics H–HOF is based on the same principle as H–LRF but each machine Mj is con-
figured with its most efficient profile N0,j = (ρ0,j ,RUL0,j). We recall that ρ0,j = max0≤i<n(ρi,j)
and RUL0,j = min0≤i<n(RULi,j) for any machine Mj ∈ M . Two options can be considered.
First one, H–HOFlt (Highest Output First, lowest throughput first), selects the machines having
the lowest throughput first and second one, H–HOFht (Highest Output First, highest through-
put first), these having the highest throughput. For both options, a subset of the smallest
number of machines that allows to reach σ is selected by the corresponding order. Then, as
long as possible, the machine whose RUL is the smallest from the selected machines (say Ml)
is iteratively chosen and its throughput is decreased from the running profile Ni,j to the sub-
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Algorithm 4: H–HOF: Highest Output First heuristics

Data: σ: throughput demand
ρmax: maximal throughput reachable with the considered set of machines
list: list of available couples machine-running profile Ni,j , with RULi,j ≥ 1
solk: list of couples machine-running profile Ni,j selected for the period k
ρtot: total throughput provided by the solution solk
input : σ

set of initial couples Ni,j = (ρi,j ,RULi,j) for each machine j and running profile i
output: sol = (sol1, sol2, . . . , solk): list of solutions for each completed period

repeat
k ← 0
ρmax ←

∑

j|Mj∈M
ρmax,j

if ρmax ≥ σ then

while ρtot < σ do
solk ← solk+ Ni,j with Mj the available machine providing the lowest (resp. the
highest) throughput in its more efficient running profile Ni,j for the first version
H–HOFlt (resp. the second version H–HOFht)

while ρtot ≥ σ do
Decrease the contribution of the machine Mj in solk having the minimal RUL by
modifying its running profile from the chosen one Ni,j to the following one providing
a lowest throughput Ni+1,j , only if ρtot remains ≥ σ

Use the selected machines for a number of periods equal to the smallest RUL of solk
Update the RUL of the selected machines to take their usage into account
k ++

until ρtot ≥ σ

return sol = (sol1, . . . , solk)

nominal profile Ni+1,j , but only if the overall throughput remains greater than σ. This allows
to increase the number of periods on which the solution can be applied. As for H–LRF, the
number of completed periods is indeed given by the selected machine Ml which RUL is the
smallest. RUL values are then updated for every machine and the process is repeated until
enough machines are available to reach σ.

This process (see Algorithm 4 and illustrations in Figure 11 and Figure 12) is iterated as
long as there is enough potential left to reach the demand for a minimum of one period.

7.1.4 H–DP: Dynamic Programming based heuristics

H–DP is a more sophisticated heuristics. It aims at minimizing the production loss. If one period
is considered, the problem is to find the best subset of machines and to configure each machine
in the best running profile in order to reach at least the production demand with the smallest
overproduction. A Knapsack-like algorithm is proposed so as to make the choice between all the
available couples within the current period. The differences with the classical Knapsack problem
is first that the sum of the value (ρi,j) of the selected objects (subset of couples machine/running
profile) should be greater or equal to the knapsack weight (σ). Secondly, each object (Mj) can
have several values (ρi,j , 0 ≤ i ≤ n− 1) and at most one could be selected. The objective of the
Knapsack-like problem is to minimize the sum of the machine value in the case where this sum
exceeds the knapsack weight σ.

The algorithm developed to implement H–DP (see Algorithms 5) is the classical two-
dimensional dynamic programming based approach. Each available machine is successively
considered, following an ascending order of their throughput. This sorting allows to minimize
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Figure 11: H–HOF operating principle

the number of recorded solutions and therefore minimizes both the memory needed and the
processing time. Machines with the same throughput are also sorted in descending order of
their RUL. Each running profile of each machine is successively considered, from the last one
providing the minimal throughput to the most nominal one. Performing this sorting before each
search for solution allows to wear out the set of machines homogeneously. Due to this turnover
in the use of machines, a maximum of different machines are kept available for the last periods
and the production horizon is extended.

For each machine Mj , the targeted throughput σ′ is iterated from 1 to σ. For each value of
σ′, each available profile Ni,j = (ρi,j ,RULi,j) (0 ≤ i ≤ n−1) of Mj is considered to select or not
the current machine with its right configuration regarding the objective. To define the objective
value let’s introduce some notations: let ovi(σ

′, j) be the overall throughput obtained by the
j first machines using both the jth machine with its ith profile and the optimal configuration
considering the j−1 first machines obtained for a target throughput of σ′−ρi,j ; let OVi(σ, j) be
a valide overall throughput and +∞ otherwise ; finally let OV (σ′, j) be the optimal (minimal)
throughput that exceeds the target demand σ′ using a subset of the j first machines. The
expression of the optimal value is the following:

ovi(σ
′, j) = OV (σ′ − ρi,j , j − 1) + ρi,j with 1 ≤ i ≤ n

OVi(σ
′, j) =

{

ovi(σ
′, j) if ovi(σ

′, j) ≥ σ′

+∞ otherwise
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Figure 12: Schedules obtained with H–HOF

OV (σ′, j) = min
(

OV (σ′, j − 1), min
0≤i≤n−1

OVi(σ
′, j)

)

The minimal throughput for the current period is given at the position OV (σ,m) of the 2D
matrix OV used by the algorithm. Thanks to the storage of each choice that is made for every
couple (σ′, j) when the algorithm is running, the algorithm is able to reconstruct the way to
obtain the optimal schedule. Should two or more equivalent schedules be found, the algorithm
chooses the solution with fewer machines.

As illustrated in Figure 13, H–DP minimizes the overproduction as long as possible. While
the schedule found for each time period is optimal considering the preceding choices, the global
schedule is not necessary optimal. This can be seen in Section 8, in which all the proposed
heuristics are compared to upper bounds and among themselves through their reached produc-
tion horizon.
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Figure 13: Schedule obtained with H–DP
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Algorithm 5: H–DP: Dynamic Programming based heuristics

Data: σ: throughput demand
ρmax: maximal throughput reachable with the considered set of machines
list: list of available couples machine-running profile Ni,j , with RULi,j ≥ 1
solk,σ′ : list of couples machine-running profile Ni,j selected for the demand σ′ for the period k
ρk,σ′ : total throughput provided by the solution solk,σ′

σinit: first throughput considered for each machine
σcumul: last throughput considered for each machine
input : σ

set of initial couples Ni,j = (ρi,j ,RULi,j) for each machine j and running profile i
output: sol = (sol1,σ, sol2,σ, . . . , solk,σ): list of solutions for each completed period

repeat
k ← 0
solk,∗ ← ∅
ρmax ←

∑

j|Mj∈M
ρmax,j

if ρmax ≥ σ then
Sort the machines Mj in an ascending order of their nominal throughput ρ0,j and in a
descending order of their most sub-nominal RUL (RULn−1,j) for same throughputs
σinit ← 1
foreach machine Mj do

if Mj is the last machine in the list then
σinit ← σ
σcumul ← σ

else
σcumul ← ρmax,j +

∑

all previousMj′
ρmax,j′

for σ′ ← σinit to min(σcumul, σ) do
for i← n− 1 to 0 do

solk,σ′ ← select the best solution for σ′

Use the selected machines for one period of time
Update the RUL of the selected machines to take their usage into account
k ++

until ρtot ≥ σ

return sol = (sol1,σ, . . . , solk,σ)

7.2 Enhancement: Repair step

According to the results presented in Section 8, optimal solutions can not be found using the
sub-optimal approaches proposed in Section 7.1. The distance to the optimum is indeed always
positive, which means that there is a scope for improvement. There is also usually remaining
potential, i.e., many machines can still be used as their RUL is greater than 0 at the end of
most of the schedules obtained with basic heuristics. The corresponding production horizons
could then be extended by using this remaining potential even if the remaining machines can
not produce enough to reach an additional period of time.

7.2.1 Strategy

We propose to enhance the results obtained with basic heuristics by performing a revision of the
schedules. This can be done because the schedules are built up offline. The repair is based on a
greedy algorithm and can be applied on a given schedule obtained with any basic heuristics and
made up of at least one time period (K ≥ 1). The basic idea is to swap machines whose RUL
remain greater than zero for other machines used in the initial schedule whose RUL are equal
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to zero for k > K. The recovery of these machines allows to increase the number of remaining
machines that can be used in parallel and allows potentially to reach the demand for one or
more additional period(s).

Let MRUL 6=0
and MRUL=0

be two subsets of machines whose RUL are respectively greater
than zero or equal to zero for k > K. The greedy repair algorithm consists in building MRUL 6=0

by considering machines in the decreasing order of their RUL (for k > K) with the smallest
size and in finding the first period kswap such that every machine in MRUL6=0

does not appear
within the period kswap and it exists a subset of machines Mkswap

⊂ MRUL=0
that are used

within period kswap and
∑

Mj∈Mkswap
ρ∗,j ≤

∑

Mj∈MRUL6=0

ρ0,j . Then the two subsets Mkswap

and MRUL 6=0
are swapped. The process is reiterated until an extra period can be added to the

schedule to obtain K + 1 periods that reach σ. The algorithm ends when no more swap can be
performed.

7.2.2 Illustration of the repair principle

The repair process can be seen on the following very simple example. Let’s consider three
machines with one running profile and the caracteristics showed in Figure 14. The schedule
obtained with H–DP can be seen in Figure 15(a). One can see that the machine M3 is never
used. There is a remaining potential, but no additional period can be completed because the
remaining machine is not powerful enough to reach the demand alone. The machine M3 is
not used in the first period of the schedule, so it can be exchanged with machine M2 for one
period. There is now an overproduction in the first period of the schedule, but also two different
machines available. The demand can then be reached for one more period by using machines M3

et M2 in parallel (see Figure 15(b)). The same exchange can be done in the second scheduled
period. This allows to get the machine M2 back for one period and to increase anew the number
of completed periods K by one (see Figure 15(c)). On this example, applying the repair on the
H–DP schedule allows to use all the machines entirely and to extend the production horizon
from 4∆T to 6∆T .

use

100%
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100%

use

100%

time time time

RUL0,1 = 4

ρ0,1 = 200 ρ0,2 = 200

RUL0,2 = 4

ρ0,3 = 300

RUL0,3 = 4

N0,1 N0,2
N0,3

Figure 14: Set of machines for repair illustration

Repair will be performed on the results of the three most efficient heuristics, i.e., H–LRF,
H–HOFht and H–DP. Using both the principle of each previously described heuristics and the
repair step allows to obtain three new heuristics: H–LRF-R, H–HOF-R and H–DP-R.

All the proposed heuristics are compared through their results in section 8. The quality of
the solutions they provide is also appreciated in this same section by comparison to the lower
and upper bounds defined in section 5.3.

8 Simulation results

Both proposed approaches previously described (optimal and heuristics ones) have been vali-
dated on random problem instances. These have been generated using a simulator and config-
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Figure 15: Repair strategy

ured with many parameters. First one is the number of machines constituting the platform:
m ∈ {10, 25, 50}. Second one sets the number of running profiles with which each machine can
be used: n ∈ {1, 2, 5, 10}.

The demand σk has been assumed to be constant during the whole scheduling process. Only
one demand value σ has then been associated to each problem configuration. Many demand
values corresponding to different problem instances have however been tested. These values
have been defined as follows:

σ = α× ρtot,max, (12)

with ρtot,max =
∑

1≤j≤m

ρmax,j

the maximal total throughput reachable with the considered set of machines and α a load
varying between 30% and 90%.

Each result is the average of 20 random instances corresponding to one problem configuration
as defined before. Each instance corresponds to a different platform, which contains m machines
randomly selected among a bank of initial machines providing different throughputs. Even if a
platform may include machines with same throughputs, these machines can be differentiated by
their RUL. It is indeed assumed that machines can have different states of health and therefore
different RUL values at the beginning of the scheduling process.
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The maxK(σ | ρi,j |RULi,j) problem is considered. All the heuristics proposed in Section 7
are first compared with each other through the number of completed periods K. The best
heuristics are then compared to the optimal approach based on the ILP described in Section 6
for small size instances of the problem. For large instances, results obtained with these heuristics
are compared to the upper bound Kmax defined in Section 5.3.1. Results are represented as a
function of the load (α).

8.1 Comparison of heuristics

In the following figures, the number of completed periods K is represented as a function of the
load α = σ/ρtot,max varying between 30% and 90%.

8.1.1 Basic heuristics

On the basis on many tests on different sets of machines, it appears that one version of H–HOF
is as efficient as the other one. For the rest of the study, only the version selecting the machines
having the highest throughputs first, H–HOFht, will then be considered.

Figure 16: Average number of periods completed (K) depending on the load - N = 1 running
profile, M = 10 machines

It appears that the random assignment heuristics provides results that are not so bad when
only one running profile is considered. One can see in Figure 16 that H–RAND provides the
greater K value for loads between 40% to 80%. This can be explained by the fact that this
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heuristics does not select useless machine. The maximal overproduction is then equal to the
maximal available throughput ρmax minus 1. H–RAND is however not reliable for high loads
(α ≥ 50%) when the number of running profiles is increased. The number of possibilities for the
choice of couples machine/profile increases with the number of profiles. If many machines are
selected in profiles providing to low throughputs, the remaining machines may not be sufficient
to reach the demand, even in their nominal profile. Results already decrease when taking
into account two running profiles (see Figure 17). The heuristics H–RAND will then not be
considered in next simulation results.

Figure 17: Average number of periods completed (K) depending on the load - N = 2 runnnig
profiles, M = 10 machines

Considering many running profiles can however be interesting. One can indeed see in Fig-
ure 18 that the production horizon K increases with N when H–LRF is used.

Variation of the number of running profiles and of the number of machines seems to have
no significant effect on the results provided by H–HOF (see Figures 18, 19 and20). This heuris-
tics favours indeed the nominal running profiles. Considering the same machine, the nominal
running profile provides the same throughput and is associated with the same RUL whatever
the number of running profiles considered.

H–DP appears to give the best results for low loads α varying between 30% and 50% (see
Figures 19 and 20). For high loads (α > 50%), the highest production horizons are obtained
with H–LRF (see Figures 19 and 20).
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Figure 18: Average number of periods completed (K) depending on the number of running
profiles (N) - M = 10 machines, load = 60%
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Figure 19: Average number of periods completed (K) depending on the load - N = 5 running
profiles, M = 10 machines
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Figure 20: Average number of periods completed (K) depending on the load - N = 5 running
profiles, M = 25 machines
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8.1.2 Improvement obtained with repair

Results of each heuristics with repair (HR–*) are normalized with the results of the correspond-
ing heuristics without repair (H–*). Figure 21 shows the improvement provided by the repair
regardless of the efficiency of each heuristics.
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Figure 21: Improvement obtained with repair - N = 5 running profiles, M = 25 machines

A first observation reveals that quite no repair can be done on the results obtained with
H–LRF. This heuristics favors indeed lowest throughputs. A significant number of machines is
then necessary to reach the demand. Even if some machines remain at the end of the initial
schedule, only few swaps can be done because quite all the machines are used in each period.
This can also explain the decrease of the repair efficiency with high loads for all the heuristics.

The repair efficiency is maximal for H–HOF. One can see in Figure 28 that this heuristics
gives the worse results without repair. Less completed periods entails more remaining potential
at the end of the schedule. More swaps can then be done during the repair pocess.
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8.2 Comparison to the optimal

Optimal solutions can be found in limited time for small size instances of the problem, with
N ≤ 3, M ≤ 5 and K ≤ 20. Results obtained with heuristics can then be compared to optimal
ones only for these cases. The maxK(σ | ρi,j |RULi,j) problem is considered in this section.

Considering the set of machines described in Figure 22, Table 2 shows the upper bound and
the number of periods completed when using a linear program allowing rational solutions (K-
LP) and when using an ILP (K-ILP) for many demand values σ. K-LP reaches most of the time
the previously defined upper bound Kmax. As explained in Section 5.3.1, this upper bound
is obtained by considering only the global potential of all the machines. The corresponding
schedule complies then neither with the time discretizing nor with the maximal throughput of
each machine. The LP relaxation of the ILP does not either comply with the time discretizing
and the throughput values in each profile for each machine. Schedules provided by LP and by
the strategy allowing to reach Kmax are not consistent with a permitted use of machines, as
machines can provide rational fractions of their initial fixed throughputs during only fractions of
periods. Solutions provided by the LP relaxation does however respect the maximal throughput
that can be provided by each machine. This limitation explains why K-LP = Kmax−1 in some
cases.
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Figure 22: Initial set of machines (M = 3 machines, N = 2 running profiles)

Table 2: Optimal results for many demand values σ considering the set of machines described
in Figure 22

σ KMAX K-LP K-ILP

300 27 27 24

500 16 16 12

600 13 13 11

700 11 11 11

800 9 8 6

900 8 7 6

1000 7 6 5

While LP uses the machines in such a way as to reach exactly the demand σ during the
whole schedule horizon, the ILP complies with their fixed throughput characteristics. In some
cases, this implies overproduction. For some scenarios, the ILP can provide many solutions.
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In that case, the solution which minimizes the overproduction is considered in the following
examples.

One can easily find optimal solutions for the maxK(σ | ρi,j |RULi,j) problem considering the
machines described in Figure 22 and simple demand values. Figure 23 shows optimal solutions
for two needed global throughputs σ = 600 a.ut−1 and σ = 900 a.ut−1. Similarly, Figure 24
shows sub-optimal solutions for the same cases, obtained with H–DP. The number of completed
periods with H–DP is less than the optimal one, even if no overproduction is made in schedules
provided by H–DP.
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Figure 23: Optimal schedules considering the set of machines described in Figure 22

For high loads (α ≥ 70%), K-ILP comes closer to the first lower bound Kmin1 defined in
Section 5.3.2. In these cases, ILP follows indeed quite the same strategy: all the machines are
used in parallel to reach the demand σ.
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Figure 24: Sub-optimal schedules obtained with H–DP considering the set of machines described
in Figure 22
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8.3 Comparison to an upper bound

In the following figures, distance of the number of completed periods K to the theoretical upper
bound Kmax is represented as a function of the load α = σ/ρtot,max varying between 30% and
90%. Both results obtained without and with repair are represented for each heuristics. We
recall that the horizon of the optimal solution is less than Kmax×∆T . Results are then actually
better than showed in the following figures.

8.3.1 Basic heuristics

One can see in Figures 25, 26 and 27 that all the heuristics excepting H–RAND are at least at
50% from Kmax, 30% for H–DP. This is promising since the upper bound Kmax is reasonably
not reachable. In the best cases, H–DP is at 10% from the maximal value. With high loads
and a great number of running profiles, H–LRF gets also close to 10%.

Figure 25: Distance to the theoretical maximal value (KMAX) depending on the load - N = 1
running profile, M = 10 machines
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Figure 26: Distance to the theoretical maximal value (KMAX) depending on the load - N = 2
running profiles, M = 10 machines
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Figure 27: Distance to the theoretical maximal value (KMAX) depending on the load - N = 5
running profiles, M = 10 machines
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8.3.2 Improvement obtained with repair

As discussed in previous section, repair does not improve results provided by H–LRF for loads
greater than 30%. One can see in Figure 28 that the repair allows all the same to enhance
results provided by H–HOF (resp. H–DP) to in average 94% (resp. 93%) from KMAX. When
swaps of machines can be done, the repair enhances then results close to the theoretical maximal
value whatever the efficiency of the initial heuristics.
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Figure 28: Improvement obtained with repair - N = 5 running profiles, M = 25 machines

Even if H–HOF provides bad results in comparison to H–DP, with repair, HR–HOF becomes
as much effective as HR–DP and presents the advantages of needing little computation time
(Computation parameters: Processor Intel CoreTM i5-3550 CPU 3.30GHz×4, 15.6 Gio, 64 bits).
Computation time increases with the load for all the heuristics. H–LRF and H–HOF provide
schedules in less than 20ms whereas H–DP needs on average 4min. With repair, the compute
times of HR–LRF and HR–HOF are in average respectively 40ms and 80ms. HR–DP needs
7min in average to be processed.
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9 Conclusion and future work

A new approach of scheduling using prognostics results has been investigated in this report.
We have proposed scheduling algorithms using several operating conditions for each machine
of a heterogeneous platform so as to extend the global operational time. We have shown that
we are able to prolong as long as possible the production horizon by managing the usage of the
resource thanks to the knowledge of each machine remaining useful life.

Prognostics-based scheduling has been proposed to configure sets of machines in compliance
with the objective. This particular scheduling makes use of prognostics results in the form of
RUL to adapt the provided schedule to the real state of the machines. It is part of the last step
of the PHM process, i.e., Decision Making. Since the optimal solution can only be reached by
running a time consuming Binary Integer Linear Program, several sub-optimal heuristics have
been presented to solve the considered decision problem in polynomial time. Efficiency of these
heuristics has been assessed by numerous exhaustive simulations.

As future work, we plan to explore continuous use of machines. Indeed, none of the proposed
solutions guarantees that a machine will be used during its whole operational time without
a planned shutdown. Taking this constraint into account is challenging in some production
context. When some machines are running, as fuel cells, shutting down their production for a
short period incurs extra costs.

Taking maintenance tasks into account within prognostics-based schedules is also a very
interesting issue. In the best case scenario, optimization of the maintenance policy could allow
to provide a steady-state scheduling.
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