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Abstract

The Linux pseudorandom number generator (PRNG) is a PRNG with entropy inputs
which is widely used in many security related applications and protocols. This PRNG is
written as an open source code which is subject to regular changes. It was last analyzed
in the work of Gutterman et al. in 2006 [GPR06] but since then no new analysis has been
made available, while in the meantime several changes have been applied to the code, among
others, to counter the attacks presented in [GPR06]. Our work describes the Linux PRNG
of kernel versions 2.6.30.7 and upwards. We detail the PRNG architecture in the Linux
system and provide its first accurate mathematical description and a precise analysis of
the building blocks, including entropy estimation and extraction. Subsequently, we give
a security analysis including the feasibility of cryptographic attacks and an empirical test
of the entropy estimator. Finally, we underline some important changes to the previous
versions and their consequences.

1 Introduction

The security of many protocols is based on the impossibility for an attacker to guess ran-
dom data, such as session keys for cryptosystems or nonces for cryptographic protocols. The
frequency and the amount of required random data can differ greatly with the application.
Therefore, random data generation should take into account the fact that the user can request
either high quality random data or a great amount of pseudorandom data. There are several
types of PRNGs: non-cryptographic deterministic PRNGs which should not be used for security
applications, cryptographically secure PRNGs (CSPRNGs) which are deterministic algorithms
with outputs that are unpredictable to an outsider without knowledge of the generator’s in-
ternal states and PRNGs with entropy inputs (see e.g. [MvOV96, Ch. 5] for classification and
descriptions). The Linux PRNG falls into this last category.

A pseudorandom number generator with entropy inputs produces bits non-deterministically
as the internal state is frequently refreshed with unpredictable data from one or several external
entropy sources. It is typically made up of (1) several physical sources of randomness called
entropy sources, (2) a harvesting mechanism to accumulate the entropy from these sources into
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the internal state, and (3) a post-processing procedure. The latter frequently uses a CSPRNG
to generate outputs and to update the internal state.

internal state deterministic 
RNG (3)

entropy
accumulation:
(re)seeding (2)

entropy sources (1)

output

Figure 1: Model of PRNG with entropy inputs.

Previous work. PRNGs with entropy inputs are crucial elements for the security of systems
and many papers on the topic are available. Gutmann [Gut98] proposes an analysis of many
PRNGs, with a comprehensive guide to designing and implementing them. PRNG designs are
also discussed by Kelsey et al. for the analysis of Yarrow [KSF99] and by Fergusson and Schneier
for the analysis of Fortuna [FS03, Ch. 10]. Other examples are the Intel PRNG [JK99], Havege,
by Seznec and Sendrier [SS03], and the Windows PRNG. The latter has been analyzed by
Dorrendorf et al. in e.g. [DGP09], where a flaw in the forward security is reported. In [BH05],
Barak and Halevi discuss a theoretical model for a PRNG with entropy inputs and compare it
to the Linux PRNG. General recommendations on the subject are given in RFC 4086 [ESC05]
and a detailed guideline is proposed by the NIST [BK07].
Previous analysis of the Linux PRNG. A detailed analysis of the Linux PRNG was done
by Gutterman et al. in 2006 [GPR06], based on kernel version 2.6.10, released in 2004. The
authors proposed a forward attack, which enables an attacker with knowledge of the internal
state to recover previous states with a complexity of 264 or 296, depending on the attack. In
addition, they presented a denial of service attack on the blocking variant of the PRNG. Since
then, several changes have been made in the source code of the Linux PRNG, some aiming at
preventing these attacks. There has been no published analysis of the newer version.

Our contribution. This document details the Linux PRNG for kernel versions starting from
2.6.30.7 1. The architecture of the generator is presented in Section 2. In Section 3, we discuss
the mathematical details of the building blocks used in the generator and their properties, and
suggest some improvements. We examine the functions used to mix data into a pool (mixing
function) or to generate data from a pool (output function), as well as the entropy estimator
which is a crucial element for /dev/random. Section 4 presents the security requirements and
the security analysis of the PRNG inculding empricial tests of the entropy estimator. Finally,
changes from the version analyzed in [GPR06] are outlined in Section 5.

2 Architecture

The Linux PRNG is part of the Linux kernel since 1994. The original version was written
by Ts’o, and later modified by Mackall [MT09]. The generator, apart from the entropy input
hooks inserted into e.g. drivers, represents about 1700 lines of C code in a single source file,
drivers/char/random.c.

1The changes made to stable versions of the kernel from 2.6.30.7 up to and including 3.1.10 have no impact
on our analysis. Version 3.2.0 of the kernel introduced the use of the “RDRAND” instruction, to extract random
bytes from a hardware RNG included in the latest Intel CPU chips (Ivy Bridge architecture). This mode of
operation is not covered in our analysis, which however remains valid for a 3.2.* kernel running on any other
CPU, including all other Intel chips.

2



2.1 General Structure

Unlike others PRNGs, the internal state of the Linux PRNG is composed of three pools, namely
the input pool, the blocking pool and the nonblocking pool, according to the source code. In this
paper the two last pools are also referred as output pools, depending on the context. The
PRNG relies on external entropy sources. Entropy samples are collected from system events
inside the kernel, asynchronously and independently from output generation. These inputs are
then accumulated into the input pool.

The generator is designed to perform the collection of entropy inputs as efficiently as possible.
Therefore it uses a linear mixing function instead of a more usual hash function. The security
of the generator strongly relies on the cryptographic primitive Sha-1, which is used for output
generation and entropy transfers between the input pool and the output pools. The design of
the generator is illustrated by Figure 2. The size of the input pool is 128 32-bit words (4096 bits)
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output
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Figure 2: General structure of the Linux PRNG.

and the size of each output pool is 32 32-bit words (1024 bits). Each pool has its own entropy
counter, which is decremented when random bits are extracted from the pool and incremented
when new inputs are collected and mixed into the pool. Entropy is only transfered to an output
pool when a corresponding number of bytes need to be extracted from it. Thus, the entropy
counters of the output pools will generally remain close to zero, except in transitional states
during the extraction. Therefore the only significant entropy counter is that of the input pool.

User space provides /dev/random and /dev/urandom which are two different character de-
vice interfaces to read random outputs. The /dev/random device reads from the blocking pool
and limits the number of generated bits according to the estimation of the entropy available in
the PRNG. Reading from this device is blocked when the PRNG does not have enough entropy,
and resumed when enough new entropy samples have been mixed into the input pool. It is
intended for user space applications in which a small number of high quality random bits is
needed. The /dev/urandom device reads from the nonblocking pool and generates as many bits
as the user asks for without blocking. It is meant for the fast generation of large amounts of
random data. Writing data to either one of these two devices mixes the data in both the block-
ing and nonblocking pools, without changing their entropy counters. In addition to these two
user space interfaces, the Linux PRNG provides a single kernel interface, through the function
get_random_bytes(), which allows other kernel components to read random bytes from the
nonblocking pool. There is no kernel interface to the blocking pool, which is reserved for user
space applications.
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2.2 Entropy Inputs

Entropy inputs are injected into the generator for initialization and through the updating mech-
anism. This provides the backbone of the security of the PRNG. The Linux PRNG is intended
to be usable independently of any specific hardware. Therefore, it cannot rely on physical
nondeterministic phenomena generally used in random generation, which require additional
hardware. In fact, even though the Linux kernel includes drivers for a number of hardware
RNGs, the outputs from these generators, when present, are made available only to user space,
through a specific character device (hwrng), and are not mixed into the Linux PRNG. It is up
to user space applications (e.g. an entropy gathering daemon) to collect these outputs and feed
them into the PRNG if needed.

The Linux PRNG processes events from different entropy sources, namely user inputs (such
as keyboard and mouse movements), disk timings and interrupt timings. To avoid events from
very regular interrupts, each device driver can define if its interrupts are suitable as entropy
inputs, by adding the IRQF_SAMPLE_RANDOM flag to the corresponding handler. This generic
method for adding new sources of interrupt entropy was typically used by most network card
drivers and some USB device drivers. It has however been scheduled for removal since 2009
(as stated in the feature-removal-schedule.txt file within the kernel source tree), due to
several misuses. It should in time be replaced by more precisely defined sources of entropy.
Unfortunately the gradual removal of this flag from device interrupts has in the meantime left
input events and disk timings as the only two reliable sources of entropy in recent kernel versions.
This might be a security problem in some use cases, where user inputs are nonexistent and disk
accesses easily predictable.

For each entropy event fed into the PRNG, three 32-bit values are considered: the num
value, which is specific to the type of event 2, the current CPU cycle count and the jiffies count
at the time the event is mixed into the pool. The jiffies count corresponds to the internal kernel
counter of timer interrupts since the last kernel boot. The frequency of the timer interrupt is
defined at build time by the HZ parameter in the kernel source, and generally ranges between
100 to 1000 ticks per second [CRKH05, Ch. 7]. These values provide much less than 32 bits
of entropy each. As shown in [GPR06, Table 1], the maximal entropy of the 32-bit num value
is 8 bits for keyboard events, 12 bits for mouse events, 3 bits for hard drive events, and 4 bits
for interrupts. As can be seen in Table 1 in Section 4.2, the average empirical entropy of num

for user input events (keyboard and mouse movements) is even less. The empirical entropy of
the jiffies and the cycle counts for user inputs in our tests was only around 3.4 and 14.8 bits,
respectively. However, the generator never assumes that the events injected into the input pool
provide maximal entropy. It tries to estimate the entropy in a pessimistic way so as to not
overestimate the amount it collects.

2.3 Entropy Accumulation

Entropy samples are added to the input pool using the mixing function described in Section 3.1.
The entropy counter of the input pool is incremented according to the estimated entropy of the
mixed data. The same mixing function is also used when transferring data from the input pool
to one of the output pools, when the latter requires more entropy for output generation. In
that case, the algorithm assumes full entropy of the data, and the entropy counter of the output
pool is incremented by the exact number of transferred bits.

2For example, in the case of a keyboard event, num is derived from the keycode number.
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2.3.1 Data Injection

Definition 1. Let X be a n-bit random variable describing the internal state and I an m-bit ran-
dom variable corresponding to the input sample of the entropy source. Let f be a function from
{0, 1}n×{0, 1}m to {0, 1}n, and H Shannon’s entropy function (see Definition 3, Appendix A).
The function f is a mixing function if and only if

H(f(X, I)) ≥ H(X) and H(f(X, I)) ≥ H(I).

Definition 1 means that a mixing function is never counterproductive. It does not mean
that the entropy is mixed into the internal state in an optimal way or that no entropy gets lost.
However, it guarantees that if an attacker has no knowledge of the state X but has complete
control of the input I, he will gain no additional information on the new state after the execution
of the mixing function. Conversely, if the attacker knows the internal state but not the new
input, the whole entropy of I can be gained. The mixing function of the Linux PRNG verifies
this definition, as we show in Section 3.1.

2.3.2 Entropy Estimation

The estimation of available entropy is crucial for /dev/random. It must be fast and provide
an accurate estimation of whether the corresponding pool contains enough entropy to generate
unpredictable output data. It is important not to overestimate the entropy provided by input
sources.

Entropy estimation is based on a few reasonable assumptions. It is assumed that most of the
entropy of the input samples is contained in their timings. Both the cycle and jiffies counts can
be seen as a measure of timing, however the jiffies count has a much coarser granularity. The
Linux PRNG bases its entropy estimation on the jiffies count only, which leads to a pessimistic
estimation. Adding additional values, which are not used for the estimation, can only increase
the entropy. Even adding completely known input cannot decrease the uncertainty of the al-
ready collected data as showed in Lemma 1. The input samples come from different sources,
which can be assumed to be independent. Entropy can therefore be estimated separately for
each source and summed up in the end. The estimator considers several different sources: user
input, interrupts, and disk I/O. Each interrupt request (IRQ) number is seen as a separate
source. The estimator keeps track of the jiffies count of each source separately. The values of
the jiffies count are always increasing, except in the rare case of an overflow. The entropy is
estimated from the jiffies difference between two events.

An entropy estimator for entropy sources has to deal with several constraints. The method
of estimation used in this PRNG is detailed and discussed in Section 3.2. The conditions listed
below apply to the Linux entropy estimator:
Condition 1. Unknown and non-uniform distribution: The distribution of the input samples
can vary a lot depending on the situation in which the PRNG is used. Therefore, no assumption
can be made on the input. In Figure 7, we present a part of the empirical distribution of jiffies
differences measured from a sample of user inputs (as described in Section 4.2). The distribution
is clearly non-uniform.
Condition 2. Unknown correlation: It is very likely that there are some correlations between
the input samples. This is the case for instance when the user is typing some text. However, it
may be difficult to capture them precisely.
Condition 3. Large sample space: The jiffies differences are measured in 32 or 64-bit values
(depending on the size of the C long type) which can be arbitrarily high. It creates a sample
space of size 232 or 264. This makes it very hard to keep track of the occurrences of all values.
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Condition 4. Limited time: The estimation happens after interrupts so it cannot take much
computation time or memory space.
Condition 5. Estimation at runtime: The amount of uncertainty must be estimated for each
input sample. Therefore an estimator which waits for multiple events before estimating the
entropy from the empirical frequencies cannot be used.
Condition 6. Unknown knowledge of the attacker : As for any other estimator, there is no
information about the knowledge of a potential attacker.

2.4 Output Generation

The random data generation is done in blocks of 10 output bytes. For each output block, 20
bytes, produced during the process, are injected and mixed back into the source pool to update
it. If the number of requested bytes is not a multiple of 10, the last block is truncated to the
length of the missing bytes. When k bytes need to be generated, the generator first checks
whether there is enough entropy in the current output pool according to its entropy counter. If
this is the case, k output bytes are generated from this pool and the entropy counter is decreased
by k bytes. Otherwise, if there is not enough entropy in the output pool, the PRNG requests a
transfer of k bytes (at least 8 and at most 128) of entropy from the input pool into the output
pool. The actual output function used for output generation and transfer is precisely described
in Section 3.3.

The transfer is done by first producing k′ bytes from the input pool using the output
function, then injecting those k′ bytes into the output pool with the mixing function. The k′

value depends on the entropy count hI (in bits) of the input pool and on the requesting pool.
If the request comes from the blocking pool, then k′ = min(⌊hI/8⌋, k), whereas if it comes
from the nonblocking pool, k′ = min(⌊hI/8⌋ − 16, k). This means that the input pool does not
generate more bytes than its entropy counter allows. Moreover, if the request comes from the
nonblocking pool it leaves at least 16 bytes of entropy in the input pool. If k′ < 8, no bytes are
transferred to avoid frequent work for very small amounts of data3.

After the transfer, the entropy counters of the input and output pools are respectively
reduced and increased by 8k′ bits. Due to this transfer policy, the entropy counters of the
output pools remain most of the time close to zero between two output requests, since only
as many bytes are transferred as are needed for the output. No output is generated from the
output pool before all k′ bytes have been injected. During the injection, the output pool is
shifted k′ times by the mixing function. For every 10 bytes generated from the output pool,
20 bytes are mixed back and the output pool gets shifted 20 times. Thus, to produce k bytes,
the output pool is shifted at least 2k times, when no transfer of entropy data is necessary, and
at most 2k + k′ times, if k′ bytes are transferred from the input pool.

Let hO denote the entropy counter of the output pool after the entropy transfer. In the case
of /dev/random, if hO < 8k, and there are less than 8 bytes of estimated entropy in the input
pool, output generation stops after ⌊hO/8⌋ bytes, and only resumes when enough entropy has
been mixed into the input pool for a transfer to occur. In contrast, /dev/urandom continues
to output data until all k bytes have been produced, regardless of whether the input pool had
enough entropy to satisfy all transfer requests.

3This minimum transferred size of 8 bytes is the default value. It can be globally modified by privileged
user space applications through the kernel.random.read_wakeup_threshold sysctl variable (in bits). Such
modifications also affect the reserved entropy left in the input pool by transfers to the nonblocking pool, which
is twice the minimum transferred size.
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2.5 Initialization

The Linux boot process does not provide much entropy in the different sources available to the
PRNG. There is usually little to no user input and network events at this stage, and disk activity
at startup is very deterministic. Therefore, the designer of the Linux PRNG recommends a
script which, at shutdown, generates data from /dev/urandom and saves it in a file, and at
startup, writes the saved data to /dev/urandom. This mixes the same data into the blocking
and nonblocking pools without increasing their entropy counters.

Such a script is provided in the default installation of most Linux distributions. In situations
where this procedure is not possible, for example in Live CD systems, the nonblocking random
number generator should be used with caution directly after the boot process since it might not
contain enough entropy.

3 Building Blocks

In this section, we give a detailed mathematical analysis of the building blocks of the Linux
PRNG.

3.1 The Mixing Function

This procedure mixes one byte at a time by first extending4 it to a 32-bit word, then rotating
it by a changing factor and finally mixing it in the pool by using a linear shift register. It is
designed so that it can diffuse entropy into the pool and no entropy gets lost. The function has
not changed since 2006 and is presented in Figure 3.

0
29

3
twist-table

<<< rot input
data

Figure 3: The mixing function.

The mixing function must properly process entropy inputs (as will be discussed in Section 3.1.2)
and should also handle the case where there is no entropy input. In this latter case one expects
the successive internal states to generate a sequence with maximal period. We study this case
in Section 3.1.1. Most notably, we show that the mixing function of the Linux PRNG is indeed
a mixing function according to Definition 1 and that the mixing function without input does
not generate a sequence of internal states with a maximal period. Moreover, we show that the

4This 32-bit extension is either signed or unsigned, depending on the default signedness of the char type on
the considered CPU architecture. The difference is assumed not to be significant.
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theoretical background presented in the comments of the source code is somehow out of date,
not completely relevant and furthermore faultily understood.

3.1.1 Analysis Without Input

When the input is set to zero, the mixing function is equivalent to an LFSR over GF(232) with
feedback polynomial Q(X) = α3(P (X) − 1) + 1, where α is the primitive element of GF(232)
corresponding to X defined by the CRC-32-IEEE 802.3 polynomial, and P (X) depends on the
size of the pool:

input pool: P (X) = X128 + X103 + X76 + X51 + X25 + X + 1
output pool: P (X) = X32 + X26 + X20 + X14 + X7 + X + 1.
The multiplication by α3 is done by a lookup table, called twist-table in the source code.

The actual system slightly differs from what is stated in the comments of the source code.
First, the design of the mixing function is claimed to rely on a Twisted Generalized Feedback
Shift Register (TGFSR) as defined in [MK92]. However, TGFSRs are LFSRs on binary words
with a trinomial feedback polynomial whereas the mixing function uses a heptanomial. The
case of general polynomials on finite fields is treated in standard literature, such as [LN97].
Moreover, the maximal period, that is the primitivity of the feedback polynomial, seems to
have been ill understood, as the comments mention the primitivity for polynomials on GF(2),
whereas the primitivity must be checked on GF(232). This confusion is also repeated in [GPR06,
Definition 2.2].

Finally, the polynomial Q(X) = α3(P (X) − 1) + 1 is not primitive over GF(232), nor is it
even irreducible. Thus, the resulting LFSR does not achieve maximal period. The period is less
than 292∗32 − 1, rather than the maximal value of 2128∗32 − 1, for the input pool, and less than
226∗32 − 1 instead of 232∗32 − 1 for the output pool. We do not believe these reduced periods
can lead to practical attacks. However, Q(X) can be made irreducible by changing just one
feedback position:

input pool: P (X) = X128 + X104 + X76 + X51 + X25 + X + 1
output pool: P (X) = X32 + X26 + X19 + X14 + X7 + X + 1.

These modified polynomials have periods of (2128∗32−1)/3 and (232∗32−1)/3, respectively. A
primitive polynomial can be easily achieved by using αi(P (X)−1)+1 with gcd(i, 232−1) = 1, for
example for i = 1, 2, 4, 7, . . ., and an adequate polynomial P (X). This would change the size of
the twist-table to 2i elements. For instance, α2(X32+X26+X23+X14+X7+X)+1 is primitive.
All these computations can be made using computational algebra systems like magma [BCP97].

3.1.2 Analysis With Input

The mixing function can be rearranged and presented by means of two linear functions L1 :
{0, 1}8 → {0, 1}32 and L2 :

(

{0, 1}32
)5
→ {0, 1}32 as in Figure 4. The L1 function takes the 8-bit

input y, extends it to 32 bits, rotates it and applies the multiplication in GF(232) by means of
the twist-table. The L2(x0, xi1 , xi2 , xi3 , xi4 , xi5) function represents the feedback function.
We believe the comments in the source code, which refer to universal hash functions, are ir-
relevant to assess the security of the mixing function’s design. Therefore, a careful analysis
is required to make sure that the function properly processes entropy inputs in regard to the
control or knowledge an attacker may have of either the inputs or the internal state, i.e. that
it verifies Definition 1.
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Figure 4: The mixing function.

Lemma 1. Let X = (X0, . . . , Xn−1) be a random variable representing the internal state, where
each Xi represents a 32-bit word and n = 32 or n = 128, depending on the pool, and let
(0, i1, i2, i3, i4, n− 1) be the indices of the words used in the feedback function. Let X[i,j] denote
the sub-part Xi, . . . , Xj of the state X and let Y be a random variable representing the 8-bit
input. We assume that X and Y are statistically independent. The mixing function of the Linux
PRNG

f(Y, X) = (X̃0, . . . , X̃n−1)

X̃0 = L1(Y)⊕ L2(X0, Xi1 , Xi2 , Xi3 , Xi4 , Xn−1)

X̃i = Xi−1, for 1 ≤ i ≤ n− 1

(1)

is a mixing function according to Definition 1. Moreover, we can show that

H(f(Y, X)) ≥ max
(

H(Y), H(Xn−1|X[0,n−2])
)

+ H(X[0,n−2]).

Proof. This proof relies on some basic properties of the entropy function. For a detailed dis-
cussion of this topic we refer to standard literature such as [CT06]. The main entropy can be
written as joined and conditional entropy:

H(f(Y, X)) = H(L1(Y)⊕ L2(X), X[0,n−2])

= H(L1(Y)⊕ L2(X)|X[0,n−2]) + H(X[0,n−2]).

We use that for any injective function g and any discrete random variable Z: H(g(Z)) = H(Z).
For a fixed value of (X[0,n−2], Xn−1) = x, the function L1(·) ⊕ L2(x) is injective and thus
H(L1(Y)⊕ L2(X)|X) = H(Y|X). Since the state X and input Y are independently distributed
we have H(Y|X) = H(Y) and we can write:

H(L1(Y)⊕ L2(X)|X[0,n−2], Xn−1) = H(Y). (2)

In a similar way, for fixed values X[0,n−2] = x[0,n−2] and Y = y, the function L1(y)⊕L2(x[0,n−2], ·)
is injective and X and Y are independent thus:

H(L1(Y)⊕ L2(X)|Y, X[0,n−2]) = H(Xn−1|X[0,n−2]). (3)

For any random variables Z1, Z2 it holds that H(Z1) ≥ H(Z1|Z2). Thus from 2 and 3, it follows

H(f(Y, X)) ≥ H(Y) + H(X[0,n−2]) and

H(f(Y, X)) ≥ H(Xn−1|X[0,n−2]) + H(X[0,n−2]) = H(X),

which concludes our proof.

Remark 1. Lemma 1 is true for any injective function L1 and any function L2 that is injective
in Xn−1.
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3.2 The Entropy Estimator

In the following we denote random variables X, T, ∆, . . . by capital boldface letters and their
corresponding sample spaces by X , T ,D. The realizations x ∈ X , t ∈ T , δ ∈ D, . . . of random
variables are marked by small letters. The probability distribution of X is defined by pX =
{pX(η)}η∈X where pX(η) = Pr[X = η] is the probability of X being η ∈ X . We may omit
X in the notation when its meaning is clear from the context. Values based on a sequence of
empirical data x0, x1, . . . , xn are written with a hat, like p̂η = #{0 ≤ i ≤ n : xi = η}/n for the
empirical frequency of η or Ĥ = −

∑

η∈X p̂η log2 p̂η for the empirical entropy.

3.2.1 Implementation of the Estimator

In this section we give a detailed description of the actual estimator used in the Linux PRNG.
Its practical application is discussed in Section 4.2. Since the estimation is done separately for
each entropy source, we analyze the case where the whole data comes from a single source.

Let T0, T1, . . . denote the input sequence to the estimator. The sequence represents the jiffies
counts of the events, and is thus an increasing sequence (except for very rare counter overflows).
Since the estimation of the entropy should not depend on the time elapsed since the system was

booted (beginning of the jiffies count), only the sequence of time differences ∆
[1]
i = |Ti−Ti−1|

are considered. Counter overflows are handled transparently by considering the absolute value

of the differences. We now consider the sequence of random variables ∆
[1]
1 , ∆

[1]
2 , . . . assuming

that they are identically (but not necessarily independently) distributed, based on the fact that
they come from a single source (even if all “user inputs” count as a single source). We denote

by D the sample space of the ∆
[1]
i ’s with a size of D = |D| ≫ 2. Thus, δ

[1]
i corresponds to

the realization of the jiffies difference at time i for the considered source. For the estimator we
define the three following random variables for i ≥ 3:

∆
[2]
i = ∆

[1]
i −∆

[1]
i−1

∆
[3]
i = ∆

[2]
i −∆

[2]
i−1 = ∆

[1]
i − 2∆

[1]
i−1 + ∆

[1]
i−2

∆i = min
(

|∆
[1]
i |, |∆

[2]
i |, |∆

[3]
i |

)

.

We also define a logarithm function that is bounded by a maximal output of 11 and returns
integer values:

LOG2(m) =











0 if m < 2
11 if m ≥ 212

⌊log2 (m)⌋ otherwise

Then, for a specific outcome δ
[1]
1 , δ

[1]
2 , . . . the estimation of the entropy received at time i, is

defined by:

Ĥ
[3]
i = Ĥ [3]

(

δ
[1]
i , δ

[1]
i−1, δ

[1]
i−2

)

= LOG2(δi). (4)

If not stated otherwise, we will assume that the ∆
[1]
i are independently distributed. Without

loss of generality we further assume that D = {0, 1, . . . , D − 1}. Then p(η) = Pr[δ = η] is the

probability of the difference being 0 ≤ η < D. To compute the value of Ĥ
[3]
i , we have to know ti,

ti−1, δ
[1]
i−1, δ

[2]
i−1. Thus, for each source the estimator stores three values ti−1, δ

[1]
i−1, δ

[2]
i−1 between

two events, which only requires a very small amount of memory and computations.
One basic property of any entropy definition is that it is invariant under a permutation of

the sample space. This means that if we define for any permutation π : X → X the distribution
q with qη = pπ(η), H(p) = H(q) always holds. This is not true for this estimator, since it uses
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the value of a given element and not its probability. Thus there cannot be a theoretical link
between the estimator and the entropy which holds for all distributions.

3.3 The Output Function

The output function is the only non-linear operation of the Linux PRNG. It is used in two cases:
when data is transferred from the input pool into one of the output pools and when output
data is generated from one of the output pools.

This function uses the Sha-1 hash function in two steps and is detailed in Figure 5. In the
first step, the hash of the whole pool is computed and the digest mixed back to update the pool.
In the second step, the final output is generated. These two steps can be named the feedback
phase and the extraction phase, respectively.

16 32-bit words

Sha 1

Sha 1

mixing

output pool

5-word hash

output pool

16 32-bit words

fold

5-word hash

10-byte output

16 words

5 words = 20 bytes

position of last
added byte

output pool

feedback phase
extraction phase

Figure 5: The output function of the Linux PRNG.

First step: the feedback phase. All the bytes of the pool are fed into the Sha-1 hash
function, to produce a 5-word (20-byte) hash. These 20 bytes are mixed back into the pool by
using the mixing function. Consequently, the pool is shifted 20 times for each feedback phase.
This affects 20 consecutive words (640 bits) of the pool.

Second step: the extraction phase. Once mixed with the pool content, the 5 words
computed in the first step are used as an initial value or chaining value when hashing another
16 words from the pool. These 16 words overlap with the last word changed by the feedback
data. In the case of an output pool (pool length = 32 words), they also overlap with the first
3 changed words. The 20 bytes of output from this second hash are folded in half to compute
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the 10 bytes to be extracted: if w[m...n] denotes the bits m, . . . , n of the word w, the folding
operation of the five words w0, w1, w2, w3, w4 is done by w0 ⊕ w3, w1 ⊕ w4, w2[0...15]

⊕ w2[16...31]
.

Finally, the estimated entropy counter of the affected pool is decremented by the number of
generated bytes.

3.3.1 Entropy Extraction

In this section we analyze the entropy of the generated data. Assuming that the pool con-
tains k bits of Rényi entropy of order 2 (see Definition 3, Appendix A), a 2-universal hash
function [WC81] can be used to extract almost uniform data. This property is called privacy
amplification [BBR88].

Definition 2. A 2-universal hash function is a set G of functions X → Y such that for all
distinct elements x, x′ there are at most |G|/|Y| functions g ∈ G such that g(x) = g(x′).

Theorem 1 (Privacy Amplification [BBR88]). Let X be a random variable over the alphabet
X with probability distribution pX with Rényi entropy H2(X), let G be a random variable cor-
responding to the random choice of the universal class of hash functions X → {0, 1}r and let
Y = G(X). Then

H(Y|G) ≥ H2(Y|G) ≥ r −
2r−H2(X)

ln(2)
.

This means that if H2(X) ≥ r and G is uniformly distributed, then the entropy in the
output is close to r bits, even if the specific function G = g is known.

In the case of the Linux PRNG the hash function h : X → Y is fixed, with X = {0, 1}n,
Y = {0, 1}r, and r < n. However, the theorem still applies with two additional assumptions.
First, let us assume that each element y ∈ Y has a preimage of size #{x|h(x) = y} = |X |/|Y|.
This corresponds to the definition of a regular function in [GKL93]. If this assumption was
far from being true, a birthday attack would lead to a collision with a complexity of less
than O(2r/2), which should not be the case for a cryptographic hash function. Secondly, we
assume that the attacker knows the probability distribution of X, and thus its entropy, but
cannot influence it. Let Π be the set of all permutations π : X → X . For a given probability
distribution pX = {pX(η)}X with entropy H(X), all distributions qX

π = {pX(π(η))}η∈X for
π ∈ Π can appear with the same probability. We assume that the attacker knows but cannot
choose which π has been used.

With these two assumptions, we can express the class of universal hash functions as G =
{h ◦ π}π∈Π. We have |G| = |X |! and for any pair (x1, x2) ∈ X 2 the number of functions g ∈ G
such that g(x1) = g(x2) is

|Y|
|X |

|Y|

(

|X |

|Y|
− 1

)

(|X | − 2)! =
|X |!

|Y|

|X | − |Y|

|X | − 1
≤
|G|

|Y|
.

Even if the attacker knows which permutation has been applied, r − 2r−H2(X)

ln(2) bits of entropy
are still obtained.

Thus, if the pool initially contains k bits of Rényi entropy and m ≤ k bits are extracted by
means of the output function, Theorem 1 means that the entropy of the output is greater than
m− 2m−k

ln(2) , i.e. is close to m, which is the desired property.
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4 Security Discussion

4.1 Security Requirements

PRNG with entropy inputs must meet several security requirements:

Sound entropy estimation: The PRNG must be able to correctly estimate if enough entropy
has been collected to guarantee that an attacker who was not able to observe the input cannot
guess the output efficiently.

Pseudorandomness: It must be impossible to compute the content of the internal state and/or
to predict future outputs from current outputs of the generator. Moreover, an attacker with a
partial knowledge/control of the entropy sources, should be unable to recover the internal state
and/or corresponding future outputs.

The next two requirements express resilience against cryptanalytic attacks, and make the
assumption that the attacker has had knowledge of the internal state at a specific time. It
should be noted in this regard that the Linux PRNG is run entirely in the kernel, which makes
it more difficult to access its internal state, in comparison with other software PRNGs such as
the Windows PRNG [DGP09].

Forward security: An attacker with knowledge of the current internal state should be
unable to recover the previous outputs of the generator (backtracking resistance). Forward
security means that knowledge of the internal state provides no information on previous states,
even if the state was not refreshed by new entropy inputs. Backtracking resistance can be pro-
vided by ensuring that the output function is one-way [BK07]. The design of such generators
generally relies on a one-way output function with feedback.

Backward security: Assuming enough future entropy inputs, an attacker should be unable
to predict the future outputs of the generator (prediction resistance) based on the knowledge of
its current internal state. The output function is deterministic, therefore if an adversary knows
the internal state, he will be able to predict the corresponding output as well as future outputs
until enough entropy is used to refresh the pool. Consequently, backward security can only be
provided if the internal state is effectively reseeded between the requests [BK07].

In the case of the Linux PRNG, the internal state is made of three pools. Forward and back-
ward security must be provided if an attacker has knowledge of one or several pools. Moreover,
an attacker must be unable to recover the content of the input pool from the output pools.
This requirement is made necessary by the fact that /dev/urandom allows the generation of
an arbitrarily large amount of bits without new inputs from the input pool, which makes it
theoretically easier to guess the content of the nonblocking pool.

4.2 Sound entropy estimation

4.2.1 Empirical validation

As empirical data to test the estimator, we gathered more than 7M samples from the user input
source (representing more than 200.000 single samples keyboard and mouse events), by modify-
ing the add_input_randomness() function in the Linux PRNG to log the values associated to
each input event through the kernel’s printk interface. The corresponding log messages where
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then collected in user space by a syslog daemon which wrote them to a dedicated file. We
believe these measurements to have had little to no impact on the input samples, since they
were done outside of any critical section within the PRNG and thus did not delay the handling
of new events significantly. This modified kernel was left running on a desktop system through
several weeks of daily use to generate the empirical data.

Let N be the number of samples, we consider the specific outcome δ
[1]
1 , δ

[1]
2 , . . . , δ

[1]
N−1. Let

p̂η = #{i : δ
[1]
i = η}/(N − 1) be the empirical frequency of η in the given sequence. We then

computed the following values over the empirical data (for precise definitions of entropies see
Appendix A):

• 1
N−3

∑N−1
i=2 Ĥ

[3]
i : the average estimated entropy as computed by the Linux PRNG,

• Ĥ = −
∑D−1

η=0 p̂(η) log2(p̂(η)): the Shannon entropy based on the empirical frequencies,

• Ĥmin = − log2 (max0≤η≤D−1(p̂(η))): the Min-entropy based on the empirical frequencies,
and

• Ĥ2 = − log2

∑D−1
η=0 p̂(η)2: the Rényi entropy based on the empirical frequencies.

The results, when considering the differences not only in the jiffies counts but also in the clock
cycles and the num values of events, are given in Table 1.

jiffies cycles num

1
N−3

∑N−1
i=3 Ĥ

[3]
i

1.85 10.62 5.55

Ĥ 3.42 14.89 7.31

Ĥmin 0.68 9.69 4.97

Ĥ2 1.34 11.29 6.65

Table 1: Comparison of different estimators.

We remark that the average value of Ĥ
[3]
i is always smaller than the empirical Shannon

entropy and that the entropy of the jiffies is lower than the entropy of the clock cycles and than
that of the num value. The Linux entropy estimator is therefore pessimistic, as intended.

4.2.2 Different Levels of Delta

The estimator used in the Linux PRNG is based on three levels of differences. In the following
we consider an alternate estimator using k levels of differences. For this we define for i ≥ k− 1:

Ĥ
[k]
i = LOG2

[

min
(

|δ
[1]
i |, . . . , |δ

[k]
i |

) ]

(5)

where δ
[j]
i = δ

[j−1]
i − δ

[j−1]
i−1 for 1 ≤ j ≤ k. In Figure 6, we examine its expectation for different

values of k under the theoretical assumption that the ∆
[1]
i ’s are uniform, independent and

identically distributed. This expectation does not change much for 2 ≤ k ≤ 5, which might lead
us to deduce that k = 2 could be sufficient.

However, we note that the empirical distribution of our sample data is far from uniform,
and most of the differences are smaller than 150, see Figure 7.

The average values of the estimator for different values of k, computed on the empirical
data, are listed in Table 2. We remark that there is a big difference between k = 3 and k = 4.
This suggests some correlations in the data (which is to be expected in the case of user inputs)
and supports the idea of considering several levels of deltas.
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Figure 6: E[Ĥ
[k]
i ] for ∆i uniformly distributed.
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Figure 7: Extract of the empirical distribution of jiffies differences.

4.2.3 Alternatives

We shortly discuss some alternative entropy estimators and the reasons why they cannot be
used in the case of the Linux PRNG, based on the constraints presented in Section 2.3.

In the case of a physical source with a known, fixed probability distribution it is sufficient
to check if it works correctly as in [Sch01]. However due to Condition 1 from Section 2.3, this
method cannot be used. Many estimators use the empirical frequencies or can be computed
only on the whole data set [BDGM97, Pan03] which is not consistent with Condition 5. An
estimator is proposed in [BL05], which uses the transition frequency of bits. However, it only
works for binary sources and thus contradicts Condition 3. Some methods use compression
rates to estimate the entropy. However these methods either need a tree of a size depending
on the sample space [Vit87] and thus violate Condition 4, or require that a variable number of
events be grouped before giving an estimate [WZ89, Gra89, KASW98], which does not fulfill
Condition 5.

The main advantages of the estimator implemented in the Linux PRNG are that it is fast,
takes little memory, works on non-binary data and gives an information estimate for each event.
None of the considered alternatives fit these requirements. The main disadvantage is that there
is no theoretical connection to any entropy definition. While not perfect, the estimator gives
some notion of the variations of the input data and therefore of the changing behavior of the

15



Ĥ 1
N−k

∑N−1
i=k Ĥ

[k]
i

k = 1 k = 2 k = 3 k = 4
jiffies 3.42 1.99 1.99 1.85 1.47

k = 5 k = 6 k = 7 k = 8
jiffies 1.36 1.27 1.10 0.99

Table 2: Different levels of delta (empirical data).

system. Thus, in the absence of suitable alternatives, it can be seen as a good compromise.

4.3 Pseudorandomness

Analysis without entropy input. In this case, we consider the generator without entropy
input, and thus as a deterministic PRNG. It uses the output function to generate outputs and
the mixing function for feedback. There are general models to construct provably secure PRNG
using a one-way function [GKL93, HILL99]. Several deterministic PRNG using Sha-1 have been
proposed to date, see for example the DSA generator [FIP00, Appx. 3], (analyzed by Schneier
et al. [KSWH98]) or the Hash_DRBG with Sha-1 in [BK07]. The hash function is traditionally
considered to be a pseudorandom function in classical PRNG design.

In contrast to those examples, the Linux PRNG updates only part of its internal state
(640 bits for each generated 80 bits) and applies a complex feedback function by means of the
mixing function. Thus, it cannot be described in one of the existing models. Nevertheless, to our
knowledge there is no realizable attack on this PRNG without knowledge of the internal state.
More precisely, considering that the Sha-1 hash function is one-way (which is not disproven
by recent attacks on this function Sha-1 [WYY05]), the adversary cannot recover the content
of the corresponding output pool if he knows only the outputs of the PRNG. In addition, the
folding operation helps in avoiding recognizable patterns: the output of the hash function is not
directly recognizable from the output data. For an optimal hash function, this step would not
be necessary and could be replaced by a simple truncation. The same reasoning also applies to
the content of the input pool if the attacker has access to the data transfered from it into either
one of the output pools, since those transfers rely on the same output function.

Consequently, the Linux PRNG without entropy input is assumed to be secure if the internal
state is not compromised and if the three pools are initialized by an unknown value.
Input based attacks. From the definition of the mixing function and Lemma 1, we know that
if an attacker controls the entropy input but has no knowledge of the input pool, he cannot
reduce the entropy of that pool. Consequently the behavior of the PRNG corresponds to a
deterministic PRNG, and the security analysis above still applies.

4.4 Forward Security

In the context of the Linux PRNG, if we assume that an attacker has knowledge of both the
output pool and the input pool, then he knows the previous state except for the 160 bits which
were fed back during the last output generation. Without additional information, the only
generic attack has an overhead of 2160 and produces 280 solutions.

4.5 Backward Security

Protection against backward attacks, as described in Section 4.1, relies on transferring and
collecting procedures. Transferring k bits of entropy from state S1 to state S2 means that after
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generating data from the unknown state S1 and mixing it into the known state S2, guessing
the new state value S2 would cost on average 2k−1 trials for an attacker. Collecting k bits of
entropy means that after processing the unknown data into a known state S1, guessing the new
state value S1 would cost on average 2k−1 trials for an observer.

We consider the case where the attacker was able to learn the internal state at a given time
and tries to keep this knowledge by guessing the new input to the pool and checking the guess
by observing the output, with two possible attack scenarios.

In the first one, the attacker knows the output pool, but not the input pool. In this case,
after transferring k ≥ 64 bits of entropy data from the input pool, the attacker looses the
knowledge of k bits in the state. No output is generated before all of the k bits are mixed in,
therefore the only generic attack has an overhead of 2k−1. If the input pool does not contain
enough entropy (less than 64 bits for /dev/random and less than 64+128 bits for /dev/urandom

by default, see Footnote 3) no bits are transferred. In that case, the attacker keeps his knowledge
of the output pool until enough entropy is collected into the input pool to transfer at least 64
bits. This process prevents 64 bits with low entropy from being transferred from the input pool
which would facilitate a guess-and-determine attack. Thus the generator has a resistance of 64
bits by default against this kind of attacks.

In the second scenario, the attacker has knowledge of both the output pool and the input
pool. If k bits of entropy are collected before the adversary sees the output, the complexity of
guessing the input is 2k−1 on average. As long as the entropy counter in the input pool is high
enough this can happen for k < 64. However, this will reduce the entropy counter of the input
pool, which will eventually be low enough that at least k ≥ 64 bits of entropy must be collected
between two transfers to the output pool. This again leads to a default resistance of 64 bits.

4.6 Conserving the Entropy

Barak and Halevi presented a theoretical model of a PRNG with entropy inputs in [BH05].
Their work suggests the use of a deterministic extractor5 in the entropy extraction procedure,
immediately after the entropy source. The authors consider that the collected data has full
entropy. The security of this model assumes regular inputs with minimal entropy. This is a
problem if the input samples are corrupted or partially manipulated by an attacker.

As discussed in Section 3.3.1, when extracting m ≤ k bits from a pool containing k bits of
Rényi entropy, we can assume the entropy of the output to be greater than m − 2m−k

ln(2) . One
problem is that the Rényi entropy is always smaller or equal to Shannon’s entropy, with equality
only for the uniform distribution. However, at least in our empirical data, the Rényi entropy of
the combination of the three values per event is always much higher than the estimated Shannon
entropy of the jiffies.

5 Changes to Previous Versions

In this section we outline the most significant changes to the Linux PRNG since the version
analyzed in [GPR06].

Earlier versions provided only two 32-bit words as entropy input for each event, namely
the num value specific to the event and either the jiffies count or the cycle count, depending
on the source. This was changed to the current three words as far back as version 2.6.12 (see
Section 2.2).

5Extractors in the mathematical sense which were created for derandomization procedure. For a survey, see
[Sha02].
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To improve the resistance against input based attacks the current version mixes the data
from the entropy sources only into the input pool. In previous versions, the samples were also
mixed directly into the blocking pool when the entropy counter of the input pool was at its
maximum. Moreover, in the previous version, samples were mixed by blocks of 32 bits. This
lead to inconsistencies when data were transferred from the input pool to the output pool in
blocks of 80 bits, which is not a multiple of 32. This inconsistency was corrected by switching
to single byte operations in Linux 2.6.26 (see Section 2.3)

In the current version, /dev/urandom always leaves, in its default configuration, at least
16 bytes of entropy in the input pool. Moreover, no transfer is done when the input pool cannot
deliver more than 8 bytes of entropy. These two changes were introduced in early 2005 to
avoid denial of service attacks on /dev/random through repeated reading on /dev/urandom, as
mentioned in [GPR06], and to increase the backward security. In the previous version the only
limit to the number of transferred bytes from the input pool to the output pool was the entropy
counter of the input pool. If the input pool contained one byte of entropy, a single byte would
have been transferred. Thus the backward security was only 8 bits in this case. (see Sections 2.4
and 4.5)

In the previous version, one word was fed back into the pool after each application of
the compression function to 16 words, while hashing the whole pool. This allowed a forward
attack [GPR06]. More precisely, Gutterman et al. proposed a method to reverse the pool with
an overhead of 296 computations of Sha-1 compression function or 264 computations in some
cases, instead of 2160. The attack basically worked as a divide and conquer attack, using the fact
that the feedback function mixed back only one word in each iteration of the hashing process.
The new version, since Linux 2.6.26, hashes the whole pool before it feeds back any data, and
is thus resistant to such attacks, as discussed in Sections 4 and 3.3.

6 Conclusion

This paper presents the Linux PRNG for kernel versions 2.6.30.7 and up. We detail the main
changes since the analysis of [GPR06], and their security impacts. Our analysis shows that
the design of the current version of the PRNG allows it to reach a good level of security
(pseudorandomness, backward and forward security, entropy conservation). We also provide a
detailed analysis of the main components of the PRNG, for which we point out a few weaknesses
and suggest some evolutions.

First, while the comments in the code suggest that the mixing function is based on a twisted
GFSR, our analysis shows that this is not the case, and that the characteristic polynomial used
is not irreducible over GF(232). A few simple changes in the feedback function could provide a
full period for the LFSR with zero input.

Secondly, we regret the lack of connection of the entropy estimator with any entropy defini-
tion, but our empirical testing suggests that it nevertheless works reasonably well for unknown
data statistics. We investigate possible alternatives for this estimation of the entropy, including
simpler or more complex variations of the same approach, but find them to present either no
benefit or significant disadvantages when compared with the current estimator.

As a final remark, we note that the Linux PRNG is based on the Sha-1 hash function, for
which the security status could be debatable. Modifying the PRNG to make use of a newer
hash function, for example Sha-3, would require a significant change of the design, and an
investigation of the performance implications to the Linux kernel as a whole.
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A Entropy

We use three different entropy definitions: the Shannon entropy, which is a measure of the
number of binary questions needed on average to guess the value of a random variable, the
Rényi entropy of order 2, which is a measure of the probability of having a collision in two
elements, and the Min-entropy, which is a lower bound of all the other entropy measures. The
use of Shannon entropy is implied when no other precision is given.

Definition 3. [CT06] For a random variable X with probability distribution pX the Shannon
entropy H(X) the Rényi entropy of order 2 H2(X) and the Min-entropy Hmin(X) are defined
as

H(X) = −
∑

η∈X

pX(η) log2 pX(η)

H2(X) = − log2

∑

η∈X

(pX(η))2

Hmin(X) = − log2 max
η∈X

pX(η)

It holds that Hmin(X) ≤ H2(X) ≤ H(X), with equality if and only if X is uniformly distributed.
The conditional variants of the Shannon and Rényi entropy are given, by

H(X|Y) =
∑

κ∈Y pY(κ)H(X|Y = κ) and

H2(X|Y) =
∑

κ∈Y pY(κ)H2(X|Y = κ).

B Pseudocode

For the sake of clarity, we give the pseudocode for the mixing function, the output function, the
processing of an input event and the generation of random bytes. To provide a single description
valid for both the input and output pools we use n to denote the size of the pool in 32-bit words
and (0, i1, . . . , i4, n−1) to describe the feedback positions of the mixing function. For the input

pool, we have n = 128 and (0, i1, . . . , i4, n−1) = (0, 24, 50, 75, 102, 127) as for the output pool,
we have n = 32 and (0, i1, . . . , i4, n − 1) = (0, 6, 13, 19, 25, 31). We use b ← byte[n], to denote
that b is a byte array of size n. By b[i] and b[i . . . j] we mean, respectively, the ith element of b
and the elements b[i], . . . , b[j]. All indices are taken modulo the array size.

B.1 The Mixing Function: mix(pool, input)

For any byte y, let word32(y) denote the extension of y to a 32-bit word. For any word w,
w <<< rot is the bitwise rotation of w to the left by rot bits.

Require: The n pool words: pool← word[n]
Require: The m input bytes: input← byte[m]
Require: Last stored rotation factor: rot ∈ {0, . . . , 31}
Require: Last input position: i ∈ {0, . . . , n− 1}
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for j = 0 to m− 1 do

i← i− 1 (mod n)
w ← word32(input[j])
w ← w <<< rot
w ← w ⊕ pool[i + 1] ⊕ pool[i + i1 + 1]

⊕ pool[i + i2 + 1] ⊕ pool[i + i3 + 1]
⊕ pool[i + i4 + 1] ⊕ pool[i]

pool[i]← w
if i = 0 then

rot← rot + 14 (mod 32)
else

rot← rot + 7 (mod 32)

B.2 The Output Function: out(pool, k)

The output function produces k bytes from the pool. The Sha-1 compression function is denoted
by sha1(cv, m). It takes a 20-byte chaining value cv and a 128-byte message m and outputs a
new 20-byte chaining value. The 20-byte initial value of the Sha-1 hash function is denoted by
IVsha1. The fold function folds 20 bytes to 10 bytes as explained in Section 3.3 and trunc(·, r)
is the truncation to r bytes.

Require: The n pool words: pool← word[n]
Require: Number of requested bytes: k
Require: Last input position: i ∈ {0, . . . , n− 1}
Require: The output buffer: res← byte[k]

b← byte[20]
j ← 0
while j < k do

b← IVsha1

for ℓ = 0 to n/16− 1 do

b← sha1 (b, pool[16ℓ . . . 16ℓ + 15])
mix(pool, b) {Changes the pool and i}
w ← word[16]
for ℓ = 0 to 15 do

w[ℓ] = pool[i− ℓ (mod n)]
b← sha1(b, w)
r ← min(10, k − j)
res[j . . . j + r − 1]← trunc

(

fold(b), r
)

j ← j + 10

B.3 Adding an Event to the Pool: add(pool, event)

This algorithm is used to add the data of an event to the input pool and to update the entropy
counter. Each event event = (source, jif, cyc, num) contains the information of its source, and
three values containing the current jiffies count, cycle count and an additional number. We
denote by entr(source, jif) the estimation of the entropy based on the current jiffies count and
the previous values stored for this specific source.

Require: The 128 input pool words: pool← word[128]
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Require: Jiffies count of the event: jif
Require: Cycles count of the event: cyc
Require: Number specific to the event: num
Require: Source of the event: source
Require: Entropy counter of the input pool: h ∈ {0, . . . , 4096}

mix(pool, jif)
mix(pool, cycles)
mix(pool, num)
h← h + entr(source, jif)
h← max(h, 4096)

B.4 Generating Random Bytes: gen(pool, k)

The following pseudo code describes the complete procedure for generating k bytes from one of
the output pools, including entropy counter check.

Require: The 32 pool words: pool← word[32]
Require: Number of requested bytes: k
Require: Output buffer: res← byte[k]
Require: Entropy counter of the pool: h ∈ {0, . . . , 1024}
Require: Input pool: inpool← word[128]
Require: Entropy counter of the input pool: hI ∈ {0, . . . , 4096}

if h < 8k then

ℓ← min(max(k, 8), 128) {Guarantees 8 ≤ ℓ ≤ 128}
if /dev/urandom then {Leave 16 bytes of entropy}

ℓ← min(ℓ, ⌊hI/8⌋ − 16)
else {/dev/random }

ℓ← min(ℓ, ⌊hI/8⌋)
if ℓ ≥ 8 then {Enough entropy for transfer}

trans← byte[ℓ]
trans← out(inpool, ℓ)
mix(pool, trans)
h← h + 8ℓ
hI ← hI − 8ℓ

if /dev/random and h < 8k then {Limited output}
k′ ← ⌊h/8⌋
res[0 . . . k′ − 1]← out(pool, k′)
h← h− 8k′

while input pool has not enough entropy to reseed do

Wait
res[k′ . . . k]← gen(pool, k − k′)

else

res← out(pool, k);
h← max(0, h− 8k)
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