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Abstract. We tackle the makespan minimization problem of coupled-
tasks in presence of compatibility constraint. In particular, we focus
on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks
execution time and idle time duration. We show the relationship with bin
packing problems for some configurations, and study several problems in
framework of complexity and approximation for which the topology of
the compatibility graph is specific (star, chain, bipartite, . . .).

1 Introduction

We consider a non-preemptive coupled-tasks scheduling problem in presence of
compatibility constraint on a single processor. In point of view of scheduling
theory, the problem is also defined as scheduling problem with exact delays
on single machine. In this article, we will show the close relationship between
coupled-task in presence of compatibility constraint and the classic bin packing
problem in the framework of complexity and approximation.

The coupled-tasks model, was introduced first by Shapiro [8] in order to
model some data acquisition processes i.e. radar sensors: a sensor emits a radio
pulse (first sub-task), and finally listen for an echo reply (second sub-task).
Between these two instants (emission and reception), clearly there is idle time
due to the propagation, in both sides, of radio pulse. Therefore, a coupled-
task is constituted by the triplet: the two sub-tasks and the idle between them.
Thus, in order to minimize the makespan (schedule length), it is necessary to
execute one or several different sub-tasks during the idle time of a coupled-
task. In the basic model, all sub-tasks of coupled-tasks may be executed in
each other. Therefore, the aim is to find a best packing of coupled-tasks in
which the sum of idle is minimized. Notice that in the basic model, all coupled-
tasks may be executed in each other according to processing time of sub-tasks
and the duration of the idle time. Hereafter, we consider a relaxation of the
previous model in which for a fixed coupled-task A there are only a subset of
coupled-tasks compatible to be processed in the idle time of A. This model
is motivated by the problem of data acquisition in presence of compatibility
constraint in a submarine torpedo. A collection of sensors acquires data for the
torpedo. The compatibility constraint is due to prevent interference issues caused



by tasks using sensors working at the same frequency. So, the constraints are
represented by a compatibility graph where vertices are the coupled-tasks and
edges represent compatibility between two tasks. In this article the variation of
the complexity according to severals structural parameters are considered and
some efficient polynomial-time approximation results on NP-hard instances are
presented without omitting the relationship with bin packing problems.

Above all, we will show the close relationship between the studied problem
and four packing-related problems, for which known approximation will be used
as routine for scheduling coupled-tasks problem:

1. The subset sum (ss) problem: given a set S of n positive values and
v ∈ IN, the aim is to find a subset S∗ ⊆ S such that

∑
i∈S∗ i = v. This

problem is known to be NP-complete (see [6]). The optimization version
problem is sometimes view as a knapsack problem, where each item profits
and weights coincide to a value in S, the knapsack capacity is v, and the aim
is to find the set of packable items with maximum profit.

2. The multiple subset sum (mss) problem: variant of bin packing in which
a number of identical bins is given and one would like to maximize the overall
weight of the items packed in the bins in respect with the capacity of each
bin. The problem is a special case of the Multiple knapsack problem in
which all knapsacks have the same capacity and the item profits and weights
coincide. mss admits a PT AS[2] and a 3

4−approximation algorithm [3], but
does not admit a FPT AS even for only two knapsacks.

3. multiple subset sum with different knapsack capacities (mssdc)
[1] is an extension of mss considering different bin capacities. mssdc also
admits a PT AS [1].

4. As a generalization of mssdc, multiple knapsack assignment restric-

tion (mkar) problem consists in packing weighted items into non-identical
capacity-constrained bins, with the additional constraint that each item can
be packed into some bins only. Each item as a profit, the objective here is
to maximize the sum of profits of packed items. Considering that the profit
of each item is equal to its weight, [5] proposed a 1

2 -approximation.

1.1 Coupled-task model in presence of compatibility constraint

We model a task Ai with a triplet (ai, Li, bi), where ai (resp. bi) is the duration
of the first (resp. second) sub-task, and Li the idle time to respect between the
execution of sub-tasks. We note A the set of tasks, and describe the incompat-
ibility constraint between tasks with a graph Gc = (A, E). There is an edge
(Ai,Aj) ∈ E iff a (or both) sub-task from Ai may be scheduled during the idle
time of Aj or reciprocally. In a valid schedule, we said that Ai is packed into
Aj if the entire task Ai is scheduled during the idle time of Aj . This is only
available when ai + Li + bi ≤ Lj . We call stretched coupled-task a task Ai such
that ai = Li = bi = α(Ai), where α(Ai) is the stretch factor of task Ai.

We focus on instances composed with stretched coupled-tasks only, and where
two compatible tasks have different stretch factor. In such a configuration, each



edge of Gc can be oriented from the task with the lowest stretch factor to the
highest (Gc is a directed acyclic graph). We remark that with stretched coupled-
tasks only, when a sub-task of Ai is executed during the idle time Lj of another
one Aj , then the other sub-task of Ai must also be executed during Lj , and
Ai is packed into Aj , implying also that two compatible tasks (Ai,Aj) require
3.α(Ai) ≤ α(Aj).

Using the three-field Graham’s notation scheme1 [7], we define the main prob-
lem of this study as 1|α(Ai), Gc|Cmax. We also introduce #(X) which counts up
the number of different elements in the set X (i.e. different values of α(x), for
all x ∈ X). In addition, let dGc

(X) be the degree of the task x ∈ X in Gc, and
let ∆(Gc) be the maximum degree of Gc. Therefore, we present some complexity
results according to the values of #(X) and #(Y ), and propose polynomial-time
approximation algorithms results for NP-hard instances.

1.2 From a coupled-task problem to bin packing problem

We focus our study to the instances where Gc describes a bipartite graph Gc =
(X,Y,E) with X ∪ Y the set of stretched coupled-tasks, and compatibility arcs
oriented from X to Y only. On this configuration, the studied scheduling problem
is closely related to packing problems:

– Each task y ∈ Y can be seen as a box with capacity (idle time) of α(y),
– Each task x ∈ X can be seen as an object, with weight and profit equal to

3.α(x). It can fit in certain boxes only, i.e. its neighborhood N(x) in Gc.

Our scheduling problem is however different from packing problems in the ob-
jective to achieve:

– Packing problems usually consists in maximizing the number (or profit) of
packed items;

– On the other way, minimizing the makespan in our scheduling problem cor-
responds to pack a maximum of tasks from X into tasks from Y , in order to
minimize the duration of remaining unpacked tasks, as tasks from Y have
to be scheduled sequentially2. These remaining tasks are to be scheduled
sequentially besides tasks from Y .

There is a relationship between these two objectives, but the well-known results
on packing problems would not necessary keep the approximation ratio of algo-
rithms especially designed for packing problems when applied to our scheduling
problem. Despite the slightly different objective function, additional conditions
on the instance lead to similarities with the following packing problems:

– If |Y | = 1 (Gc is a star): a bin-packing version of our problem corresponds
to the input of a knapsack problem where each items weight and profit
coincide (ss problem), with knapsack of capacity α(y), y ∈ Y , and each
items weight coincide to three times the stretch factor of an element in X.

1 In scheduling theory, a problem type is categorized by its machine environment, job
characteristics and objective function.

2 Y is an independent set for Gc, so tasks from Y must be scheduled sequentially.



– If |Y | > 1, #(Y ) = 1 and Gc is a complete bipartite graph (contains all
arcs from X to Y ), the bin-packing version of our problem corresponds to
the input of a Multiple knapsack problem in which all knapsacks have
the same capacity α(y) such that y ∈ Y , and the item profits and weights
coincide to three times the stretch factor of an element in X (also referred
to mss).

– If Gc is a bipartite graph, the bin-packing version corresponds to mkar with
non-identical capacity-constrained bins. Each item x can be packed into bin
y iff the arc (x, y) belongs to E.

– If Gc is a bipartite graph and #(Y ) = 1, the bin-packing version refers to
mkar with identical capacity-constrained bins.

2 Complexity and approximation results

2.1 Computational complexity results

In this section, we will show the demarcation line between the polynomially
solvable and the NP-hardness case according to the several topologies for Gc

and different type of stretch length. Due to space limitation, all the proof are
omitted here, and are available in the research report dedicated to this work [4].

Theorem 1. The problem 1|α(Ai), Gc = chain|Cmax is polynomial.

Theorem 2. The problem 1|α(Ai), Gc = star|Cmax is polynomial (resp. NP-
hard) if the central node admits at least one out-coming arc (resp. admits only
incoming arcs).

Theorem 3. The problem of deciding whether an instance of 1|α(Ai),
Gc =1−stage bipartite,#X ≤ n,#Y ≤ n,∆Gc

(Y ) = 2|Cmax is polynomial.

Theorem 4. The problem of deciding whether an instance of 1|α(Ai), Gc =
bipartite,#(X) = 2,#(Y ) = 2, dGc

(x) = 2, dGc
(y) ∈ {2, 3}|Cmax (resp. 1|α(Ai),

Gc = bipartite,#(X) = 2,#(Y ) = 1, dGc
(x) = {1, 2}, dGc

(y) ∈ {3, 4}|Cmax ) is
NP-hard.

Theorem 5. The problem of deciding whether an instance of 1|α(Ai),
Gc = bipartite,#(X) = 1,#(Y ) ≤ n|Cmax is polynomial.

Corollary 1. The problem of deciding whether an instance of 1|α(Ai),#(X) =
2,#(Y ) = 2, ∆(Gc) = 2, bipartite|Cmax is polynomial.

2.2 Polynomial-time approximation algorithms

The challenge for the remaining section, is to propose some efficient polynomial
algorithms with a ratio strictly lower than 3/2, which is the ratio returned by a
greedy algorithm. We propose a FPT AS for the star graph whereas some APX -
algorithm are developed according to the characteristics of bipartite graph.



Theorem 6. The problem 1|α(Ai), Gc = star|Cmax admits a FPT AS.

The following Lemma gives approximation preserving reducibility between
bin-packing problems and coupled-tasks problems.

Lemma 1. Let P be a problem with P ∈ {mkarmssdc,mss} such that P ad-
mits a ρ-approximable then 1|α(Ai), Gc = bipartite|Cmax (resp. 1|α(Ai), Gc =
complete bipartite|Cmax and 1|α(Ai), Gc = complete bipartite|Cmax, where all
the tasks from Y have the same stretch factor α(y) are approximable to a factor

1 + (1−ρ)
3 . The bipartite graph is denoted (X,Y,E).

Proof. In such instance, any valid schedule consists to find for each task y ∈ Y
a subset of compatible tasks Xy ⊆ X to pack into y ∈ Y , each task of x being
packed at most once. Let Xp = ∪y∈Y Xy be the union of tasks of X packed into
a task from Y , and Xp̄ = X/Xp. Clearly, we have seq(Xp) + seq(Xp̄) = seq(X).

The length of any schedule S is given by the processing time of Y plus the
length to schedule sequentially the tasks from Xp̄. Formally:

Cmax(S) = seq(Y ) + seq(Xp̄) = seq(Y ) + seq(X)− seq(Xp). (1)

We use here a reduction to P-problem: (∀x ∈ X is an item having a weight
3.α(x), and y ∈ Y is a bin with capacity α(y). Moreover, each item x can be
packed on y if and only if the edge (x, y) ∈ E. Using algorithms and results
from the literature, one can obtain an assignment of some items into bins, and
note Xp the set of packed items. The cost of the solution for the P-problem is
seq(Xp). If the P-problem is approximable with a factor ρ, then:

seq(Xp) ≥ ρ× seq(X∗
p ), Cmax(S) ≤ seq(Y ) + seq(X)− ρ× seq(X∗

p ) (2)

where X∗
p is the set of packable items with the maximum profit. As X and Y are

two fixed sets, a optimal solution S∗ with minimal length Cmax(S
∗) is obtained

when seq(Xp) is maximum, i.e. when Xp = X∗
p . The length of any optimal

solution is Cmax(S
∗) = seq(Y ) + seq(X)− seq(X∗

p ) and so

Cmax(S)

Cmax(S∗)
≤

seq(Y ) + seq(X)− ρ× seq(X∗
p )

seq(Y ) + seq(X)− seq(X∗
p )

≤ 1+
(1− ρ)× seq(X∗

p )

seq(Y ) + seq(X)− seq(X∗
p )

By definition, X∗
p ⊆ X. Moreover, as the processing time of X∗

p cannot excess

the idle time of tasks from Y , we obtain seq(X∗
p ) ≤ 1

3seq(Y ). Therefore, we
obtain,

ρ′ =
Cmax(S)

Cmax(S∗)
≤ 1 +

(1− ρ)

3
. (3)

Theorem 7. Finally, we obtain for coupled-tasks the following results:

1. 1|α(Ai), Gc = bipartite|Cmax admits a ratio ρ′ ≤ 7
6 since ρ = 1

2 for mkar[5].
2. 1|α(Ai), Gc = complete bipartite|Cmax admits a ratio ρ′ = 1 + ǫ since

mssdc admits a ratio ρ = 1− ǫ [1].
3. 1|α(Ai), Gc = complete bipartite|Cmax, where all the tasks from Y have the

same stretch factor α(y), ρ′ ≤ 13
12 (resp. admits a ρ′ = 1+ǫ) since mss admits

ρ = 3
4 [3] (resp. ρ = 1− ǫ [2]).



3 Conclusion

We investigated a particular coupled-tasks scheduling problem 1|αAi, Gc|Cmax

in presence of a compatibility graph with regard to the complexity and approx-
imation. We established its relationship with packing problem where there is a
bipartite compatibility graph, and studied the boundaries between polynomial-
ity and NP-completeness. In such context, we proposed several approximation
algorithms. The results announced in this paper are summarized in Table 1.

Topology Complexity Approximation

(Gc)=Chain graph O(n3) (Theorem 1)

(Gc)=Star graph 1 NP − C (Theorem 2) FPT AS (Theorem 6)

(Gc)=Star graph 2 POLY (Theorem 2)

Gc= 1-SB, ∆(Gc) = 2 O(n3) (Theorem 3)

Gc= 1-SC, #(X) = 2,#(Y ) = 2, ∆Gc
= 3 NP − C (Theorem 4) 7

6
-APX (Theorem 7)

Gc= 1-SC,#(X) = 1,#(Y ) ≤ n (POLY Theorem 5)

Gc= 1-SBC NP − C (see [9]) PT AS (Theorem 7)

Gc= 1-SBC #Y = 1 NP − C (see [9]) PT AS (Theorem 7)
13

12
-APX (Theorem 7)

Table 1. Complexity and approximation results. Complete 1-stage bipartite=1−SBC
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