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Abstract. The dynamics of a magnetically forced conducting fluid in confined

geometries is studied. A pseudospectral method with volume penalisation is

used to solve the resistive magnetohydrodynamic (MHD) equations. A helical

magnetic field is imposed via boundary conditions, which generates a response

in the velocity field for large enough magnitudes. Different helical structures are

observed in the flow depending on the magnitude and direction of the forcing and

the cross-sectional geometry of the fluid domain. A computational technique for

finding a solenoidal vector field which can be used in complex geometries is also

proposed.
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1. Introduction

Vortical structure formation plays an important role in magnetohydrodynamic

(MHD) flows in a variety of settings and applications, such the Earth’s

core (Moffatt 1978), metal casting, and fusion devices of the Reversed Field Pinch

type (Taylor 1974) and of the tokamak type (Wesson 2011). The development

of large rotational structures has been addressed before in (Neffaa, Bos &

Schneider 2008, Bos, Neffaa & Schneider 2008). While some analytic results

exist for MHD flows, we must generally rely on numerical simulations in order

to understand the behaviour of those fluids in confined geometries. Understanding

structures in MHD flows lends insight into the underlying mathematical properties

and can help to control MHD flows more efficiently.

In this paper we explore the behaviour of a conducting fluid and the evolution

of the flow topology under the influence of external magnetic forcing in two

cylindrical geometries. In previous investigations we focused on the structure

formation of magnetofluids in two-dimensional (Neffaa et al. 2008, Bos et al. 2008)

and toroidally confined (Morales, Bos, Schneider & Montgomery 2012) domains.

The case of a cylindrical domain was considered numerically in (Shan, Montgomery

& Chen 1991, Shan & Montgomery 1993b) in the case of non-penetration boundary

conditions. This choice was necessary for these simulations because the fields

were decomposed into eigenfunctions of the curl operator in order to observe the

dynamics of helical structures, and it was argued, via an energy-minimisation

argument, that the dominant mode of the flow is such a helical basis function.

The instability threshold determined analytically was confirmed numerically and

the evolution of the flow with the magnitude of the forcing was described. Due

to the absence of an efficient physical-space to Chandrasekhar-Kendall function-

space transform, the nonlinear term was computed directly, rapidly increasing

the computational cost. In this paper, we use a pseudospectral method (Canuto,

Hussaini, Quarteroni & Zang 1988) combined with a volume penalisation method

for imposing boundary conditions in complex geometries (Arquis & Caltagirone

1984, Angot, Bruneau & Fabrie 1999). Thus we are able to implement different

boundary conditions than used in (Shan et al. 1991) and to perform simulations

in cylindrical geometries with different cross-sections. A related study, which

was limited to circular cross-sections and for different parameters focusing on the

Reversed Field Pinch application can be found in (Veranda, Bonfiglio, Cappello,

Chacón & Escande 2013, Bonfiglio, Veranda, Cappello, Escande & Chacón 2013).

The self-organization of compressible MHD flows into helical structures has also
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been observed in (Zhu, Horiuchi, Sato et al. 1995) and (Horiuchi & Sato 1986), for

example, where the mechanism of self-organization is magnetic re-connection.

This paper is organised as follows: in section 2 we give a mathematical

description of the problem and present our numerical technique. In section 3,

we explore the structure of the velocity field in a circular geometry when forced by

an external helical magnetic field, and we show the effect of wrapping number in

section 4. Section 6 shows how the flow topology changes when the cross-section

is modified. We give our conclusions and future perspectives in section 7.

2. Mathematical Description and Numerical Method

2.1. Mathematical Description

Let u denote the velocity and B the magnetic field of the conducting fluid. The

time evolution of these quantities using conventional, Alfvén normalised variables,

is given by

∂u

∂t
= u× ω + j ×B −∇P + ν∇2u (1)

∂B

∂t
= ∇× (u×B) + λ∇2B (2)

where P is the total pressure, ω = ∇× u is the vorticity, and j = ∇×B is the

current density. Physical parameters are the kinematic viscosity ν = 4.5 × 10−2,

and the magnetic diffusivity λ = 4.5× 10−2. Both the velocity and magnetic field

are considered to be incompressible, so ∇ · u = 0 and ∇ ·B = 0.

Figure 1: Sketch of the flow configu-

ration: a conducting fluid in a cylin-

der is forced with a helical magnetic

field imposed at the boundary.

Ωs

Ωf

Figure 2: Schematic of fluid domain

Ωf and penalised domain Ωs in

computational domain Ω = Ωf ∪ Ωs.
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The fluid is confined in a cylinder of length zℓ = 8 with its axis oriented along

the z-axis. The ends of the cylinder are treated as periodic. The cross-section of

the cylinder in the x-y plane is either a circle of radius 1 or an ellipse with major

radius 1 along the x-axis and minor radius 1/
√
2 along the y axis corresponding

to an eccentricity of 1/
√
2. No-slip (and non-penetration) boundary conditions

are imposed on the velocity field. A helical forcing is imposed in the boundary

conditions forB, where the normal component is set to zero, the z-component is set

to B0, and the poloidal component is set to Bc. This corresponds to the boundary

conditions for the magnetic field following a helix along the wall, as illustrated in

Figure 1. We define the wrapping number q to be the number of rotations achieved

by a magnetic streamline following the boundary conditions between z = 0 and

z = zℓ, and we choose (B0, Bc) pairs which provide integral values of q for the

simulations in this paper. It was shown in (Shan & Montgomery 1993b, Shan

& Montgomery 1993a) that the instability of the current setup is determined

by two parameters: the Hartmann number and the pinch-ratio. The Hartmann

number was chosen proportional to the axial magnetic field, and the pinch-ratio

is proportional to the wrapping number. Our description in terms of B0 and q is

thus equivalent to the previous investigations.

The magnetic field is initialised to a linear profile that matches the boundary

conditions. The velocity field is set to an uncorrelated Gaussian solenoidal field

using with kinetic energy of the order 10−7.

2.2. Numerical method

The numerical method used for the simulations we studied is a Fourier

pseudospectral method, with boundary conditions implemented via the

penalisation method. A detailed description of the code and its validation can

be found in (Morales, Leroy, Bos & Schneider 2012, revised).

The cylinder is immersed in a computational domain consisting of a periodic

box of dimensions xℓ × yℓ × zℓ = 0.8π × 0.8π × 8, which we denote Ω. The fluid

domain is denoted Ωf , with the wall domain (also called solid domain) denoted Ωs,

where Ω = Ωf ∪ Ωs, and |Ωf ∩ Ωs| = 0. Let χ be the characteristic function

for Ωs. For the velocity, on which we impose homogeneous Dirichlet boundary

conditions, we add − 1

η
χu to the right-hand side of equation (1), where η is the

penalisation parameter. We determine P by first computing the nonlinear source

term Su = u×ω+j×B− 1

η
χu and solving the Poisson equation ∇2P = ∇ ·Su.

Substituting the resulting pressure gradient into equation (1) enforces ∇ · u = 0.
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For the magnetic field, we first find the penalisation field Bs which matches

the helical-forcing boundary conditions on ∂Ωf and which is solenoidal in Ω. A

method for generating this field is given in Appendix A. We impose boundary

conditions on B by adding − 1

η
χ(B−Bs) to equation (2). In order to ensure that

∇ ·B = 0, we time-step by first computing SB = ∇ × (u×B) − 1

η
χ(B −Bs)

and projecting SB onto the solenoidal manifold via a Helmholtz projection, which

removes any divergence introduced by the penalisation term. Note that the

penalisation field is itself solenoidal; this implies that the only source of divergence

is due to presence of χ in the penalisation term. A detailed validation of the

penalisation method to impose tangential forcing at the boundary can be found

in (Morales et al. 2012, revised) for Taylor-Couette flow. In contrast to (Morales

et al. 2012), we penalise the magnetic field in the entire computational domain in

order to avoid discontinuities in the nonlinear source term.

The resulting equations are advanced in time in Fourier space using a second-

order Adams-Bashforth method using an integrating factor for the diffusive terms.

The time-step dt is restricted by the CFL condition (with a coefficient of 0.1)

and the penalisation stability condition (Kolomenskiy & Schneider 2009) which

imposes dt < η. Laminar simulations were performed with 1283 Fourier modes

while turbulent simulations were performed with 2563 modes. After dealiasing,

provides 853 or 1713 degrees of freedom remained. The penalisation parameter η

was chosen to be 5×10−4. It was verified that the results are consistent with those

obtained using a resolution of 2563 and/or using η = 1.25× 10−4.

3. Circular Cross-section with Constant Axial Forcing

Let us first consider a cylinder with circular cross-section. The kinetic energy of the

fluid is initially low, and, after a short time (a few Alfvénic time units, depending

on the boundary forcing) the kinetic energy grows exponentially with no change

in topology, which is consistent with the linear instability of helical modes as

described in (Shan et al. 1991), before reaching a new steady state. In certain cases

(low wrapping numbers / boundary forcing magnitude) this does not occur, and

the kinetic energy is essentially zero for the duration of the simulation. Example

kinetic-energy and kinetic energy dissipation curves are shown in Figure 3.

We set B0 = 4.5 and vary Bc so that integral values of wrapping numbers q

are achieved. For q = 1 no flow is observed. At q = 2 (Bc ≈ 7.06) we observe a

helical structure in the velocity field consisting of two pairs of helices, as shown

in Figure 4. With these forcing parameters, the velocity modes have the same
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Figure 3: Kinetic energy as a function of time (left) and dissipation of kinetic

energy as a function of time (right) for simulations in circular geometry with

B0 = 4.5 and Bc ≈ 3.53 (red, long-dashed), Bc ≈ 7.06 (blue, short-dashed),

Bc ≈ 70.6 (green, solid).

wrapping number as the boundary forcing of the magnetic field, which is also

observed with wrapping number 3 (Bc ≈ 10.6). At wrapping number 4, the

structure begins to break down, and is replaced with a helical dipole at q = 5

(Bc ≈ 17.6), with wavenumber 2 in the axial direction, as shown in Figure 5. This

low-order mode, which resembles the minimal dissipation mode as in (Montgomery,

Phillips & Theobald 1989), endures even at q = 20 (see Figure 6), at which point

the velocity field in the z-direction is disordered and exhibits a full spectrum, as

shown in Figure 7.

4. Circular Cross-section with Varying Wrapping Number and Axial

Field

In the previous section, we increased forcing by increasing the wrapping number to

explore the effect on the topology of the flow. In order to understand the individual

roles of forcing and wrapping number, we also perform a number of simulations

with wrapping number q ∈ {1, 2, 3, 4} and various forcing amplitudes.

For wrapping number 1, we observe the formation of structures first at forcing

amplitude B‖ =
√

B2
0
+B2

c = 20, consisting of two helical structures of opposite-

signed axial velocity and axial wavenumber 1, matching the forcing wrapping

number. This structure is also present for B‖ ∈ {30, 40, 80, 100}, and exhibits

decreasing regularity as the forcing parameter increased. For wrapping number 2,
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Figure 4: Axial velocity profile for wrapping number 2 with (B0, Bc) = (4.5, 7.06)

in a circular geometry. Left: the two-dimensional cut is taken at z = 4. Right:

isosurfaces of uz at ±0.2, which correspond to isocontours in the left image. The

poloidal wavenumber of the helical structure is 2, and the axial wavenumber is 1,

i.e., the (2, 1) mode dominates.

2
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−1

0

1

2

Figure 5: Axial velocity profile for wrapping number 5 with (B0, Bc) = (4.5, 17.6) in

a circular geometry. Left: two-dimensional cut taken at z = 4. Right: isosurfaces

at uz = ±2, showing a (1, 2) mode.

self-organisation occurs at lower forcing values, first appearing at B‖ = 10, at

which point we observe three helical pairs, as shown in Figure 8. The structure of

the flow becomes increasingly complex as B‖ increases, and an axial-wavenumber

1 mode appears at B‖ = 40, which persists up to B‖ = 100. At wrapping number

3, we observed axial-wavenumber 1 helical structures at B‖ ∈ {30, 40, 60, 80, 100},
with two helical pairs at low forcing degenerating into less ordered (but still helical)

structures as forcing magnitude increased. Finally, simulations with q = 4 show an

axial wavenumber 2 helical pair at B‖ = 10, which, persists up to B‖ = 100. These

results are summarised in Figure 9, which may be compared to Figure 1 in (Shan
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Figure 6: Axial velocity profile for wrapping number 20 with (B0, Bc) = (4.5, 70.6)

in a circular geometry at t = 20. Left: two-dimensional cut taken at z = 4. Right:

isosurfaces at uz = ±3, showing a central (1, 2) mode away from the boundary.

An animation can be found in the supplementary material.
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Figure 7: Power spectrum of the axial velocity (left) and axial magnetic field

(right) at x = 0, y ≈ −0.37 for the simulations shown in Figure 4 (blue, dashed

line) and Figure 6 (green, solid line).

& Montgomery 1993b), which shows the linearly unstable modes as a function of

pinch ratio Θ = Bc/B0 and Hartmann number H = B0/
√
ηλ in a parameter region

different than given here.

5. Alignment Statistics

In figure 10 we show the probability density functions (pdfs) of the cosine of the

angles between (u,ω), (j,B) and (u,B). These angles are chosen since they

locally determine the strength of the Navier-Stokes nonlinearity, Lorentz force and
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Figure 8: Axial velocity profile for wrapping number 2 with (B0, Bc) = (8.28, 5.6)

(B‖ = 10) in a circular geometry. Left: two-dimensional cut taken at z = 6. Right:

isosurfaces at uz = ±0.2, showing a (3, 1) mode.
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Figure 9: Mode diagram of the flow topology of helical modes observed at a given

wrapping number q and forcing amplitude B‖. Modes are (m,n), where m is the

poloidal mode number and n is the toroidal (axial) mode number.

magnetic field induction. Two cases are compared: a laminar one in which the

velocity and magnetic field are stationary, and a turbulent multi-mode state. It

is shown that already the laminar state shows non-trivial alignment properties.

When the flow becomes turbulent the dynamics relax to a state in which in

particular the magnetic field aligns more strongly with the velocity field compared

to the laminar state. The u−ω alignment becomes weaker and the j−B alignment

does not dramatically increase or decrease in strength.

Such rapid local relaxation processes, in particular observed here for the

u −B alignment have been observed previously in hydrodynamic (Pelz, Yakhot,
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Orszag, Shtilman & Levich 1985) and magnetohydrodynamic (Servidio, Matthaeus

& Dmitruk 2008) turbulence. In particular in the latter work similar alignments

as the ones in the present work are investigated in the case of isotropic MHD

turbulence. It is observed in their results that the j − B alignment becomes

very strong. Furthermore, due to isotropy all their pdfs showed alignment-

antialignment symmetry. This symmetry is lost in the pdfs of u − ω and j −B

of our simulations due to the imposed helical character of the magnetic field. We

do not think that the alignment in the turbulent case can be explained in an easy

way. However, it was suggested by (Kraichnan & Panda 1988) that the u − ω

alignment observed in isotropic turbulence might be one representation of a more

generic property of turbulent systems to suppress their nonlinearity. The rapid

relaxation observed in the present work can also be thought to be an expression

of this property.
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Figure 10: Probability distribution function for the cosine of the angle between

u and ω (red, solid), B and j (blue, dashed), and u and B (green, dotted) at

t = 30. The left figure shows values for a laminar flow with (B0, Bc) = (4.5, 7.06),

and the right figure is for a turbulent flow with (B0, Bc) = (4.5, 70.6).

6. Elliptical Cross Section

Let us now consider a cylinder with elliptical cross section defined by x2+2y2 = 1.

As in the previous section, we keep the wrapping number constant and modify the

forcing magnitude. The onset of kinetic energy growth occurs at much stronger

forcing than in the circular case, with q = 1, B‖ = 60 our first detection. At

this point, the velocity field forms five pairs of opposite-sign helices, as shown in
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Figure 11. As forcing is increased, 6 pairs are observed at B‖ = 80, and 5 pairs

again at B‖ = 100, 110, 120, and 130. As forcing amplitude is increased, the

velocity field becomes increasingly concentrated at the border.
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Figure 11: Axial velocity profile for wrapping number 1 with (B0, Bc) = (49.7, 33.6)

(B‖ = 60) in an elliptical geometry. Left: two-dimensional cut at z = 4. Right:

isosurfaces at uz = ±0.2, showing a (5, 1) mode.

7. Conclusion

In this article we studied the self-organisation of the flow in a conducting fluid

confined in a cylinder. The flow is forced by a helical magnetic field imposed via

boundary conditions. This phenomenon was first explored by Shan et al. using a

purely spectral method for circular cross-sections with non-penetration boundary

conditions. The simulations presented here used a large number of grid points,

different parameter regimes, and were performed in cylinders with both circular

and elliptical cross-sections. The penalisation technique can also be used in more

general geometries. In cylinders of circular cross-section, various helical flows

develop depending on the value of the wrapping number and forcing amplitude,

tending toward a unique low-order mode at large values of the forcing parameters.

This mode is present even when the fluid starts to exhibit turbulent dynamics.

For the elliptical cross-section, the situation is different: a ring of vortices with

poloidal mode number 5 or 6 forms and encloses a weak flow area. These vortices

follow the topology of the imposed magnetic field. The magnitude of the forcing

required to trigger this instability is much larger than for circular case. For further

work, it would be interesting to study the flow for larger ranges of Hartman

number and pinch ratio, and to investigate the influence of the eccentricity of

the ellipse on the topology of the flows obtained. Indeed, these first results in

cylinders with non-circular cross-section show significant influence of the shape on
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the modes which are excited. This observation might have important implications

for the control of Reversed Field Pinch fusion reactors, where the shape and

frequency of the helically extended modes determines the quality of the plasma

confinement. Even though in realistic RFP simulations the strong temperature

gradient will have an important influence on the dynamics, already the isothermal

visco-resistive MHD description is shown to reproduce a number of key features of

the dynamics (Bonfiglio et al. 2013).
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Appendix A. Numerical method for producing a solenoidal

penalisation field

Let Ω = Ωf ∪ Ωs be the computational, fluid, and solid domains, respectively,

with |Ωf ∩ Ωs| = 0. Given a Dirichlet boundary condition on ∂Ωf represented by

{vbc(x)|x ∈ ∂Ωf} such that

(A.1)

∫

∂Ωf

vbc · n ds = 0,

where n is the normal vector on ∂Ωf . We wish to extend vbc to a sufficiently

regular function v on the entire computational domain Ω such that ∇ · v = 0.

In order to find v numerically, we introduce a pseudo-time τ and time-step the

equation

(A.2)
∂v

∂τ
= κ∇2v − 1

ητ
χ∂Ωf

(v − vbc)

where κ is a diffusion parameter, χ∂Ωf
is the characteristic function for ∂Ωf , and

we call ητ the pseudo-time penalisation parameter. For the simulations in this

paper, we chose κ = 100, and we used an adaptive 1st/2nd order embedded Runge–

Kutta time-integrator and a pseudospectral method in space, projecting v onto

the solenoidal manifold via a Helmholtz decomposition after each time-step. The

time-stepping in τ is stopped when

(A.3)‖vbc − v‖∞,∂Ωf
< 0.2×√

η,
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where η is the penalisation parameter used to advance the fluid. This is to say

that the maximum error between the penalisation field v and the desired value

vbc on the boundary is less than one fifth the error expected from the penalisation

term used in time-stepping the fluid. Since the boundary conditions obey the

compatibility condition (equation (A.1)), the resulting field is consistent with

a solenoidal field and should not be affected by projection onto the solenoidal

manifold. Moreover, the stopping condition (inequality (A.3)) is satisfied only

when the resulting penalisation field closely matches the boundary conditions.

The stop condition A.3 implies that the error in the boundary conditions

is sub-leading-order, and the use of a Helmholtz decomposition provides a

penalisation field which is divergence-free up to machine precision. The choice

of κ determines the regularity of the field and the number of time-steps required

for condition A.3 to be achieved.
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