
HAL Id: hal-01005353
https://hal.science/hal-01005353

Submitted on 12 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Logics for Concurrent Recursive Programs:
Satisfiability and Model Checking

Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, Marc Zeitoun

To cite this version:
Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, Marc Zeitoun. Temporal Logics for Concurrent Recur-
sive Programs: Satisfiability and Model Checking. Journal of Applied Logic, 2014, 12 (4), pp.395-416.
�10.1016/j.jal.2014.05.001�. �hal-01005353�

https://hal.science/hal-01005353
https://hal.archives-ouvertes.fr

Temporal Logics for Concurrent Recursive Programs:

Satisfiability and Model Checking✩

Benedikt Bolliga, Aiswarya Cyriaca, Paul Gastina, Marc Zeitounb

aLSV, ENS Cachan, CNRS & INRIA, France
bLaBRI, Univ. Bordeaux & CNRS, France

Abstract

We develop a general framework for the design of temporal logics for concurrent recursive
programs. A program execution is modeled as a partial order with multiple nesting rela-
tions. To specify properties of executions, we consider any temporal logic whose modalities
are definable in monadic second-order logic and that, in addition, allows PDL-like path
expressions. This captures, in a unifying framework, a wide range of logics defined for
ranked and unranked trees, nested words, and Mazurkiewicz traces that have been studied
separately. We show that satisfiability and model checking are decidable in EXPTIME and
2EXPTIME, depending on the precise path modalities.

Keywords:
2000 MSC: 68Q60, 68Q85

1. Introduction

We are concerned with the analysis of computer programs and systems that consist
of several components sharing an access to resources such as variables or channels. Any
component itself might be built of several modules that can be called recursively resulting
in complex infinite-state systems. The analysis of such programs, which consist of a fixed
number of recursive threads communicating with one another, is particularly challenging,
due to the intrinsically high complexity of interaction between its components. All the more,
it is important to provide tools and algorithms that support the design of correct programs,
or verify if a given program corresponds to a specification.

It is widely acknowledged that linear-time temporal logic (LTL) [32] is a yardstick among
the specification languages. It combines high expressiveness (equivalence to first-order logic
[22]) with a reasonable complexity of decision problems such as satisfiability and model
checking. LTL has originally been considered for finite-state sequential programs. As real

✩Supported by ARCUS, DOTS (ANR-06-SETIN-003), DIGITEO LoCoReP and ANR 2010 BLAN 0202
01 FREC.

Email addresses: bollig@lsv.ens-cachan.fr (Benedikt Bollig), cyriac@lsv.ens-cachan.fr
(Aiswarya Cyriac), gastin@lsv.ens-cachan.fr (Paul Gastin), mz@labri.fr (Marc Zeitoun)

Preprint submitted to Journal of Applied Logic May 6, 2014

programs are often concurrent or rely on recursive procedures, LTL has been extended in
two directions.

First, asynchronous finite-state programs (asynchronous automata) [36] are a formal
model of shared-memory systems and properly generalize finite-state sequential programs.
Their executions are no longer sequential (i.e., totally ordered) but can be naturally modeled
as graphs or partial orders. In the literature, these structures are known as Mazurkiewicz
traces. They look back on a long list of now classic results that smoothly extend the purely
sequential setting (e.g., expressive equivalence of LTL and first-order logic) [17, 16].

Second, in an influential paper, Alur and Madhusudan extend the finite-state sequential
model to visibly pushdown automata (VPAs) [3]. VPAs are a flexible model for recursive pro-
grams, where subroutines can be called and executed while the current thread is suspended.
The execution of a VPA is still totally ordered. However, it comes with some extra informa-
tion that relates a subroutine call with the corresponding return position, which gives rise
to the notion of nested words [3]. Alur et al. recently defined versions of LTL towards this
infinite-state setting [2, 1] that can be considered as canonical counterparts of the classical
logic introduced by Pnueli.

To model programs that involve both recursion and concurrency, one needs to mix both
views. Most approaches to modeling concurrent recursive programs, however, reduce con-
currency to interleaving and neglect a behavioral semantics that preserves independencies
between program events [33, 23, 24, 5]. A first model for concurrent recursive programs with
partial-order semantics was considered in [8]. Executions of their concurrent VPAs equip
Mazurkiewicz traces with multiple nesting relations, as depicted in the figure below.

q

p

sv sv

c

c

sv

c

sv

r

sv

r r

r

r

p, q

q

p

q

p p p

q

q

p

q

p

q

p p

cr
cr

cr

int int

call

call int call int

ret

int ret ret

ret

ret

Temporal logics have not been considered for this natural concurrency-aware behavior
model. Furthermore there is for now no canonical merge of the two existing approaches. It
must be noted that satisfiability is undecidable when considering multiple nesting relations,
even for simple logics. In fact, local control state reachability is also undecidable as two
stacks (multiple nesting relations) are Turing powerful. Yet, it becomes decidable if we
impose suitable restrictions to the system behaviors.

A first such restriction called bounded context-switching was proposed in [33] where a
bound is placed on the number of times control can be transferred from one process to
another. Furthermore experimental results suggest that bugs in programs usually manifest
themselves within a few context switches [30]. A generalization of bounded context was
proposed in [23] where a bound is placed on the number of phases : all processes may progress
in a phase making recursive function calls, but at most one process is allowed to return from
function calls. Thus a bounded phase behavior may have an unbounded number of context
switches. While both these techniques allow under-approximate reachability, bounded phase

2

covers significantly more behaviors than bounded context. Hence we adopt the bounded-
phase restriction. We think that our constructions for bounded phase would serve as a
first step towards getting similar results for other orthogonal restrictions such as bounded
scope [25], ordered [11, 6], or even theoretical but generic restrictions on behavior graphs
such as bounded tree-width [28] or bounded split-width [14].

In this paper, we present a framework for defining (linear-time) temporal logics for
concurrent recursive programs. A temporal logic may be parametrized by a finite set of
modalities that are definable in monadic second-order logic (cf. [19]). Thus, existing temporal
logics for sequential recursive programs [2, 1, 15] as well as for concurrent non-recursive
programs [19, 16, 20] are easily definable in our framework. In addition, our framework
also provides navigational abilities on nested traces by allowing free use of path expressions
similar to those from PDL [18] or XPath [27].

Path expressions and MSO definable modalities are orthogonal to each other. There
are simple properties which are not easily expressible using path-expressions. For example,
the existence of a concurrent event. Such convenient and frequently-used features can be
provided as a modality when defining a temporal logic in our framework. While we have the
very expressive power of MSO to define the modalities, we are bound to use only a finite
number of them, fixed for every temporal logic. A user of a specific temporal logic may
want to express the (non-)existence of particular patterns in the behavior graph, which may
turn out to be quite cumbersome to describe using a fixed set of modalities. Moreover such
patterns may be highly task-specific and hence are impractical to provide within a fixed set
of modalities. The provision for path-expressions, especially with converse and intersection,
is extremely convenient in such circumstances.

The main result of our paper is a 2EXPTIME decision procedure for the (bounded phase)
satisfiability problem for any temporal logic definable in our generic framework. Further-
more, if we restrict to path-expressions without intersection, the decision procedure is only
EXPTIME. Our decision procedure is optimal in both these cases. In fact the lower bounds
hold for the purely navigational logic (without MSO definable modalities). Also, there exist
specific temporal logics using only modalities (no path-expressions) which already have an
EXPTIME-hard satisfiability problem (cf. NWTL [1] for nested words). Our decision proce-
dures, while preserving the optimality even for the aforementioned special cases, also provide
a unifying proof. In fact they also apply to other structures such as ranked and unranked
trees.

We then use our logics for model checking. To do so, we provide a system model whose
behavioral semantics preserves concurrency (unlike the models from [33, 23, 5]). The com-
plexity upper bounds from satisfiability are preserved.

Summarizing, we provide a framework to specify (linear-time) properties of concurrent
recursive programs appropriately over partial orders and give optimal decision procedures
for satisfiability and model checking problems.

Outline In Section 2, we introduce some basic notions such as graphs and trees, and we
define nested traces, which serve as our model of program executions. Section 3 provides a
range of temporal logics over nested traces. In Section 4, we state and solve their satisfiability

3

problem. Section 5 addresses model checking.
An extended abstract of this paper appeared as [7].

2. Graphs, Nested Traces, and Trees

To model the behavior of distributed systems, we consider labeled graphs, each repre-
senting one single execution. A node of a graph is an event that can be observed during
an execution. Its labeling carries its type (e.g., procedure call, return, or internal) or some
processes that are involved in its execution. Edges reflect causal dependencies: an edge
(u, v) from node u to node v implies that u happens before v. A labeling of (u, v) may
provide information about the kind of causality between u and v (e.g., successive events on
some process).

Accordingly, we consider a signature, which is a pair S = (Σ,Γ) consisting of a finite set
Σ of node labelings and a finite set Γ of edge labelings. Throughout the paper, we assume
|Σ| ≥ 1 and |Γ| ≥ 2. An S-graph is a structure G = (V, λ, ν) where V is a non-empty set of
countably many nodes, λ : V → 2Σ is the node-labeling function, and ν : (V × V) → 2Γ is
the edge-labeling function, with the intuitive understanding that there is an edge between u
and v iff ν(u, v) 6= ∅. For σ ∈ Σ, Vσ := {u ∈ V | σ ∈ λ(u)} denotes the set of nodes that are
labeled with σ. Moreover, for γ ∈ Γ, Eγ := {(u, v) ∈ V × V | γ ∈ ν(u, v)} denotes the set
of edges with labeling γ. Then, E :=

⋃
γ∈ΓEγ is the set of all the edges. We require that

the transitive closure E+ of E is a well-founded (strict) partial order on V . We write ≺G

or simply ≺ for E+, and we write �G or � for E∗. Next, we consider concrete classes of
S-graphs.

b a c a c a a asucc succ succ succ succ succ succ

cr
cr cr

Figure 1: A nested word over Act = {a, b, c}

2.1. Nested Words

Nested words [3] model the execution of sequential recursive systems with one stack. We
fix non-empty finite sets Act and Type = {call, ret, int}. Then, Σ = Act ∪ Type is the set of
node labelings. Its component Type indicates whether an event is a procedure call, a return,
or an internal action. A nesting edge connects a procedure call with the corresponding
return and will be labeled by cr ∈ Γ. All the events are totally ordered. We use succ ∈ Γ
to label the immediate successor of the total order. Thus, Γ = {succ,cr}. We obtain the
signature S = (Σ,Γ).

Definition 1. A nested word over Act is an S-graph G = (V, λ, ν) such that the following
hold:

4

W1 V = Vcall ⊎ Vret ⊎ Vint =
⊎

a∈Act Va (where ⊎ denotes disjoint union)

W2 Esucc is the direct successor relation of a total order on V

W3 Ecr ⊆ Vcall × Vret

W4 for all (u, v), (u′, v′) ∈ Ecr, we have u = u′ iff v = v′

W5 for all u ∈ Vcall and v
′ ∈ Vret, if u ≺ v′ then either there exists v � v′ with (u, v) ∈ Ecr

or there exists u′ � u with (u′, v′) ∈ Ecr

The set of nested words over Act is denoted NW (Act).

A nested word over Act = {a, b, c} is depicted in Fig. 1. Note that we can view it
as a classical word over Act with an additional nesting relation over its positions. We
can also view it as a word over Act × Type. Then, conditions W1 − W5 ensure that the
nesting edges are assigned uniquely. The nested word from Fig. 1 is, therefore, given by
(b, call)(a, call)(c, int)(a, ret)(c, ret)(a, call)(a, ret)(a, int).

2.2. Nested Traces

To model executions of concurrent recursive programs that communicate via shared
variables, we introduce graphs with multiple nesting relations. We fix non-empty finite
sets Proc and Act , and let, like in the previous paragraph, Type = {call, ret, int}. Then,
Σ = Proc ∪ Act ∪ Type is the set of node labelings. Again, its component Type indicates
whether an event is a procedure call, a return, or an internal action. A nesting edge connects
a procedure call with the corresponding return, and will be labeled by cr ∈ Γ. In addition,
we use succp ∈ Γ to label those edges that link successive events of process p ∈ Proc. Thus,
letting Γ = {succp | p ∈ Proc} ∪ {cr}, we obtain a new signature S = (Σ,Γ).

Definition 2. A nested (Mazurkiewicz) trace over Proc and Act is an S-graph G = (V, λ, ν)
such that the following hold:

T1 V = Vcall ⊎ Vret ⊎ Vint =
⊎

a∈Act Va =
⋃

p∈Proc Vp

T2 for all processes p, q ∈ Proc with p 6= q, we have Vp ∩ Vq ⊆ Vint

T3 for all p ∈ Proc, Esuccp is the direct successor relation of a total order on Vp

T4 Ecr ⊆ (Vcall × Vret) ∩
⋃

p∈Proc(Vp × Vp)

T5 for all (u, v), (u′, v′) ∈ Ecr, we have u = u′ iff v = v′

T6 for all p ∈ Proc and u ∈ Vcall ∩ Vp and v′ ∈ Vret ∩ Vp, if u ≺ v′ then either there exists
v � v′ with (u, v) ∈ Ecr or there exists u′ � u with (u′, v′) ∈ Ecr

The set of nested traces over Proc and Act is denoted by Traces(Proc,Act).

5

q

p

sv sv

c

c

sv

c

sv

r

sv

r r

r

r

p, q

q

p

q

p p p

q

q

p

q

p

q

p p

cr
cr

cr

int int

call

call int call int

ret

int ret ret

ret

ret

Figure 2: A nested trace over Proc = {p, q} and Act = {c, r, sv}

q

p

sv sv

c

c

sv

c

sv

r

sv

r r

r

r
int int

call

call int call int

ret

int ret ret

ret

ret

Figure 3: A 2-phase linearization

Intuitively, each event has exactly one type and one action, and it belongs to at least one
process (T1), synchronizing events are always internal (T2), along any process the events
are totally ordered (T3), a nesting edge is always between a call and a return of the same
process (T4), and cr-edges restricted to any process are well nested (T5 and T6). Note that
we may have unmatched calls or returns.

For u ∈ V , we let Proc(u) = λ(u) ∩ Proc. When |Proc| = 1, then a nested trace is
essentially a nested word (cf. Section 2.1). Fig. 2 depicts a nested trace over Proc = {p, q}
and Act = {c, r, sv}. Action c denotes a call, r a return, and sv reveals some synchronization
via a shared variable. Node labelings from Proc are given by the gray-shaded regions, i.e.,
sv -events involve both p and q. Edge labelings succp and succq are abbreviated by p and
q, respectively.

We introduce a restricted class of nested traces over Proc and Act , which is defined in
terms of a restriction on words from [23]. The class is parametrized by an (existential)
upper bound k ≥ 1 on the number of phases that a trace needs to be executed. In each
phase, return events belong to one dedicated process. Let us first introduce the notion of
linearization. A linearization of a nested trace G = (V, λ, ν) is any structure (V, λ,≤) such
that ≤ is a total order extending �. Fig. 3 depicts a linearization of the nested trace from
Fig. 2. We identify isomorphic structures so that a linearization can be considered as a word
over 2Σ. Note that, for every word w ∈ (2Σ)

∗
, there is at most one (up to isomorphism)

nested trace G such that w is a linearization of G [17].
For k ≥ 1, a word w ∈ (2Σ)

∗
is a k-phase word if it can be written as w1 · · ·wk where,

for all i ∈ {1, . . . , k}, there is p ∈ Proc such that, for each letter a of wi, we have that
ret ∈ a implies p ∈ a. A nested trace is called a k-phase nested trace [8] if at least one of
its linearizations is a k-phase word. The set of k-phase nested traces over Proc and Act is
denoted by Tracesk(Proc,Act). We denote by Link(G) the set of linearizations of nested
trace G that are k-phase words. In particular, G is a k-phase nested trace iff Link(G) 6= ∅.
The nested trace from Fig. 2 is a 2-phase trace: its linearization from Fig. 3 schedules returns

6

of q before all returns of p.

2.3. Ranked Trees

Let S = (Σ,Γ). An S-tree is an S-graph t = (V, λ, ν). We require that there is a “root”
u0 ∈ V such that for all u, v, v′ ∈ V and γ, γ′ ∈ Γ:

(i) (u0, u) ∈ E
∗, and (v, u), (v′, u) ∈ E implies v = v′

(ii) (u, v), (u, v′) ∈ Eγ implies v = v′, and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′

The tree structure is enforced by (i), and (ii) ensures that every node has at most one γ-
successor and edges have a unique label from Γ, which can be seen as a set of directions.
Thus, Γ = {left, right} yields binary trees. The set of all S-trees is denoted Trees(S).

2.4. Ordered Unranked Trees

Each node in an ordered unranked tree can have a potentially unbounded number of
children, and the children of any node are totally ordered. Formally it is an S-graph t =
(V, λ, ν) over S = (Σ,Γ) where Γ = {child, next}. Again, there is a “root” u0 ∈ V such
that for all u, v, v′ ∈ V :

(i) (u0, u) ∈ E
∗ and (u0, u) /∈ Enext

(ii) (v, u), (v′, u) ∈ Echild implies v = v′, and (v, u), (v′, u) ∈ Enext implies v = v′

(iii) (u, v), (u, v′) ∈ Enext implies v = v′ and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′

(iv) (u, v) ∈ Echild implies that there exists v0 ∈ V such that (u, v0) ∈ Echild and, (u, v
′) ∈

Echild iff (v0, v
′) ∈ E∗

next

The set of all ordered unranked trees over S is denoted o.u.Trees(S).

3. Temporal Logic

In this section, let S = (Σ,Γ) be any signature. We study temporal logics whose modal-
ities are defined in the monadic second-order (MSO) logic over S-graphs, which we recall in
the following. We use x, y, . . . to denote first-order variables which vary over nodes of the
graphs, and X, Y, . . . to denote second-order variables which vary over sets of nodes. The
syntax of MSO(S) is given by the grammar

ϕ ::= σ(x) | γ(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where σ ranges over Σ, γ ranges over Γ, x and y are first-order variables, and X is
a second-order variable. We use ≺, the transitive closure of the relations induced by
Γ, freely as it can be expressed in MSO(S). For an S-graph G = (V, λ, ν) and a for-
mula ϕ(x1, . . . , xn, X1, . . . , Xm) with free variables in {x1, . . . , xn, X1, . . . , Xm}, we write
G |= ϕ(u1, . . . , un, U1, . . . , Um) if ϕ is evaluated to true when interpreting the variables by
u1, . . . , un ∈ V and U1, . . . , Um ⊆ V , respectively.

7

[[σ]]G := Vσ [[¬ϕ]]G := V \ [[ϕ]]G [[ϕ1 ∨ ϕ2]]G := [[ϕ1]]G ∪ [[ϕ2]]G

[[M(ϕ1, . . . , ϕm)]]G := {u ∈ V | G |= [[M]](u, [[ϕ1]]G, . . . , [[ϕm]]G)}

[[∃π]]G := {u ∈ V | there is v ∈ V such that (u, v) ∈ [[π]]G}

[[?ϕ]]G := {(u, u) | u ∈ [[ϕ]]G} [[γ]]G := Eγ [[γ−1]]G := E−1
γ

[[π ⊗ τ]]G := [[π]]G ⊗ [[τ]]G [[π∗]]G := [[π]]∗G

Figure 4: Semantics of temporal logic (⊗ ∈ {∪,∩, ◦})

3.1. MSO-definable Temporal Logics

We will use MSO-formulas to define modalities of a temporal logic. For m ∈ N =
{0, 1, 2, . . .}, we call ϕ ∈ MSO(S) an m-ary modality if its free variables consist of m set
variables X1, . . . , Xm and one first-order variable x.

Definition 3. A temporal logic over S is given by a triple L = (M, arity, [[−]]) including
a finite set M of modality names, a mapping arity : M → N, and a mapping [[−]] : M →
MSO(S) such that, for M ∈M with arity(M) = m, [[M]] is an m-ary modality.

The syntax of L, i.e., the set of formulas ϕ ∈ Form(L), is given by

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | M(ϕ, . . . , ϕ︸ ︷︷ ︸
arity(M)

) | ∃π

π ::= ?ϕ | γ | γ−1 | π ∪ π | π ∩ π | π ◦ π | π∗

where σ ranges over Σ, M ranges over M, and γ ranges over Γ. We call ϕ a node formula
and π a path formula (or path expression). Their semantics wrt. an S-graph G = (V, λ, ν) is
defined inductively: for subformulas ϕ, we obtain a set [[ϕ]]G ⊆ V , containing the nodes of
G that satisfy ϕ. Accordingly, [[π]]G ⊆ V × V is the set of pairs of nodes linked with a path
defined by π. Then, ∃π is the set of nodes that admit a path following π. Formally, [[−]]G is
given in Fig. 4 where ⊗ ∈ {∪,∩, ◦} (◦ denotes the product of two relations). We may write
G, u |= ϕ if u ∈ [[ϕ]]G and G, u, v |= π if (u, v) ∈ [[π]]G. We also use π+ := π ◦ π∗.

An intersection free temporal logic over S is defined as expected: path expressions do
not contain subformulas of the form π1∩π2. Moreover, a path-expression free temporal logic
does not contain formulas of the form ∃π.

In MSO logic and temporal logic, we use the usual abbreviations such as ∧ and →.
Moreover, we use ⊤ to denote “true” and ⊥ to denote “false”.

Remark 1. We can easily include π−1, with the expected meaning, in our syntax, too, but
it is redundant: (?ϕ)−1 = ?ϕ, (π−1)−1 = π, (π1∪π2)

−1 = π−1
1 ∪π

−1
2 , (π1∩π2)

−1 = π−1
1 ∩π

−1
2 ,

(π1 ◦ π2)
−1 = π−1

2 ◦ π
−1
1 and (π∗)−1 = (π−1)∗.

8

3.2. Examples

Next, we present some example temporal logics that are captured by the general frame-
work.

Example 1. We consider the path-expression free temporal logic CTL over (Σ,Γ) (inter-
preted over (Σ,Γ)-trees) [13]. The modalities are M = {EX,EG,EU} with EX and EG being
unary and EU being binary. Node formula EXϕ holds at a node if there is a child satisfying
ϕ. Thus, [[EX]](x,X) = ∃y (x ≺· y ∧ y ∈ X) where x ≺· y :=

∨
γ∈Γ γ(x, y). Formula EGϕ

means that there is an infinite path starting from the current node where ϕ always holds.
Formula ϕ EU ψ means that there is a path starting from the current node satisfying “ϕ
until ψ”:

[[EG]](x,X) = ∃Y (Y ⊆ X ∧ x ∈ Y ∧ ∀z (z ∈ Y → ∃z′ (z′ ∈ Y ∧ z ≺· z′)))

[[EU]](x,X1, X2) = ∃z (x � z ∧ z ∈ X2 ∧ ∀y (x � y ≺ z → y ∈ X1))

Example 2. Our approach captures various logics over unranked trees (see [27] for an
overview). E.g., the intersection free temporal logic L−

0 with no modalities over ordered
unranked trees is precisely regular XPath [12].

Example 3. We give a property over nested traces using a path expression: ϕ = ¬∃(cr ∩
(?q ◦ (

⋃
γ∈Γ γ)

+ ◦ ?(call ∧ p) ◦ (
⋃

γ∈Γ γ)
+)) means that process p is not allowed to call a new

procedure when it is in the scope of an active procedure call from q. The first call node
along q in Fig. 2 does not satisfy this property due to the second call of p.

Example 4. We now present a logic over nested traces, NTrL = ({CO,AU,AS}, arity , [[−]]).
The only unary modality is CO. Intuitively, COϕ means that ϕ holds at a concurrent
position. Both AU and AS are binary modalities. Formula ϕAUψ means that in the partial
order G there is a (strict) future node satisfying ψ, and ϕ should hold on all nodes in
between. AS is the past-time counterpart of AU. That is

[[CO]](x,X) = ∃y (¬(x ≺ y) ∧ ¬(y ≺ x) ∧ y ∈ X)

[[AU]](x,X1, X2) = ∃z (x ≺ z ∧ z ∈ X2 ∧ ∀y (x ≺ y ≺ z → y ∈ X1))

[[AS]](x,X1, X2) = ∃z (z ≺ x ∧ z ∈ X2 ∧ ∀y (z ≺ y ≺ x→ y ∈ X1))

Thus the full syntax of NTrL is

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | COϕ | ϕ AU ψ | ϕ AS ψ | ∃π

π ::= ?ϕ | γ | γ−1 | π ∪ π | π ◦ π | π∗

We now define several macros in this logic. These macros exhibit the power of modalities
and path-expressions. Indeed, one can think of an unlimited number of useful macros, but
here we list only a few. We start with various next macros.

X
cr ϕ ≡ ∃(cr ◦ ?ϕ)

Xp ϕ ≡ (¬p) AU (p ∧ ϕ)

EXϕ ≡ ⊥ AU ϕ 6≡ ∃
(
(
⋃

p∈Procsuccp) ◦ ?ϕ
)

9

Intuitively, Xcr claims that we are at a call position and ϕ holds at the corresponding return
position. Formula Xp ϕ means that ϕ holds at the next p-position (it does not require that
the current position is also on process p). Note that there is no easy way to express this
macro with path expressions, even with converse and intersection. Formula EXϕ says that
a minimal event in the (strict) future satisfies ϕ. Note that it is not equivalent to the path
expression which asks instead that a successor event on one of the participating processes
satisfies ϕ. For example, consider the nested trace in Figure 2. There are five internal events.
The second last internal event also satisfies ∃((succp ∪ succq) ◦ ?int), but it does not satisfy
EX int.

ϕUp ψ ≡ ∃(succp ◦ (?ϕ ◦ succp)
∗ ◦ ?ψ) ≡ p ∧ (p→ ϕ) AU (p ∧ ψ)

ϕ EU ψ ≡ ∃
(
(
⋃

p∈Procsuccp) ◦ (?ϕ ◦
⋃

p∈Procsuccp)
∗ ◦ ?ψ

)

ϕ EU
s ψ ≡ ∃

(
(
⋃

p∈Procsuccp ∪ cr) ◦ (?ϕ ◦ (
⋃

p∈Procsuccp ∪ cr))
∗ ◦ ?ψ

)

Formula ϕUp ψ asks that ϕ holds until ψ holds along the (strict) future events located on
process p. Formula ϕEUψ means that there is a path following successor edges only (succq)
to a (strict) future node satisfying ψ, and ϕ should hold on all in-between nodes in the path.
Formula ϕ EU

s ψ allows the path to use cr edges as well. This is called a summary path in
the setting of nested words [1]. Thus, ϕ EU

s ψ means that in the partial order G there is a
path to a (strict) future node satisfying ψ, and ϕ should hold on all in-between nodes in the
path.

It is in fact possible to provide the above macros also as modalities. However, this makes
the syntax of the logic much heavier, and possibly a big list of modality names may confuse
the user rather than helping him. Furthermore, there are potentially unlimited possible
macros which makes it impossible to provide all of them as a finite set of modalities. For
example, a user may want to reason about sizes of possible lengths of paths, modulo a
constant which is obtained from the particular application he has in mind. He can easily
obtain such macros as path expressions. Another advantage of path-expressions is that in
many cases they allow one to write macros very simply and intuitively, whereas an MSO
definition may be less obvious. For instance, the macro EU

s is defined above with a simple
path-expression. As alluded to before, it could also be defined as an MSO modality by

[[EUs]](x,X1, X2) := ∃z∃Y (z ∈ X2 ∧ Y ⊆ X1∧

∀y (y ∈ Y ∨ y = z)→ ((cr(x, y) ∨
∨

q∈Proc succq(x, y)) ∨

∃y′ (y′ ∈ Y ∧ (cr(y′, y) ∨
∨

q∈Proc succq(y
′, y)))))

Finally, note that this example captures various logics defined in [1] for the case |Proc| =
1. For example, if we let {Xcr,Ycr,Xp,Yp,EU

s,ESs} to be the modalities (where p is the
only process in Proc) and forbid path-expressions, our logic is precisely NWTL.

4. Satisfiability: From Trees to Nested Traces

In this section, we show that the satisfiability problem of any MSO-definable temporal
logic L over any of the structures defined in Section 2 (that is, k-phase nested traces, ranked

10

trees, and unranked trees) is decidable in 2EXPTIME. Moreover, if L is intersection free,
then it is decidable in EXPTIME. For general background on complexity classes, we refer the
reader to [31, 4].

Consider any signature S = (Σ,Γ) and temporal logic L over S. The following decision
problem is well known.

Problem 1. Tree-Sat(L):

Instance: ϕ ∈ Form(L)

Question: Are there t ∈ Trees(S) and node u of t such that t, u |= ϕ ?

Fact 1 ([18, 34, 26, 21]). Let L0 be the (unique) temporal logic over S with M = ∅. The
problem Tree-Sat(L0) is 2EXPTIME-complete [26, 21]. For the intersection free fragment
L−

0 , the problem Tree-Sat(L−
0) is EXPTIME-complete [18, 34].

Remark 2. The lower bounds from Fact 1 are proved for unordered trees in [18, 26]. More-
over, the alphabets of node and edge labelings are part of the input. However, unordered
trees over arbitrarily large finite alphabets can be encoded as binary trees over any set Σ.
Formulas over unordered trees can then be translated into formulas over binary trees of
polynomial size preserving satisfiability. Thus, the lower bounds given in [18, 26] hold for
ranked trees as well.

We will extend these results to logics L and L− including MSO modalities. For this, we
need the notion of an alternating 2-way tree automaton.

Definition 4. An alternating 2-way tree automaton (A2A) over S = (Σ,Γ) of index r ∈ N

is a tuple A = (Q, δ, q0,Acc) where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• Acc : Q→ N is a parity acceptance condition with r = max(Acc(Q)), and

• δ : Q × 2Σ × 2D → B+(D × Q) is the transition function where D = Γ ∪ {stay, up}
and B+(D ×Q) is the set of positive boolean formulas over D ×Q.

We use A2A occasionally, so we only give an intuition of their semantics and refer to
[34, 21] for details. An A2A walks in an S-tree t = (V, λ, ν). A configuration is a set of
“threads” (q, u) where q ∈ Q and u ∈ V is the current node. For every thread (q, u), we
have to choose some model {(d1, q1), . . . , (dn, qn)} of δ(q, λ(u), D′) where D′ is the set of
directions available at u. Then, we replace (q, u) with n new threads (qi, ui) for 1 ≤ i ≤ n
where ui is obtained from u by following direction di (if di = stay, then ui = u). The parity
acceptance condition has to be applied to all infinite paths when we consider the run as a
tree, threads (qi, ui) being the children of (q, u). For u ∈ V , a run over (t, u) is an execution
that starts in the single configuration (q0, u). The semantics [[A]]t contains all nodes u of t
such that there is an accepting run of A over (t, u).

11

Fact 2 ([35]). Given an A2A A of index r with n states, one can check in time exponential
in n · r if there is a tree t such that [[A]]t 6= ∅.

The main ingredient of the proof of Fact 1 is the construction of an A2A from a given
formula. Its existence is given by the following fact.

Fact 3 ([21]). Consider the temporal logic L0 over S with M = ∅. For every formula
ϕ ∈ Form(L0), we can construct an A2A Bϕ over S of exponential size such that, for all
S-trees t, we have [[ϕ]]t = [[Bϕ]]t. Moreover, if ϕ ∈ Form(L−

0) is intersection free, then Bϕ is
of polynomial size.

Using Fact 2 and Fact 3, we can extend Fact 1:

Theorem 1. Let L be a temporal logic over S. The problem Tree-Sat(L) is 2EXPTIME-
complete. For the intersection free fragment L−, the problem Tree-Sat(L−) is EXPTIME-
complete.

Proof. The lower bounds follow from Fact 1. We show the upper bounds. Let ϕ be any L
formula. Let Subf(ϕ) denote the set of subformulas of ϕ and let top(ξ) denote the topmost
symbol of ξ ∈ Subf(ϕ) which could be ∃ or a modality M ∈M∪Σ∪{¬,∨}: below, we treat
atomic propositions σ ∈ Σ, negation ¬, and disjunction ∨ as modalities of arities 0, 1, and
2 respectively.

For each modality M ∈ M ∪ Σ ∪ {¬,∨} of arity m, we define an MSO(S) formula ψM

with free variables X0, . . . , Xm by

ψM(X0, X1, . . . , Xm) := ∀x (x ∈ X0 ←→ [[M]](x,X1, . . . , Xm)) .

Let Sm = (Σ ∪ {X0, . . . , Xm},Γ) so that the node labeling encodes the valuations of the
free set variables as usual. By Rabin’s theorem, there is a non-deterministic (N1A) tree
automaton AM recognizing all Sm-trees satisfying ψM . Note that AM for M ∈ Σ ∪ {¬,∨}
has only one state.

Let ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ) where ξ1, . . . , ξm are the node formulas checked in path
π. Replacing ξ1, . . . , ξm by set variables X1, . . . , Xm (or new predicates) we will construct,
using Fact 3, an A2A A∃π accepting all Sm-trees satisfying the “formula”

ψ∃π(X0, X1, . . . , Xm) := ∀x (x ∈ X0 ←→ ∃π(X1, . . . , Xm)) .

By Fact 3, we can construct automata B1 and B2 for ∃π(X1, . . . , Xm) and ¬∃π(X1, . . . , Xm),
resp., which are L0 formulas. Let ι1 and ι2 be the initial states of B1 and B2. The automaton
A∃π includes the disjoint union of B1 and B2 plus a new initial state ι (with even priority in
the acceptance condition) and, for σ ⊆ Σ ∪ {X0, . . . , Xm} and D

′ ⊆ D, the transition

δ(ι, σ,D′) =
∧

γ∈D′

(γ, ι) ∧

{
(stay, ι1) if X0 ∈ σ

(stay, ι2) otherwise.

12

By Fact 3, the size of A∃π is exponential (resp. polynomial) in the size of π(X1, . . . , Xm)
(resp. if this path expression is intersection free).

The final automaton A runs over Sϕ-trees t where Sϕ = (Σ ∪ Subf(ϕ),Γ), i.e., the node
labeling includes the (guessed) truth values for Subf(ϕ). To check that these guesses are
correct, A runs an automaton Aξ for each ξ ∈ Subf(ϕ).

For each formula ξ0 =M(ξ1, . . . , ξm) ∈ Subf(ϕ) with M ∈M ∪Σ ∪ {¬,∨}, we define an
automaton Aξ0 over Sϕ-trees by taking a copy of AM which reads a label σ ⊆ Σ ∪ Subf(ϕ)
of t as if it was σ ∩ (Σ ∪ {ξ0, . . . , ξm}) with ξi further replaced by Xi. Similarly, for each
ξ0 = ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ), we define an automaton Aξ0 over Sϕ-trees by taking a copy
of A∃π which reads a label σ ⊆ Σ ∪ Subf(ϕ) of t as above.

Finally, A is the disjoint union of all Aξ for ξ ∈ Subf(ϕ) together with a new initial state ι
which starts all the automata Aξ with the initial transitions δ(ι, σ,D′) =

∧
ξ∈Subf(ϕ)(stay, ιξ)

for all D′ ⊆ D. We can check that an Sϕ-tree t = (V, λ, ν) is accepted by A iff its projection
t′ = (V, λ′, ν) on Σ is an S-tree and for each node u ∈ V we have λ(u) \ Σ = {ξ ∈
Subf(ϕ) | t′, u |= ξ}. Therefore, satisfiability of ϕ over S-trees is reduced to emptiness of the
conjunction of A with a two state automaton checking that ϕ ∈ λ(u) for some node u of the
tree.

The size of A is at most exponential (resp. polynomial) in the size of ϕ. Indeed, each
Aξ with top(ξ) 6= ∃ is of constant size since the MSO modalities are fixed and not part of
the input. If ξ = ∃π(ξ1, . . . , ξm) then the size of Aξ is exponential in |π(X1, . . . , Xm)| (note
that ξi is replaced by Xi so that its size does not influence the size of Aξ). Moreover, if π
is intersection free then the size of Aξ is polynomial in |π(X1, . . . , Xm)|. We deduce from
Fact 2 the 2EXPTIME upper bound for Tree-Sat(L) and the EXPTIME upper bound for
Tree-Sat(L−), the intersection free case. �

Remark 3. Satisfiability for the path-expression free logic CTL considered in Example 1
is known to be EXPTIME-complete [13]. The above procedure gives an EXPTIME procedure
for the satisfiability checking meeting the lower bound.

4.1. From Ordered Unranked Trees to Binary Trees

We recall that an ordered unranked tree can be encoded as a binary tree by removing
the edges (u, v) ∈ Echild whenever v is not a first-child. Note that Echild can be retrieved
from the binary encoding by the path expression child ◦ next∗. Hence any path expression
over ordered unranked trees can be converted to a path expression over binary trees (with
only a linear blowup in the size), and any MSO-formula over ordered unranked trees can
be translated to an MSO-formula over binary trees. Thus, Theorem 1 holds for ordered
unranked trees as well:

Problem 2. O-U-Tree-Sat(L):

Instance: ϕ ∈ Form(L)

Question: Are there t ∈ o.u.Trees(S) and node u of t such that t, u |= ϕ ?

Theorem 2. The problem O-U-Tree-Sat(L) is 2EXPTIME-complete. For the intersection
free fragment L−, the problem O-U-Tree-Sat(L−) is EXPTIME-complete.

13

The lower bounds follow from [18, 26] (Remark 2 applies to ordered unranked trees as well).
Note that the EXPTIME lower bound can also be obtained from regular XPath [12] (cf.
Example 2).

4.2. From Nested Traces to Trees

Now, we turn to nested traces and we will reduce the satisfiability problems for formulas
over nested traces to the satisfiability problems over trees. More precisely, we will transform
a given temporal logic over nested traces into some temporal logic over tree encodings of
nested traces that “simulates” the original logic. This will allow us to solve the following
problem, which is parametrized by Proc, Act , k ≥ 1, and a temporal logic L over the induced
signature:

Problem 3. Nested-Trace-Sat(L, k):

Instance: ϕ ∈ Form(L)

Question: Is there G ∈ Tracesk(Proc,Act) and node u such that G, u |= ϕ ?

Theorem 3. The problem Nested-Trace-Sat(L, k) is 2EXPTIME-complete. For the in-
tersection free fragment L−, the problem Nested-Trace-Sat(L−, k) is EXPTIME-complete.

The proof of Theorem 3 will be developed in the following (to prove the lower bounds,
we will assume |Act | ≥ 2). In order to exploit Theorem 1, we interpret a k-phase nested
trace G = (V, λ, ν) in a (binary) S′-tree (where S

′ := (Σ ⊎ {1, . . . , k}, {left, right})) using
the encoding from [23], extended to infinite trees. Actually, [23] does not consider nested
traces but k-phase words. Therefore, we will use linearizations of nested traces. Let w =
(V, λ,≤) ∈ Link(G). By ⋖, we denote the direct successor relation of ≤. Suppose that
V = {u0, u1, u2, . . .} and that u0 ⋖ u1 ⋖ u2 ⋖ . . . is the corresponding total order. For
0 ≤ i < |V |, we let phasew(ui) = min{j ∈ {1, . . . , k} | λ(u0) . . . λ(ui) is a j-phase word}.
Intuitively, this provides a “tight” factorization of w. We associate with w the S

′-tree
twk = (V, λ′, ν ′) where the node labeling is given by λ′(ui) = λ(ui) ∪ {phasew(ui)} and the
sets of edges are defined by E ′

right = Ecr and E ′
left = ⋖ \ {(u, v) ∈ ⋖ | there is u′ such

that (u′, v) ∈ Ecr}. That is, the tree encoding is obtained from the linearization by adding
the cr-edges as right children and removing the superfluous linear edges to return nodes
having a matching call. Fig. 5 depicts the tree tw2 for the linearization w that was illustrated
in Fig. 3. The edges removed from the linearization are shown in dotted lines. The newly
added edges are labeled right. All �-nodes are phase 1 and the ©-nodes are phase 2.

By Treesk(Proc,Act), we denote {twk | w ∈ Link(G) for some G ∈ Tracesk(Proc,Act)},
which is the set of valid tree encodings. The following was proved in [23] for finite structures,
and easily extends to infinite structures.

Fact 4 ([23, 28]). There is a formula TreeEnck ∈ MSO(S′) that defines exactly the set
Treesk(Proc,Act). Also, there is lessk(x, y) ∈ MSO(S′) such that for all k-phase words
w = (V, λ,≤) and all u, v ∈ V , we have u < v in w iff twk |= lessk(u, v).

14

q

p

sv sv

c

c

sv

c

sv

r

sv

r

r r r

right
right

right

left
left

left

left

left left

left left

left(3)

(1)(2)

int int

call

call int call int

ret

int ret ret

ret

ret

Figure 5: The tree encoding of a 2-phase linearization

Fact 4 will be used to reduce nested-trace modalities to tree modalities in the proof
of Theorem 3. We also need to deal with path expressions, which motivates the following
lemma:

Lemma 1. There exists a path expression succ≤k over S
′ such that, for all k-phase lin-

earizations w = (V, λ,≤), we have [[succ≤k]]tw
k
= {(u, v) ∈ V 2 | u ⋖ v}. In other words,

succ≤k encodes the successor relation ⋖ of ≤ in the tree encoding twk of w. Moreover, the
length of succ≤k is exponential in k.

Proof. We give the path expression inductively by case analysis. The different cases are
illustrated in Fig. 6. In the next paragraph we make a few observations which will ease the
understanding of the path expressions.

• The phase numbers are monotonically non-decreasing in the linearization. Recall that
the tree encoding is obtained from the linearization by adding the cr-edges as right
children and removing the superfluous linear edges to return nodes having a matching
call. Hence the phase numbers are monotonically non-decreasing in any path from the
root to any node.

• The left-successor of the tree always corresponds to a successor in the linearization.

• If a node has a right-child, then it is a call node, and the right-child is its corre-
sponding return.

• If u < v in the linearization, then there is a path from node u to node v in the tree
which does not visit any node that comes after node v in the linearization. This can
be proved by induction on v (with the total order ≤).

• If u⋖ v in the linearization and node v is not the left-successor of node u, then node
v is a return node which is attached to its call node.

• The first node of any phase greater than 1 is always a return. Moreover it will be
attached as a right-child if it is a matched return and as a left-child otherwise.

We inductively define a path expression succ≤m for the successor relation of the lin-
earization restricted to the nodes with phase at most m. That is, [[succ≤m]]tw

k
= {(u, v) ∈

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3

4

5

6

7

8

9 10

11

12

13 14

15

16

17

18

19(2) (2)

(2)

(1)

(2)

(3)

(1)

(3)

Figure 6: A 3-phase linearization and the corresponding tree encoding. Nodes in phase 1 are denoted �,
those in phase 2 are denoted © and the nodes in phase 3 are denoted ♦. There are two stacks. The call
return edges corresponding to stack 1 are shown above the line and those corresponding to stack 2 are shown
below the line. Note that these edges are uniquely determined by the linearization. The dotted edges in the
tree are the missing edges from the linearization. The sequence of nodes from the linearization is recovered
by traversing the left-edges whenever possible, and the dotted edges otherwise. The label on the dotted
edge says which case it corresponds to, in the path expressions succm−1,m and succm,m.

V 2 | u⋖ v, phasew(u) ≤ m, phasew(v) ≤ m}. It will be of the form

succ≤m = succ≤m−1 ∪ succm−1,m
(a)

∪ succm,m
(b)

where cases (a) and (b) are specified below and illustrated in Figs. 5 and 6. The base case
will be succ≤1 = succ1,1.

(a) We will consider the case when u is the last node in phase m−1 and v is the first node
in phase m. If v is a pending return (that is, it does not have a matching call), we have the
path expression ?(m− 1) ◦ left ◦ ?m. If v is a matched return, then v is the return of the

16

most recent call with a return in phase m. For example situations, we refer to the edges
labeled (1) in Figs. 5 and 6. This can be reached by the path expression prev-call-retm
which goes back to the most recent call which has a return in phase m, and then moves to
that return.

prev-call-retm = (?¬∃(right ◦ ?m) ◦ succ≤m−1
−1)∗ ◦ right ◦ ?m

Note that these two cases are mutually exclusive. That is, if a phase starts with a pending
return, it is not possible to have a matched return in the same phase with the corresponding
call belonging to a smaller phase. Hence we get the path expression from u to v in this case
as:

succm−1,m = ?(m− 1) ◦ left ◦ ?m

∪ ?(m− 1 ∧ ¬∃succ≤m−1) ◦ prev-call-retm (1)

(b) If two successive nodes u and v in the linearization are in the same phase m and are
connected in the tree by a path where each node is in phase m, then either (i) we can reach
v from u by taking a left edge, or (ii) v is a return appended to the latest pending call
which is also in the phase m and has a return in phase m. In that case, we can reach v by
moving up the tree along nodes in phase m until we find the first “pending call” and then
taking the right edge to node v. For example situations of case (ii), please refer to the
edges labeled (2) in Figs. 5 and 6. Note that, while moving up the tree, if we move from a
right child to its parent, we are at a call node which cannot be a right child. Hence it is not
possible to take right−1 twice in succession.

Assume finally that the successive nodes u and v are in the same phase m, but there is no
path from u to v visiting only nodes of phase m. This case arises when v is a return whose
corresponding call is in a different phase. Now we can move up the tree from u until we see
the first node, call it w, belonging to a smaller phase. Clearly w is a call node with its return
w′ in phase m. Since w′ and v are return nodes in the same phase, the corresponding call of
v will be before w, and in fact it will be the most recent call before w with its return in phase
m. Moving from the parent of w to v is abstracted by the path expression prev-call-retm.
Examples are edges labeled (3) in Figs. 5 and 6.

The path expression succm,m is given by:

succm,m = (?m ◦ left ◦ ?m) ∪

?(m ∧ ¬∃left) ◦ [(right−1 ∪ ?(¬∃(right ◦ ?m)) ◦ left−1 ◦ ?m]∗◦

[right ◦ ?m ∪ (2)

right−1 ◦ ?(¬m) ◦ left−1 ◦ prev-call-retm] (3)

Note that right−1 ◦ left−1 allows us to skip call nodes which were previously matched.
All nodes in phase 1 will be connected in the tree, hence we get the basis for the induction,

succ≤1 := succ1,1 which simplifies to:

left ◦ ?1 ∪

?(1 ∧ ¬∃left) ◦ [(right−1 ∪ ?¬∃(right ◦ ?1)) ◦ left−1]∗ ◦ right ◦ ?1

17

Note that the length of the path expression succ≤m is exponential in m. �

We are now ready to prove the upper bounds of Theorem 3.

Proof (upper bounds of Theorem 3). Let S = (Σ,Γ) be the signature induced by
Proc and Act , and let L = (M, arity , [[−]]) be the considered temporal logic over nested
traces. For S

′ = (Σ ⊎ {1, . . . , k}, {left, right}), we define a new temporal logic L′ =
(M′, arity ′, [[−]]′) over S

′-trees and give an inductive, linear-time computable translation T
of formulas over L to “equivalent” formulas over L′. By “equivalent”, we mean that for all
G ∈ Tracesk(Proc,Act) and all k-phase linearizations w of G, we have [[ϕ]]G = [[T (ϕ)]]tw

k
for

each node formula ϕ over L and [[π]]G = [[T (π)]]tw
k
for each path formula π over L.

We set M
′ = M ∪ {Enc} where Enc is a new modality with arity ′(Enc) = 0 that

characterizes valid tree encodings: the semantics [[Enc]]′ is given by the formula TreeEnck

from Fact 4. We also change the semantics of the modalities from M: for each M ∈ M,
the new semantics [[M]]′ ∈ MSO(S′) is obtained from [[M]] ∈ MSO(S) by replacing each
occurrence of cr(x, y) by right(x, y) and each occurrence of succp(x, y) by

succp(x, y) := p(x) ∧ lessk(x, y) ∧ p(y) ∧ ¬∃z (lessk(x, z) ∧ p(z) ∧ lessk(z, y))

where lessk is the formula from Fact 4. Note that these transformations of the semantics of
the modalities only depends on L and on k (which are not part of the input) and not on the
formula for which we want to check satisfiability.

The translation T from formulas over L to “equivalent” formulas over L′ is defined
inductively for node formulas by

T (σ) = σ T (M(ϕ1, . . . , ϕℓ)) =M(T (ϕ1), . . . , T (ϕℓ))

T (¬ϕ) = ¬T (ϕ) T (∃π) = ∃T (π)

T (ϕ1 ∨ ϕ2) = T (ϕ1) ∨ T (ϕ2)

and for path formulas by

T (?ϕ) = ?T (ϕ) T (π1 ∪ π2) = T (π1) ∪ T (π2)

T (cr) = right T (π1 ∩ π2) = T (π1) ∩ T (π2)

T (cr−1) = right−1 T (π1 ◦ π2) = T (π1) ◦ T (π2)

T (succp) = ?p ◦ succ≤k ◦ (?¬p ◦ succ≤k)
∗ ◦ ?p T (π∗) = T (π)∗

T (succ−1
p) = ?p ◦ succ−1

≤k ◦ (?¬p ◦ succ
−1
≤k)

∗ ◦ ?p

where succ≤k is defined in Lemma 1. Note that the transformation T (π) of a path formula
π is linear in |π| since k is not part of the input.

Now we check inductively that the translation T is correct. Let G = (V, λ, ν) ∈
Tracesk(Proc,Act), let w = (V, λ,≤) be a k-phase linearization of G and let twk = (V, λ′, ν ′)
be the tree encoding of w. We have to show that [[ϕ]]G = [[T (ϕ)]]tw

k
for each node formula ϕ

and [[π]]G = [[T (π)]]tw
k
for each path formula π.

18

By definition of twk we have immediately [[cr]]G = Ecr = Eright = [[right]]tw
k
. The case

succp is more interesting. We have (u, v) ∈ [[succp]]G iff u is on process p and v is the first
node (wrt. the ordering < of w) which is on process p. By Lemma 1, this is described by
the formula T (succp) interpreted on the tree encoding twk . The cases cr−1 and succ−1

p are
similar and the remaining cases for path formulas are obtained directly by induction.

We turn now to node formulas. Again by definition of twk we have immediately [[σ]]G =
{u ∈ V | σ ∈ λ(u)} = {u ∈ V | σ ∈ λ′(u)} = [[σ]]tw

k
for each σ ∈ Σ. The cases ¬ϕ, ϕ1 ∨ ϕ2,

and ∃π follow directly by induction. It remains to deal with a modality M of arity ℓ. We
prove by induction on the MSO formula [[M]] that for all U1, . . . , Uℓ ⊆ V and all nodes
u ∈ V , we have G |= [[M]](u, U1, . . . , Uℓ) iff twk |= [[M]]′(u, U1, . . . , Uℓ). Among the atomic
subformulas, the only non trivial case is for succp(x, y) and it follows from Fact 4 and the
definition of succp(x, y) given above. The non atomic cases follow directly by induction.

Finally, a formula ϕ ∈ Form(L) is satisfiable over k-phase nested traces iff the formula
Enc∧T (ϕ) ∈ Form(L′) is satisfiable over S′-trees. Using Theorem 1 we get the upper bounds
stated in Theorem 3. �

Remark 4. If k is given as part of the input, the above method for modalities does not
work: the new semantics [[M]]′ over trees depend on k and are no more fixed and independent
of the input. However, if we consider the fragment L0 with no MSO modalities, we get a
3EXPTIME procedure even if k is part of the input since the length of the path expression
T (π) is linear in |π| and exponential in k. Moreover, for the intersection free fragment L−

0 ,
we get a 2EXPTIME procedure.

We will prove the lower bounds of Theorem 3 by a reduction of Tree-Sat(L0) to the
problem Nested-Word-Sat(L0), where the latter is defined in the obvious manner. Note
that nested words are nested traces with a single process, and hence always 1-phase. So,
the problem for nested words is equivalent to Nested-Trace-Sat(L0, 1).

We will define an encoding of the binary trees as nested words. For convenience,
we consider the set of trees Trêes(Σ, {left, right}), where nodes carry exactly one la-
bel from Σ (just like nodes of nested words carry exactly one action from Act). That
is, Trêes(Σ, {left, right}) is the set of trees (V, λ, ν) ∈ Trees(Σ, {left, right}) such
that V =

⊎
a∈Σ Va. Clearly, if |Σ| ≥ 2, then the lower bounds from Fact 1 hold for

Trêes(Σ, {left, right}) as well. We will actually use an inductive definition of binary
trees which is equivalent to the definition given in Section 2. For a ∈ Σ, the singleton node
labeled a is a binary tree. If t0 is a binary tree, then (a, t0, ε) is a binary tree whose root is
labeled a, has left-subtree isomorphic to t0, and no right-child. Similarly, (a, ε, t0) is also
a binary tree where the right-subtree of the root is isomorphic to t0. Finally, we can define
(a, t0, t1), a binary tree whose root has both left and right children.

We have a mapping enc : Trêes(Σ, {left, right})→ NW (Σ) which maps a binary tree
to its nested-word encoding. Let Pos(t) be the set of nodes of the tree t and Pos(w) be
the set of nodes of the nested word w. For each tree t and its nested-word encoding w, we
have an injective mapping nenct : Pos(t) → Pos(enc(t)) which maps a node of a tree to
the corresponding node in its encoding. The encoding is defined inductively (please refer

19

Trees Nested Words

a a a

nenc
a

a a
T1

enc(T1)

nenc
a

a a
T2

enc(T2)

nenc
a

a a
T1

enc(T1)
T2

enc(T2)

nenc

Figure 7: Encoding of a binary tree as a nested word

to Fig. 7). The singleton tree a is encoded as nested word (a, call)(a, ret) with two nodes.
Then, nenct maps the only node of the tree to the first position of the nested word. Suppose
the encoding of the tree t0 is w0 and the encoding of the tree t1 is w1. The encoding of the
tree t = (a, t0, t1) is the nested word w = (a, call)w0(a, ret)w1. Moreover, nenct maps the
root of the tree to the first position of the nested word w, and nenct of the rest of the nodes
are inherited from those of the subtrees. The encoding is illustrated in Fig. 7.

Let t be a tree with node-labeling function λt. Each node u of t is represented by a
call-node i = nenct(u) in the nested-word encoding such that the label of u is the action
of the position i. That is, if λenc(t) is the node-labeling function of the nested word, we
have λenc(t)(i) = λt(u) ∪ {call}. The label of the return node corresponding to i does not
matter, but we keep it λt(u)∪{ret} for convenience. The set of nested words which are valid
encodings of trees are those in which (i) all nodes are either call or ret, (ii) all call-nodes as
well as all ret-nodes are matched, and (iii) the action of each call-node and the corresponding
return node is the same. These conditions can be expressed by a path expression without
intersection:

αenc = ¬∃

(
succ∗ ◦ ?

(
int ∨ (call ∧ ¬∃cr) ∨ (ret ∧ (

∨

a∈Σ

a ∧ ¬∃(cr−1 ◦ ?a)))
))

∪

(
(succ−1)∗ ◦ ?

(
int ∨ (call ∧ ¬∃cr) ∨ (ret ∧ (

∨

a∈Σ

a ∧ ¬∃(cr−1 ◦ ?a)))
))

It says that there are no int-nodes, no unmatched call-nodes and no unmatched ret-nodes.
Moreover, sticking onto our convention, the action of a ret-node and its corresponding call-
node matches. The first line takes care of this property to the right of the the current
position, and the second line does so to the left.

Certain properties of the encoding are stated in the following two lemmas:

Lemma 2. For all binary trees t and nodes u ∈ Pos(t), the following hold:

20

(i) enc(t), nenct(u) |= call ∧ αenc

(ii) λt(u) = λenc(t)(nenct(u)) ∩ Σ

Proof. By the definition of enc and nenct. �

Lemma 3. For all nested words w and nodes i ∈ Pos(w), if w, i |= call ∧ αenc then there
exist a binary tree t and a node u ∈ Pos(t) such that w = enc(t) and i = nenct(u).

Proof. The proof is by an induction on the structure of the nested word w. The base
case is when w = (a, call)(a, ret). Only the first position satisfies call ∧ αenc. The binary
tree a and its only node witness the claim. For the inductive case, let w = (a, call)w0(a, ret)
with t0 being the enc−1(w0) and such that every position in w0 satisfying call ∧ αenc also
has an nenc−1

t0 -image in t0. Then, enc
−1(w) is t = (a, t0, ε). The first position of w satisfies

call∧αenc and its nenc−1
t -image is the root of t. Every position of w0 which satisfies formula

call ∧ αenc in w0 continues to satisfy it in w as well. For those nodes, nenc−1
t is same as

nenc−1
t0 . Similar are the cases when w = (a, call)(a, ret)w0 and w = (a, call)w0(a, ret)w1. �

We will now define a translation from the logic L1
0 over binary trees to L2

0 over nested
words. For a node formula ϕ ∈ L1

0 and a path formula π ∈ L1
0, its translation is denoted by

ϕ ∈ L2
0 and π ∈ L2

0 respectively. It is defined inductively as follows:

a = a ¬ϕ = ¬ϕ

ϕ1 ∨ ϕ2 = ϕ1 ∨ ϕ2 ∃π = ∃π

?ϕ = ?ϕ left = succp ◦ ?call

right = cr ◦ succp ◦ ?call left−1 = succ−1
p ◦ ?call

right−1 = succ−1
p ◦ cr

−1 π1 ◦ π2 = π1 ◦ π2

π1 ∪ π2 = π1 ∪ π2 π1 ∩ π2 = π1 ∩ π2

π∗ = π∗

Note 1. For all π, if w, i, j |= π and w, i |= call, then w, j |= call. That is, if w is an
encoding of a tree t and i = nenct(u) for some node u ∈ Pos(t), if w, i, j |= π the j is
nenct(v) for some node v ∈ Pos(t).

The faithfulness of the translation is stated in the following lemma:

Lemma 4. For all binary trees t, nodes u, v ∈ Pos(t), node formulas ϕ ∈ L1
0, and path

formulas π ∈ L1
0, the following hold:

(i) t, u |= ϕ iff enc(t), nenct(u) |= ϕ

(ii) t, u, v |= π iff enc(t), nenct(u), nenct(v) |= π

21

We omit the proof, which is by an easy induction on the structure of the formula. Now, the
encoding and the translation preserve satisfiability.

Lemma 5. For all node formulas ϕ ∈ L1
0 and path formulas π ∈ L1

0, the following hold:

(i) There exist a binary tree t and node u such that t, u |= ϕ iff there exist a nested word
w and node i such that w, i |= ϕ ∧ call ∧ αenc.

(ii) There exist a binary tree t and nodes u, v such that t, u, v |= π iff there exist a nested
word w and nodes i, j such that w, i, j |= ?call ◦ π ◦ ?call ∧ αenc.

Proof. Suppose t, u |= ϕ. Let w = enc(t) and i = nenct(u). By Lemma 2 and Lemma 4,
we have w, i |= ϕ ∧ call ∧ αenc. Suppose w, i |= ϕ ∧ call ∧ αenc. By Lemma 3, there exist tree
t and node u such that w = enc(t) and i = nenct(u). By Lemma 4, we have t, u |= ϕ.

Suppose t, u, v |= π. Let w = enc(t), i = nenct(u) and j = nenct(v). By Lemma 2 and
Lemma 4, we have w, i, j |= ?call ◦ π ◦ ?call ∧ αenc. Suppose w, i, j |= ?call ◦ π ◦ ?call ∧ αenc.
By Lemma 3 and Note 1, there exist tree t, node u, and node v such that w = enc(t),
i = nenct(u), and j = nenct(v). By Lemma 4, we have t, u, v |= π. �

Proof (of lower bounds of Theorem 3). By Lemma 5, the 2EXPTIME-hard problem
Tree-Sat(L0) is reduced to Nested-Word-Sat(L0). The latter is equivalent to the
problem Nested-Trace-Sat(L0, 1). Also, the EXPTIME-hard problem Tree-Sat(L−

0) is
reduced to Nested-Trace-Sat(L−

0 , 1). �

5. Model Checking

Our approach extends to model checking of concurrent recursive programs. Here, we
are given an automata model of a program, and the question is if all its runs, restricted
to k-phase nested traces, satisfy a given formula. We can indeed define a natural model of
concurrent recursive programs, called nested-trace automata, that generates nested traces.
It is similar to the concurrent visibly pushdown automata from [8], but running on both
finite and infinite nested trace, not only finite ones. Every process comes with a finite
number of local states, and a global system state consists of a local state for each process.
The system can perform three types of transitions to update the global state. A transition
from ∆int is executed by a number of processes P ⊆ Proc, which update their local state and
generate an event of type int. A transition from ∆call is executed by one process p ∈ Proc
and, therefore, only updates the local state sp of p to some state s′p. The event that is
generated has type call. Instead of using a stack, we allow the process p to read the state s′p
when the matching return transition is executed. Note that there are actually two transition
relations for returns: ∆1

ret
is for unmatched returns, and ∆2

ret
is for matched returns. The

formal definition is as follows:

Definition 5. A nested-trace automaton (NTA) over finite sets Proc and Act is a tuple
A = ((Sp)p∈Proc ,∆, ι, (Fp)p∈Proc). Here, the Sp are disjoint finite sets of local states (Sp

containing the local states of process p). Given a set P ⊆ Proc, we let SP :=
∏

p∈P Sp.

22

The tuple ι ∈ SProc is a global initial state, and Fp ⊆ Sp is the set of local final states
for process p. Finally, ∆ provides the transitions, which are divided into four sets: ∆ =
(∆call,∆

1
ret
,∆2

ret
,∆int) where

• ∆call ⊆
⋃

p∈Proc(Sp × Act × Sp),

• ∆1
ret
⊆

⋃
p∈Proc(Sp × Act × Sp),

• ∆2
ret
⊆

⋃
p∈Proc(Sp × Sp × Act × Sp), and

• ∆int ⊆
⋃

P⊆Proc
(SP ×Act × SP).

Let S =
⋃

P⊆Proc
SP . For s ∈ S and p ∈ Proc, we let sp be the p-th component of s (if it

exists). A run of an NTA A is an S
′-graph G = (V, λ, ν) where S′ = (Σ⊎

⊎
p∈Proc Sp,Γ) with

Σ = Proc ∪ Act ∪ Type and Γ = {cr} ∪ {succp | p ∈ Proc}, and the following conditions
hold:

• The graph G without the labeling from
⋃

p∈Proc Sp is a nested trace. That is, nt(G) :=
(V, λ′, ν) where λ′(u) = λ(u) ∩ Σ is a nested trace over Proc and Act .

• Every node u is labeled with one, and only one, state from Sp for each process p ∈
Proc(u). This state is denoted ρ(u)p. The label of a node u does not contain any state
from Sp if p /∈ Proc(u). That is, for all p ∈ Proc and all u ∈ V ,

λ(u) ∩ Sp =

{
{ρ(u)p} if p ∈ λ(u)

∅ otherwise.

This defines a mapping ρ : V → S by ρ(u) = (ρ(u)p)p∈Proc(u).

• Let us determine another mapping ρ− : V → S as follows: for u ∈ V , we let ρ−(u) =
(ρ−(u)p)p∈Proc(u) where ρ

−(u)p = ρ(u′)p if (u′, u) ∈ Esuccp, and ρ
−(u)p = ιp if there is

no u′ such that (u′, u) ∈ Esuccp. The following hold, for all nodes u, u′ ∈ V and actions
a ∈ Act :

– (ρ−(u), a, ρ(u)) ∈ ∆call if u ∈ Vcall ∩ Va

– (ρ−(u), a, ρ(u)) ∈ ∆1
ret

if u ∈ Vret ∩ Va and there is no v with (v, u) ∈ Ecr

– (ρ(u′), ρ−(u), a, ρ(u)) ∈ ∆2
ret

if u ∈ Vret ∩ Va and (u′, u) ∈ Ecr

– (ρ−(u), a, ρ(u)) ∈ ∆int if u ∈ Vint ∩ Va

Given the run G = (V, λ, ν), let T = {p ∈ Proc | Vp is finite} be the set of terminating
processes. For each p ∈ T , let fp = ιp if Vp = ∅ (i.e., there are no events on process p), and
otherwise fp = ρ(vp)p where vp is the last event on process p. The run is accepting if fp ∈ Fp

for all p ∈ T . The language L(A) of A is the set {nt(G) | G is an accepting run of A}. By
Lk(A), we denote its restriction L(A) ∩ Tracesk(Proc,Act) to k-phase nested traces.

Let Proc and Act be non-empty finite sets inducing signature S, let k ≥ 1, and let L be
a temporal logic over S. We are interested in the following decision problem.

23

Problem 4. Model-Checking(L, k):

Instance: NTA A and ϕ ∈ Form(L)

Question: Do we have A |=k ϕ, i.e.,

for all G ∈ Lk(A), is there a node u of G such that G, u |= ϕ ?

We show the following result:

Theorem 4. The problem Model-Checking(L, k) is 2EXPTIME-complete. For the inter-
section free fragment L−, the problem Model-Checking(L−, k) is EXPTIME-complete.

Proof. We will reduce the model-checking problem to the satisfiability problem by en-
coding accepting runs of a NTA A with a formula AccRun. For this, we enrich L to L′

with the additional unary modality EN (there exists a node) whose semantics is defined by
[[EN]](x,X) = ∃y (y ∈ X).

Now we will describe the accepting runs of the NTA A by the formula AccRun =
Val ∧ Acc ∧ ¬EN¬Trans. Here, Val says that the labeling by states is valid. That is,
no node is labeled by two states of the same process, and a node is labeled p iff it is labeled
by some state from Sp:

Val = ¬
∨

p∈Proc

EN

(
¬(p←→

∨

s∈Sp

s) ∨
∨

s1,s2∈Sp|s1 6=s2

(s1 ∧ s2)
)

Formula Acc says that the last event of a terminating process must be labeled by a local
accepting state. For all s ∈ S and p ∈ Proc, let “s = ιp” be a shorthand for “true” (⊤) if
s = ιp, and “false” (⊥) otherwise.

Acc =
∧

p∈Proc

(EN p ∧ ¬EN(p ∧ ¬∃succp)) ∨
∨

f∈Fp

(“f = ιp” ∧ ¬EN p) ∨ EN(f ∧ p ∧ ¬∃succp)

Formula Trans says that the labeling of the current node and its predecessors comply
with the transition relations. We let Trans = Transcall ∨Trans1

ret
∨Trans2

ret
∨Transint

where

• Transcall =
∨

p∈Proc
(s,a,s′)∈∆call

call ∧ a ∧ p ∧ s′ ∧ ((“s = ιp” ∧ ¬∃succ
−1
p) ∨ ∃(succ−1

p ◦ ?s))

• Trans1
ret

=
∨

p∈Proc
(s,a,s′)∈∆1

ret

ret ∧ a ∧ p ∧ s′ ∧ ¬∃cr−1 ∧ ((“s = ιp” ∧ ¬∃succ
−1
p) ∨ ∃(succ−1

p ◦ ?s))

• Trans2
ret

=
∨

p∈Proc
(s,s′,a,s′′)∈∆2

ret

ret ∧ a ∧ p ∧ s′′ ∧ ∃(succ−1
p ◦ ?s

′) ∧ ∃(cr−1 ◦ ?s)

24

• Transint =
∨

P⊆Proc

s,s′∈SP

(s,a,s′)∈∆int

int ∧ a ∧
∧
p/∈P

¬p

∧
∧
p∈P

[
p ∧ s′p ∧ ((“sp = ιp” ∧ ¬∃succ

−1
p) ∨ ∃(succ−1

p ◦ ?sp))
]

Note that the sizes of Acc and Trans are linear in the size of the NTA A. Moreover, a
nested trace decorated with states satisfies AccRun iff it defines an accepting run of the
NTA A. Thus, A |=k ϕ iff the formula AccRun ∧ ¬ENϕ is not satisfiable by a (state-
labeled) k-phase nested trace. This concludes the reduction.

The lower bound can be derived by a standard reduction from the satisfiability problem.
Notice that we can easily define a universal NTA which has a single state sp on every
process p. The global initial state is the tuple (sp)p∈Proc and the local final state of process
p is Fp = {sp}. The transition relations are full:

• ∆call =
⋃

p∈Proc({sp} × Act × {sp}),

• ∆1
ret

=
⋃

p∈Proc({sp} × Act × {sp}),

• ∆2
ret

=
⋃

p∈Proc({sp} × {sp} × Act × {sp}), and

• ∆int =
⋃

P⊆Proc
({(sp)p∈P} ×Act × {(sp)p∈P}).

This universal NTA accepts all nested traces.
Thus the satisfiability problem reduces to model checking of the universal NTA. �

Remark 5 (Alternate acceptance conditions). While defining NTAs, we have chosen
to keep simple local final states for terminating processes, while no acceptance condition is
imposed for non-terminating processes. This is sufficient to prove the lower bound. The
upper bound indeed holds for stronger acceptance conditions, like global final states for
processes with finite runs and Büchi conditions (or Streett or Rabin or Parity) for processes
with infinite runs. These acceptance conditions can be easily stated in the logic and hence
the upper bound holds in these cases as well.

6. Conclusion

In this paper, we introduced a generic framework for temporal logics over trees and for
models of concurrent systems with recursive procedure calls. We established decidability of
their satisfiability and model-checking problems, and we determined their precise complexity.
This unifying framework captures, as special cases, several temporal logics that have been
defined separately and for which different proofs were given.

The definition of our temporal logics is independent of any restriction on the class of
nested traces. To get decidability, we then adopt the k-phase restriction and rely on tree-
automata techniques. Other restrictions have been introduced to overcome the undecid-
ability, such as ordered nesting relations [11] and scope-bounded executions [25]. Those
restrictions also enjoy encodings in trees [28, 14] so that our approach is suitable here as

25

well, as far as MSO-definable modalities are concerned. The path expressions need a more
subtle analysis, which is left for future work.

It would be worthwhile to study other models of distributed systems such as communi-
cating finite-state machines [10] extended by pushdown stacks. This gives rise to a notion
of nested message sequence charts as a model of a behavior. Note that a (restricted) PDL
logic for message sequence charts without nesting (and without MSO-definable modalities)
has been considered in [9?].

References

[1] Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L., 2008. First-order and
temporal logics for nested words. Logical Methods in Computer Science 4 (11), 1–44.

[2] Alur, R., Etessami, K., Madhusudan, P., 2004. A temporal logic of nested calls and returns. In:
TACAS’04. Vol. 2988 of Lecture Notes in Computer Science. Springer, pp. 467–481.

[3] Alur, R., Madhusudan, P., 2009. Adding nesting structure to words. Journal of the ACM 56, 16:1–16:43.
[4] Arora, S., Barak, B., 2009. Computational Complexity: A Modern Approach, 1st Edition. Cambridge

University Press, New York, NY, USA.
[5] Atig, M. F., 2010. Global Model Checking of Ordered Multi-Pushdown Systems. In: FSTTCS’10. Vol. 8

of LIPICS. pp. 216–227.
[6] Atig, M. F., Bollig, B., Habermehl, P., 2008. Emptiness of multi-pushdown automata is 2ETIME-

complete. In: DLT’08. Vol. 5257 of Lecture Notes in Computer Science. Springer, pp. 121–133.
[7] Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M., 2011. Temporal logics for concurrent recursive programs:

Satisfiability and model checking. In: MFCS’11. Vol. 6907 of Lecture Notes in Computer Science.
Springer, pp. 132–144.

[8] Bollig, B., Grindei, M.-L., Habermehl, P., 2009. Realizability of concurrent recursive programs. In:
FOSSACS’09. Vol. 5504 of Lecture Notes in Computer Science. Springer, pp. 410–424.

[9] Bollig, B., Kuske, D., Meinecke, I., 2010. Propositional dynamic logic for message-passing systems.
Logical Methods in Computer Science 6 (3:16).

[10] Brand, D., Zafiropulo, P., 1983. On communicating finite-state machines. Journal of the ACM 30 (2).
[11] Breveglieri, L., Cherubini, A., Citrini, C., Crespi Reghizzi, S., 1996. Multi-push-down languages and

grammars. International Journal of Foundations of Computer Science 7 (3), 253–292.
[12] Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M., 2009. An Automata-Theoretic Approach to

Regular XPath. In: DBPL’09. Vol. 5708 of Lecture Notes in Computer Science. pp. 18–35.
[13] Clarke, E. M., Emerson, E. A., 1981. Design and synthesis of synchronization skeletons using branching-

time temporal logic. In: Logic of Programs. pp. 52–71.
[14] Cyriac, A., Gastin, P., Narayan Kumar, K., 2012. MSO decidability of multi-pushdown systems via

split-width. In: CONCUR’12. Vol. 7454 of Lecture Notes in Computer Science. Springer, pp. 547–561.
[15] Dax, C., Klaedtke, F., 2011. Alternation elimination for automata over nested words. In: FOSSACS’11.

Lecture Notes in Computer Science. Springer, pp. 168–183.
[16] Diekert, V., Gastin, P., 2006. Pure future local temporal logics are expressively complete for

Mazurkiewicz traces. Information and Computation 204 (11), 1597–1619.
[17] Diekert, V., Rozenberg, G. (Eds.), 1995. The Book of Traces. World Scientific, Singapore.
[18] Fischer, M., Ladner, R., 1979. Propositional dynamic logic of regular programs. Journal of Computer

and System Sciences 18 (2), 194–211.
[19] Gastin, P., Kuske, D., 2003. Satisfiability and model checking for MSO-definable temporal logics are in

PSPACE. In: CONCUR’03. Vol. 2761 of Lecture Notes in Computer Science. Springer, pp. 222–236.
[20] Gastin, P., Kuske, D., 2010. Uniform satisfiability problem for local temporal logics over Mazurkiewicz

traces. Information and Computation 208 (7), 797–816.
[21] Göller, S., Lohrey, M., Lutz, C., 2009. PDL with intersection and converse: satisfiability and infinite-

state model checking. Journal of Symbolic Logic 74 (1), 279–314.

26

[22] Kamp, H., 1968. Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los
Angeles.

[23] La Torre, S., Madhusudan, P., Parlato, G., 2007. A robust class of context-sensitive languages. In:
LICS’07. IEEE Computer Society Press, pp. 161–170.

[24] La Torre, S., Madhusudan, P., Parlato, G., 2008. Context-bounded analysis of concurrent queue sys-
tems. In: TACAS’08. Vol. 4963 of Lecture Notes in Computer Science. Springer, pp. 299–314.

[25] La Torre, S., Napoli, M., 2011. Reachability of multistack pushdown systems with scope-bounded
matching relations. In: CONCUR’11. Vol. 6901 of Lecture Notes in Computer Science. Springer, pp.
203–218.

[26] Lange, M., Lutz, C., 2005. 2-ExpTime lower bounds for Propositional Dynamic Logics with Intersection.
Journal of Symbolic Logic 70 (5), 1072–1086.

[27] Libkin, L., 2006. Logics for Unranked Trees: An Overview. Logical Methods in Computer Science
2 (3:2), 1–31.

[28] Madhusudan, P., Parlato, G., 2011. The tree width of auxiliary storage. In: POPL’11. ACM, pp.
283–294.

[29] Mennicke, R., 2012. Propositional dynamic logic with converse and repeat for message-passing systems.
In: CONCUR’12. Vol. 7454 of Lecture Notes in Computer Science. Springer, pp. 222–236, to appear.

[30] Musuvathi, M., Qadeer, S., 2007. Iterative context bounding for systematic testing of multithreaded
programs. In: PLDI’07. ACM, pp. 446–455.

[31] Papadimitriou, C. H., 1994. Computational complexity. Addison-Wesley.
[32] Pnueli, A., 1977. The temporal logic of programs. In: FOCS’77. IEEE, pp. 46–57.
[33] Qadeer, S., Rehof, J., 2005. Context-bounded model checking of concurrent software. In: TACAS’05.

Vol. 3440 of Lecture Notes in Computer Science. Springer, pp. 93–107.
[34] Vardi, M. Y., 1985. The taming of converse: Reasoning about two-way computations. In: Proc. of the

Conference on Logic of Programs. Springer, pp. 413–423.
[35] Vardi, M. Y., 1998. Reasoning about the past with two-way automata. In: ICALP’98. Lecture Notes

in Computer Science. Springer, pp. 628–641.
[36] Zielonka, W., 1987. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et

Applications 21, 99–135.

27

	Introduction
	Graphs, Nested Traces, and Trees
	Nested Words
	Nested Traces
	Ranked Trees
	Ordered Unranked Trees

	Temporal Logic
	MSO-definable Temporal Logics
	Examples

	Satisfiability: From Trees to Nested Traces
	From Ordered Unranked Trees to Binary Trees
	From Nested Traces to Trees

	Model Checking
	Conclusion

