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Joint Source Estimation and Localization
Souleymen Sahnoun and Pierre Comon, Fellow, IEEE

Abstract

The estimation of directions of arrival is formulated as the decomposition of a 3-way array into a sum of rank-one

terms, which is possible when the receive array enjoys some geometrical structure. The main advantage is that this

decomposition is essentially unique under mild assumptions, if computed exactly. The drawback is that a low-rank

approximation does not always exist. Therefore, a coherence constraint is introduced that ensures the existence of

the latter best approximate, which allows to localize and estimate closely located or highly correlated sources. Then

Cramér-Rao bounds are derived for localization parameters and source signals, assuming the others are nuisance

parameters; some inaccuracies found in the literature are pointed out. Performances are eventually compared with

unconstrained reference algorithms such as ESPRIT, in the presence of additive complex Gaussian noise, with possibly

non circular distribution.

Index Terms

multi-way array, coherence, tensor decomposition, source localization, antenna array processing, low-rank

approximation, complex Cramér-Rao bounds, non circularity

I. INTRODUCTION

Estimation of Directions of Arrival (DoA) is a central problem in antenna array processing, including in particular

radar, sonar, or telecommunications [2]. Over the last decades, several DoA estimation tools have been developed,

ranging from nonparametric Fourier-based methods to parametric high-resolution techniques. The latter techniques,

including linear prediction-based methods and subspace methods, are often preferred to nonparametric ones since

they achieve high resolution estimates. Recently, methods based on sparse approximations have been proposed,

which are considered as semi-parametric [3], [4].

Traditional subspace approaches such as MUSIC (multiple signal classification) are based on low-rank approxi-

mation of the covariance matrix of observations, and on detecting points of minimal distance with the so-called array

manifold [5] [6]. These approaches hence assume that (i) the measurements are weakly stationary over sufficiently

long observation lengths, (ii) the number of sources of interest is smaller than the number of sensors, and (iii) spatial
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responses of all sensors are known, as well as their location (in other words, the sensor array needs to be calibrated).

Another well-known subspace method is the ESPRIT (estimation of signal parameters via rotational invariance

techniques) algorithm [7] which is applicable to sensor arrays consisting of two identical displaced subarrays. The

displacement vector between the two subarrays should be known, whereas, unlike MUSIC-type algorithms, the

calibration information of each subarray is not required.

In [8], an extension of ESPRIT to more than two subarrays has been proposed, but translations were collinear. In

[9], an extension of root-MUSIC has been proposed, and applied to parallel linear subarrays. In the present paper,

as in [10], we consider an arbitrary number of subarrays, deduced from each other by arbitrary translations. In [10],

a deterministic approach has been proposed, which permits not only to work with short data lengths (and hence less

stationary sources), but also to localize more sources than sensors present in the reference array. This approach is

based on the same rotational invariance as exploited in ESPRIT [7], but can handle more than one displacement. It

consists in storing the measurements in a 3-way array, and to decompose it into a sum of rank-one terms. One very

interesting by-product of [10] is that source estimates are also delivered for free, without any further estimation

stage.

The most popular model for fitting a 3-way array using a sum of rank-one terms is the canonical polyadic (CP)

decomposition. Contrary to the decomposition of matrices in rank-one terms, the CP decomposition is essentially

unique under mild conditions. However, a best-fitting CP decomposition may not exist for some tensors [11]. In

this case, trying to find a low-rank tensor approximation results in diverging components.

In this paper we revisit the approach of [10], where the important issue of the existence of a low-rank tensor

approximation has been neglected, so that the latter approach is actually ill posed. This fact has been already pointed

out in [11], and additional constraints have been suggested, which involve the coherences of factor matrices, and

enjoy a reliable physical meaning and at the same time ensure existence of a solution. In the present work, we shed

some light on conditioning and algorithmic issues. Our main contributions are the following.

We first propose a new differentiable coherence constraint which guarantees existence of the low-rank tensor

approximation. The latter constraint is implemented in the form of penalty in a descent algorithm. Our approach is

general and could be applied to other fields than antenna array processing, which is chosen as an illustration.

Then, we derive the expressions of the Cramér-Rao bounds (CRB) related to localization and estimation problems

in the presence of nuisance parameters estimated by CP decomposition methods. Note that the CRB for CP

decomposition of complex-valued and real-valued tensors were respectively studied in [12] and [13], but without

assuming that one of matrix factors is parameterized by angles of arrival.

The remainder of this paper is organized as follows. In the next section, we introduce notation and formulate

the DoA estimation as a low-rank decomposition of a 3-way array. Then we define in Section III the coherence

constraint ensuring existence of the best approximation. An optimization algorithm is described in Section IV, and

Cramér-Rao bounds of DoA parameters are derived in Section V. Finally, we show the benefit of the proposed

algorithm via numerical experiments, and compare results to Cramér-Rao bounds.
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II. MODELING AND NOTATION

In the following, vectors will be denoted by bold lowercases, e.g. a, whereas matrices or higher-order arrays will

be denoted by bold uppercases, e.g. A. Moreover, ar will denote the rth column of matrix A.

Suppose that R narrow-band radiating sources impinge on an array of sensors, formed of L subarrays of K

sensors each, with arbitrary shape. We make the far-field assumption, that is, we assume that sources are located

sufficiently far from the array, compared to the array dimensions, so that waves can be considered as plane. The

key assumption made in [7], [10], [11] is that, taking one subarray as reference, every subarray can be deduced

from the reference one by an unknown translation in space, defined by some vector δ` of R3, 1 ≤ ` ≤ L, δ1
def
= 0.

Denote ςr(t) the signal transmitted by the rth source, ψr its DoA viewed from the array, dr its associated unit

modulus directional vector in R3, and s(y, t) the signal measured at a point in space defined by its coordinates y

(we consider complex envelopes about the central frequency). Then we have:

s(y, t) =

R∑
r=1

ςr(t) ar(y), ar(y)
def
= exp{ ω

C
yTdr} (1)

where ω is the central pulsation of the narrow-band waves, C the wave velocity, and  =
√
−1. Because waves are

plane and narrow-band, the signal measured at another point y + τ , deduced from y by a translation τ takes the

form:
s(y, τ , t) =

R∑
r=1

ar(y) br(τ ) ςr(t), br(τ )
def
= exp{ ω

C
τTdr} (2)

In other words, function s(y, τ , t) decomposes into a sum of R simpler functions whose variables separate.

Now, if we discretize the R3 space with the above defined subarrays, and take M time samples, we end up with

a multi-linear relationship1 in finite dimensional spaces. In fact, let pk be the coordinate vector of the kth sensor

of the reference subarray, and δ` the translation defining the location of the `th subarray, 1 < ` ≤ L. Then signal

(2) can be stored in a K ×L×M three-way array, which follows the model below, possibly corrupted by additive

noise:

Tk`m =

R∑
r=1

λr Akr B`r Smr (3)

where Akr = 1√
K

exp
(
 ωCpT

kdr
)
, B`r = 1√

L
exp

(
 ωC δ

T
` dr

)
, Smr = ςr(tm)/‖ςr‖, and λr =

√
KL‖ςr‖. Note that

ar, br and sr are hence unit L2-norm vectors.

Model (3) is related to the Canonical Polyadic decomposition (CP)2, which consists of decomposing a tensor T

into a sum of decomposable tensors. For the sake of convenience, equation (3) is rewritten in vector form as

t =

R∑
r=1

λr ar � br � sr (4)

where � denotes the Kronecker3 product, and t = vec{T} is a column vector of dimension KLM containing the

entries of the 3-way array T.

1See e.g. [14] for a definition of multi-linearity.
2also sometimes called Candecomp/Parafac in Psychometry or Chemometrics [15].
3This notation is chosen to make the distinction between tensor and Kronecker products, which are sometimes mixed up [14].
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III. EXISTENCE AND UNIQUENESS

The goal of this section is to identify the directions of arrival (DoA), ψr, of the R impinging plane waves and

to estimate corresponding transmitted source signals ςr(tm) up to a scaling factor, given the whole array T. To do

this, we shall identify all parameters in the RHS of (4).

A. Low rank approximation

Actually, observations are corrupted by noise, so that (3-4) do not hold exactly. A natural idea is then to fit model

(4) by minimizing the error

Υ(A,B,S;λ) =

∥∥∥∥∥t−
R∑
r=1

λr ar � br � sr

∥∥∥∥∥
2

(5)

where λ denotes the vector containing the λr’s, and ‖ · ‖ the L2-norm. Minimizing error (5) means finding the

best rank-R approximate of T and its CP decomposition. However, the infimum of Υ may not be reached; see e.g.

[16], [11] and references therein. The reason is that the set of rank-R tensors is not closed for R > 1. The idea

we promote here is to impose an additional constraint that will ensure the existence of a minimum, as elaborated

in the next section. In addition, from the physical point of view, one can make the following observations:

• sources that are totally correlated need to be localized separately only if they are sufficiently well angularly

separated. In that case they correspond to multi-paths of the same radiating source.

• sources that are located in the same direction need to be estimated separately only if they are sufficiently

decorrelated. In the latter case, they correspond to different sources.

• otherwise, one can assimilate highly correlated sources arriving from close directions to a single fat source,

spread out in space.

The purpose of the section is to formalize these constraints.

B. Coherences

As in the compressed sensing literature [17], [18], we define the coherence of a set of unit norm vectors as the

largest value of cross scalar products:
µA = sup

k 6=`
|aH
ka`|. (6)

The coherence of matrix A is defined this way, if ak denote its (unit norm) columns. Coherences of matrices B

and S are defined similarly, and denoted by µB and µS , respectively. Let G be the R × R Gram matrix defined

by:

Gpq = (aH
paq)(b

H
pbq)(s

H
p sq).

Then for given matrices A, B and S, the optimal value λo minimizing error Υ is obtained by cancelling the

gradient of (5) w.r.t. λ, which leads to the linear system:

Gλo = f , (7)
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where vector f in the right hand side is defined by the contraction fr =
∑
ijk Tijk A

∗
irB
∗
jrS
∗
kr, 1 ≤ r ≤ R. Equation

(7) shows that coherences play a role in the conditioning of the minimization problem. Also note that only the

product between coherences appears, and not coherences individually.

C. Existence

We are now in a position to state a sufficient condition of existence of a best rank-R approximation. It has been

shown in [11] that if the search set is restricted to

µAµBµS ≤
ν

R− 1
(8)

for some ν ∈ (0, 1), then the infimum of (5) is reached. This happens because error (5) becomes coercive as soon

as (8) is satisfied. And it must then reach its minimum since it is continuous.

Condition (8) can be interpreted as follows [11]. A small value of a coherence, say µA, means a suffficient

angular separation between columns of matrix A. For instance, if A contains streering vectors, then sources are

not located in the same physical direction in space; if it contains time signals, then sources are not fully correlated.

Example 1: If µA = µB = µC = 0.6, and R = 3, then µAµBµC = 0.216 is smaller than 1/2. Condition (8) is

hence satified for ν = 1. This is the case of Experiment 1, where random matrices are generated with coherences

in the interval [0.2, 0.6].

Example 2: If µA = 0.997, µB = 0.999, µC = 0.99999 and R = 3, then µAµBµC = 0.9960, which is larger

than 1/2. This is the case of Experiment 2.

Remark 1: Condition (8) ensures the existence of a best rank-R approximate to any tensor. It is sufficient in the

sense that there may exist a tensor which does not satisfy (8) and which still admits a best rank-R approximate.

Remark 2: If the entries of factor matrices are subject to constraints, which is the case in the present context

for matrices A and B, then the bound (8) becomes loose and could be tightened. In fact, in the proof [11], only

straightforward inequalities are used, and in particular the fact that |aH
paq| ≤ µA, which holds by definition of µA.

In the present framework, columns ap belong to the so-called array manifold, which means that there exist some

differentiable function ã(ψ) such that ap = ã(ψp); the exact form of function ã is not important for now, but will

be given in (12). Yet, it is clear that µÃ = maxp<q |ã(ψp)
Hã(ψq)| ≤ maxp<q |aH

paq| = µA. The same reasoning

holding true for matrix B, one can observe that the existence condition (8) could be replaced by a less constraining

one:

µÃµB̃µS ≤
ν

R− 1

where µÃ ≤ µA and µB̃ ≤ µB . For the sake of simplicity, this will not be subsequently exploited.

Constraint (8) needs some care because it involves max operators, which are not differentiable. For this reason,

we propose to use the fact that the L∞ norm can be bounded by L2ρ norms, and approximated for large values of

ρ:

||z||∞ = max
k
{zk} ≤ ||z||2ρ =

(∑
k

z2ρ
k

)1/2ρ

, ∀ρ ≥ 1
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for zk ∈ R+. Applying this inequality to zk ≡ |aH
paq| allows to bound coherences above by a differentiable quantity,

so that another (somewhat more constraining) sufficient condition can be obtained. More precisely:

µA ≤ µ(A, ρ)
def
=

(∑
p<q

|aH
paq|2ρ

)1/2ρ

We subsequently call Cρ the constraint obtained by replacing the max operators by the L2ρ norms in constraint

(8):

Cρ
def
= (1−R)/ν + µ(A, ρ)−1µ(B, ρ)−1µ(S, ρ)−1 ≥ 0 (9)

It is clear that if (9) is satisfied, then so is (8). The above is thus a sufficient condition.

D. Uniqueness

There exist sufficient conditions ensuring that the solution of (4) is unique, which involve coherences [11].

However, the condition below is much less constraining [19, p.13]:

R ≤M and R(R− 1) ≤ K(K − 1)L(L− 1)

2
(10)

and guarantees that there exists almost surely a unique solution. Other sufficient conditions for generic uniqueness

exist [20], [21], but may be less attractive when one dimension (i.e. M ) is large.

IV. JOINT DOA AND SOURCE ESTIMATION

A. Optimization

The constrained optimization is carried out with the help of gradient descent type algorithms, which handle

constraints in different manners. Denote for conciseness x = vec{[AT,BT,ST]} and define the objective function:

Fρ(x;λ) = Υ(x;λ) + η exp(−γ Cρ(x)) (11)

where η is the penalty weight, γ is introduced to control the sharpness of penalty Cρ(x), and λ is defined in (7)

and depends on x and t. This leads to the algorithm below

ALGORITHM

1) Choose R satisfying (10).

2) Initialize (A(0),B(0),S(0)) to matrices with unit-norm columns satisfying Cρ > 0.

3) Compute G(0) and f(0), and solve G(0)λ(0) = f(0) for λ, according to (7)

4) For k ≥ 1 and subject to a stopping criterion, do

a) Compute the descent direction as the gradient w.r.t. x:

d(k) = −∇Fρ(x(k − 1);λ(k − 1))

b) Compute a stepsize `(k)

c) Update x(k) = x(k − 1) + `(k) d(k)

d) Extract the 3 blocks from x(k): A(k), B(k) and S(k)
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e) Normalize the columns of A(k), B(k) and S(k)

f) Compute G(k) and f(k), and solve G(k)λ(k) = f(k) for λ, according to (7).

5) Output (A,B,S;λ) = (A(k),B(k),S(k);λ(k))

6) Compute the DoAs from A as detailed in Section IV-B

In the algorithm, η is decreased as the reconstruction error Υ(x;λ) decreases, whereas γ is kept fixed. The step

size is determined in a standard way, namely following Wolfe conditions; see e.g. [22] for more details.

We give now some gradient expressions4 necessary to determine the descent direction d(k) when Fρ is used:

∂Υ

∂A
= 2 AMA − 2 NA

with
MA
pq

def
=
∑
jk λpBjpSkpS

∗
kqB

∗
jqλ
∗
q

NA
ip

def
=
∑
jk TijkB

∗
jpS
∗
kpλ
∗
p

and
∂ exp(−γ Cρ)

∂A
=

γ

exp (γ Cρ)
LAρ A

[
(AHA) � ΩA − I

]
where � denotes the Hadamard entry-wise product,

LAρ
def
=

(∑
q<p

|aH
paq|2ρ

)−1
2ρ −1

µ(B, ρ)−1µ(S, ρ)−1,

and ΩApq
def
= |aH

q ap|2ρ−2. Keep in mind that expressions above hold true because matrix A has unit-norm columns.

And expressions are similar for matrices B and S, which also have unit-norm columns.

B. Source localization

Since in our algorithm, matrix A has been computed without forcing any structure, it is necessary to extract

DoAs from the entries of A. This approach is suboptimal, but allows to considerably reduce the computational

burden.

In the present framework, we consider identical subarrays that are formed of sensors with arbitrary geometries.

Each subarray is designed in such a way that the distance between two successive sensors (k and k + 1) is less

than or equal to λ/2. The elements of A are given by:

Akr =
1√
K

exp

{

2π

λ
(pk,2 sinψr + pk,3 cosψr)

}
(12)

where λ = 2πC/ω is the wavelength and ψr is the DoA of the rth source as illustrated in Figure 1. To exploit

this property and avoid phase unwraping implementation, we form the quotient between two successive elements

in the rth column of A:

Ak+1,r

Ak,r
= exp

{

2π

λ
((pk+1,2 − pk,2) sinψr+

(pk+1,3 − pk,3) cosψr)

}
(13)

4Matrix gradients are written with the conventions described in [23], [24].
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y

z

δ2

δ3
Reference

subarray

?
source

ψ

Fig. 1. One source (R = 1) radiating on a sensor array with L = 3 subarrays.

Then the equation below

(pk+1,2 − pk,2) sinψr+(pk+1,3 − pk,3) cosψr =

−  λ
2π

ln

(
Ak+1,r

Ak,r

)
yields the following linear system for every r, 1 ≤ r ≤ R:

M

sinψr

cosψr

 = vr (14)

where M = [p̄2
2:K − p̄2

1:K−1, p̄3
2:K − p̄3

1:K−1], vr = − λ2π ln (A2:K,r � A1:K−1,r), symbol � denoting the

element-wise division, and p̄i denote the columns of the K × 3 matrix containing sensor coordinates:

P = [p1,p2, . . . ,pK ]T = [p̄1, p̄2, p̄3].

If the Least Squares (LS) solution of (14) admits a solution whose norm is reasonably close to 1 (we fixed the

range to [0.8, 1.2] in the remainder), then the corresponding source DoA estimate ψ̂r is given bysin ψ̂r

cos ψ̂r

 =
wr

‖wr‖
, wr = M†vr (15)

where † denotes the Moore-Penrose pseudo-inverse. A unique value of ψr is then obtained in the interval [0, 360◦].

On the other hand, if the norm of w is out of the range [0.8, 1.2], we proceed by direct fit of (12) by exhaustive

search for ψr. In fact, in the latter case, the fast procedure (15) has revealed to be inaccurate.

C. Source estimation

Unlike source localization, source estimates can be directly obtained from the third factor matrix S. The complex

scaling indeterminacies in matrices A and B are fixed thanks to the fact that their first row contain only ones.

More precisely, the following transformation

(âr, b̂r, ŝr; λ̂r)←
(

1
A1r

ar,
1
B1r

br, λrA1rB1r sr; 1
)

(16)
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fixes all scaling indeterminacies. Therefore, source estimates are simply given by ŝr, 1 ≤ r ≤ R.

V. FRAMEWORK OF COMPLEX CRAMÉR-RAO BOUNDS

When parameters are complex, expressions of Cramér-Rao bounds (CRB) depend on the definition of the complex

derivative. Since a real function is never holomorphic (unless it is constant) [23], this definition is necessary; this

has been overlooked in [25] but clarified in [12]. Originally, the derivative of a real function h(θ) ∈ Rp with respect

to a complex variable θ ∈ Cn, θ = α+ β, α,β ∈ Rn, has been defined as the p× n matrix [23]:

∂h

∂θ

def
=

∂h

∂α
+ 

∂h

∂β

Even if the numerical results are independent of the definition assumed for theoretical calculations, we shall

subsequently assume the definition proposed in [24], for consistency with [12]:

∂h

∂θ

def
=

1

2

∂h

∂α
− 

2

∂h

∂β
(17)

With this definition, one has for instance that ∂α/∂θ = 1
2I, and ∂β/∂θ = − 

2I (note the difference with [23],

where we had instead ∂α/∂θ = I, and ∂β/∂θ = I). Assume that parameter θ is wished to be estimated from

an observation t, of probability distribution L(t;θ), and denote u(t;θ) the score function. Then we have for any

function h(θ) ∈ Rp:

E{h(θ)u(t;θ)T} =
∂

∂θ
E{h(θ)} (18)

with

u(t;θ)T
def
=

∂

∂θ
logL(t;θ) (19)

This is a direct consequence of the fact that E{u} = 0, valid if derivation with respect to θ and integration with

respect to real and imaginary parts of t can be permuted. Now let θ̂(t) be an unbiased estimator of θ. Then,

following [23], one can prove that E{θ̂ uT} = E{(θ̂ − θ) uT} = I and E{θ̂ uH} = 0. Finally, by expanding the

covariance matrix of the random vector (θ̂ − θ)− F−1u∗, one readily obtains that:

V ≥ F−1 (20)

with

V
def
= E{(θ̂ − θ)(θ̂ − θ)H} and F

def
= E{u∗ uT} (21)

Note that the definition of the Fisher information matrix is the complex conjugate of that of [23], because of a

different definition of the complex derivation (and hence a different definition of the complex score function). Only

notations differ, and bounds on variances remain eventually the same. Expressions (21) are those reported in [24]

and are now widely used in signal processing.
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VI. DERIVATION OF CRAMÉR-RAO BOUNDS IN THE PRESENCE OF NON CIRCULAR COMPLEX NOISE

For computational purposes, a scaling vector λ has been defined in (7), and offered conditioning advantages.

But to ease the derivation of Cramér-Rao bounds, we shall now pull this scaling vector into factor matrices, and

consider the model

t =

R∑
r=1

ar � br � sr, (22)

being understood that there are (K +L+M − 2)R free parameters to estimate, since the first entry of ar and br

is equal to one. More precisely, model (22) is obtained from (4) by the transformations defined in (16).

A. Likelihood

The noise n = nx + ny is assumed to follow a complex normal distribution with zero mean. The likelihood

function of t, defined in (4), takes the form:

L(t, t∗)
def
= π−KLM (det(Σ) det(Q))

−1/2

· exp
{
−(t− µ)H(Q−1)∗(t− µ)+

Re
(
(t− µ)TRT(Q−1)∗(t− µ)

)}
(23)

where µ is the noise free part of t, Σ is the covariance matrix of t, C = E
{

(t− µ)(t− µ)T
}

is the noncircular

covariance (sometimes called relation matrix), and

Q = Σ∗ −CHΣ−1C, R = CHΣ−1 (24)

In our computer experiments, a general noise form will be considered, in which non-circularity will be controlled

using a variable ε:

cov
{

[nT
x ,n

T
y ]T
}

=

Σxx Σxy

Σyx Σyy

 =
σ2

2

(1 + ε)I ε I

ε I (1− ε)I

 (25)

In this case Σ = σ2I and C = σ2ε (1 + )I. Therefore, the likelihood function becomes

L(t, t∗) =
(
σ2π(1− 2ε2)1/2

)−KLM
· exp

{
−1

σ2(1− 2ε2)
(t− µ)H(t− µ)

+ Re

(
ε(1− )

σ2(1− 2ε2)
(t− µ)T(t− µ)

)}
(26)

Now, let

θ = [ψ1, . . . , ψR︸ ︷︷ ︸
ψ

, b̄T
1 , . . . , b̄

T
R, s

T
1 , . . . , s

T
R︸ ︷︷ ︸

ξ

, b̄H
1 , . . . , s

H
R︸ ︷︷ ︸

ξ∗

] (27)

denote the unknown parameter vector, where b̄r
def
= [B2,r, . . . , BL,r]

T. Note that, by definition, the likelihood p is a

function of both t and t∗, and not of ||t−µ|| only, especially if noise is non-circularly distributed. In this eventuality,

it is hence necessary to introduce both complex parameters and their conjugates in the unknown parameter vector

θ, as displayed in (27).
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B. Fisher Information

Our goal now is to derive the CRBs of the parameters in θ. The CRBs for factor matrices have been computed

in [12]. However, it should be emphasized that, unlike [12], no assumption is needed on the elements of matrix S

to derive the CRB. In fact, assuming that the first row of A and B is fixed to [1, . . . , 1]1×R is sufficient to reduce

the number of parameters to (K + L + M − 2)R. Yet, the latter assumption is satisfied in the considered array

configuration.

The CRB for unbiased estimation of the complex parameters θ is equal to the inverse of the Fisher information

matrix F, defined in equation (21). We start by writing the log-likelihood function:

logL(t,θ) =−KLM log
(
σ2π(1− 2 ε2)1/2

)
− 1

σ2(1− 2 ε2)
(t− µ)H(t− µ)

+ Re

(
ε(1− )

σ2(1− 2 ε2)
(t− µ)T(t− µ)

)
(28)

A straightforward calculation then yields:

uT =
1

σ2(1− 2 ε2)

·
[
nT ∂µ

∗

∂θ
+ nH ∂µ

∂θ

−ε
(

(1 + )nH ∂µ
∗

∂θ
+ (1− )nT ∂µ

∂θ

)]
(29)

where n = t − µ. By substituting the score function u by its expression, the Fisher information matrix can be

written as:

F =
1

σ2(1− 2 ε2)

·

[(
∂µ∗

∂θ

)H(
∂µ∗

∂θ
− ε(1− )∂µ

∂θ

)

+

(
∂µ

∂θ

)H(
∂µ

∂θ
− ε(1 + )

∂µ∗

∂θ

)]
(30)

Since parameters in ψ are real and those in ξ are complex, a first writing of the derivatives in (30) is:

∂µ

∂θ
=

[
∂µ

∂ψ
,

∂µ

∂ξ
, 0

]
(31)

and

∂µ∗

∂θ
=

[(
∂µ

∂ψ

)∗
, 0 ,

(
∂µ

∂ξ

)∗]
(32)
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Therefore, the Fisher information matrix becomes:

F =
1

σ2(1− 2 ε2)



2 Re {K11} K12 K∗12

KH
12 G22 H∗22

KT
12 H22 G∗22


(33)

where

Kij = Gij + Hij (34)

Gij =

(
∂µ

∂θi

)H (
∂µ

∂θj

)
(35)

Hij = ε (− 1)

(
∂µ

∂θi

)T (
∂µ

∂θj

)
(36)

with (i, j) ∈ {1, 2} × {1, 2}, θ1 = ψ and θ2 = ξ.

To complete the calculation of F, it remains to give partial derivative expressions of µ with respect to ψ and

ξ. This is addressed in the following subsection. To conclude, we present the Fisher information Fc for a circular

complex Gaussian (CCG) noise. In this case, we just need to set ε = 0 in (33), which yields:

Fc =
1

σ2



2 Re {G11} G12 G∗12

GH
12 G22 0

GT
12 0 G∗22


(37)

In view of (37), it is clear that the introduction of ξ∗ in the parameter vector is not necessary in the case where

the noise follows a CCG distribution. With a non circular complex Gaussian (NCCG) noise, this is not the case.

C. Derivatives of µ with respect to ψ

Using the chain rule we have
∂µ

∂ψf
=

(
∂µ

∂ aT
f

)(
∂aT

f

∂ψf

)
(38)

and [∂µ/∂aT
f ] can be computed using complex derivative formulas. Then, we obtain:

∂µ

∂aT
f

= IK � bf � sf ∈ CKLM×K , 1 ≤ f ≤ R. (39)

To calculate [∂aT
f /∂ψf ], we use the expressions of the considered sensor array configuration, namely equation (12)

without the scaling factor 1√
K

, which yields:

∂aT
f

∂ψf
= −2π

λ
(cosψf p̄

2 − sinψf p̄
3) � af (40)
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where p̄2 and p̄3 denote the second and third column of the sensor location matrix P, respectively. By substituting

(39) and (40) in (38), we get

∂µ

∂ψf
= −2π

λ
(IK � bf � sf ) (cosψf p̄

2 − sinψf p̄
3) � af

def
= φψf (41)

and
∂µ

∂ψ
= [φψ1 , . . . ,φψR ] ∈ CKLM×R (42)

D. Derivatives of µ with respect to ξ

Taking partial derivatives of µ with respect to b̄T
f and sTf , we obtain:

∂µ(θ)

∂b̄T
f

= (af � ILM )(IL � sf )JL
def
= φb̄f ∈ CKLM×(L−1) (43)

∂µ(θ)

∂sTf
= af � bf � IM

def
= φsf ∈ CKLM×M (44)

where JL = [0(L−1),1 IL−1]T ∈ CL×(L−1) is a selection matrix. To sum up,

∂µ

∂ξ
= [φb̄1

, . . . ,φb̄R ,φs1 , . . . ,φsR ] ∈ CKLM×R(L+M−1) (45)

E. DoA Cramér-Rao bound

The CRB related to DoAs only is obtained as the first leading R×R block in matrix F−1, where F is defined

in (33). Doing this assumes that translations δ` are nuisance parameters, i.e. unknown but not of interest. This

assumption is relevant in various applications. For instance, consider sonar buoys left floating on the surface and

equipped with a device permitting to maintain their orientation towards North. The shape and orientation of subarrays

mounted on each buoy are known, but relative locations of buoys are unknown. Similar examples can be encountered

when installing arrays of sensors far apart, e.g. when performing records on glaciers in difficult conditions: only

locations of sensors within subarrays are known accurately. This realistic context has not been considered in the

literature. Note that the CRB of the DoA where locations of all sensors are perfectly known can be found in [26],

[27].

VII. COMPUTER RESULTS

This section has two goals. First, we show the role of penalty Cρ, either along the trajectory when the limiting

point lies in the admissible region, or when the constraint is active at the limiting point. This role is emphasized

by comparisons with an algorithm of same nature but without penalty. Second, we compare the total Root Mean

Square Error (RMSE) to Cramér-Rao bounds. We also evaluate the improvement brought by a third subarray, when

comparing our algorithm with ESPRIT (the results obviously coincide with ESPRIT when two subarrays are used).
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In all simulations, the sensor array is formed of three shifted identical subarrays of four sensors each, as depicted

in Figure 1. The 3×R matrix defining sensor locations of the reference subarray is

PT =
λ

2


0 0 0 0

0 0 0.9428 0.2814

0 1 1.3333 2.0833


Next, we set ρ = 10, γ = 5 and ν = 1; these heuristic choices have revealed to be satisfactory in all our experiments.

Remark 3: Theoretically, we should choose ν < 1. But in practice, the choice ν = 1 does not raise any problem,

probably for the following reasons: (i) the majoration of the L∞ norm by the L2ρ norm is strict for almost all

values of the argument, so that the bound is loose, (ii) condition (8) is only sufficient, which also leaves some

slack, and (iii) even more slack is added by neglecting the fact that ar and br are supposed to lie on a manifold,

as pointed out in Remark 2.

A. Comparison with other optimization algorithms

To see the interest of the proposed algorithm, we compare it to two other CPD algorithms: i) its homologue

without constraint and without computing the optimal value of λ defined in (7), ii) the Levenberg-Marquardt (NLS-

LM) gradient decent algorithm [28], [29]. Two performances indices are used: the error on estimated factors and

the best sum congruence [30]; this performance index is nothing else but the cosine of the first principal angle [31].

It is defined between two rank-one tensors, T = a⊗ b⊗ s and T̂ = â⊗ b̂⊗ ŝ, as:

|〈T, T̂〉|
‖T‖ ‖T̂‖

=
|aHâ|
‖a‖ ‖â‖

|bHb̂|
‖b‖ ‖b̂‖

|sHŝ|
‖s‖ ‖ŝ‖

(46)

where 〈·, ·〉 denotes the scalar product associated with the Frobenius norm.

To compare two tensors of rank R > 1, the best sum congruence requires to find the best permutation σ among

columns of factor matrices:

max
σ

R∑
r=1

|aH
r âσ(r)|

‖ar‖ ‖âσ(r)‖
|bH
r b̂σ(r)|

‖br‖ ‖b̂σ(r)‖
|sHr ŝσ(r)|
‖sr‖ ‖ŝσ(r)‖

(47)

They are compared in two different cases: 1) uncorrelated Gaussian sources with well separated DoAs, i.e. the

constraint is not active (Cρ ≥ 0) at convergence, and 2) correlated sources with close DoAs, i.e. the constraint is

active (Cρ < 0) at convergence. To produce comparable results, the three methods are initialized with the same

initial points, and share the same stoping criteria. The latter are:

• the relative change in the objective function. The algorithm stops when

|Fcurrent −Fprevious|
Fprevious

≤ 10−6

• the tolerance on the Frobenius norm of the gradient divided by the number of entries in the gradient is set to

10−8,

• the maximum number of iteration is set to 103.
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Experiment 1: In this experiment, 1000 independent trials are run with three random well separated DoAs in the

interval [0◦, 360◦), and six randomly generated samples are simulated. Tensors are then of size 4 × 3 × 6. Initial

points for the three methods (proposed, unconstrained and NLS-LM) are generated using HOSVD followed by five

iterations of ALS. As mentioned in Section IV, η is varied during iterations. More precisely in this experience, η is

initialized to 0.1, and is divided by 100 when Υ(x;λ) decreases less than 10−4. If the best sum congruence (47)

is above a threshold of 0.97 for all R components, then the estimation is considered as correct [32].

Figure 2 reports the number of iterations executed in each trial, where coherences always belonged to the interval

[.2, .6], i.e, Cρ > 0. It can hence be observed that the proposed algorithm converges faster than the unconstrained

one. A deeper inspection also reveals that the proposed method yields 99% of correct estimations whereas the

unconstrained algorithm and NLS-LM yield 97% and 97.5% respectively.

Figure 3 sketches the evolution of the coherences and Cρ(x) as a function of iterations for a typical example

where the unconstrained algorithm and NLS-LM do not deliver correct estimates. The figure shows that: (i) the

proposed algorithm gives correct estimates thanks to the constraint Cρ, which incites iterates to remain inside (or

turn back into) the feasible region (where existence is guaranteed), (ii) in the unconstrained algorithm and NLS-LM,

iterates run away from the the feasible region and never turn back (the value of Cρ remains negative).

Figure 4 presents a comparison of the two algorithms in terms of accuracy of DoAs estimation. It shows the

histogram of log10

√
1
R

∑R
i=1(ψi − ψ̂i)2 for each trial. We can observe that the proposed algorithm is more accurate

than the two others algorithms.
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Fig. 2. Number of iterations executed in 1000 independent trials: 99% of the estimations were correct with the proposed algorithm, 97% with

the unconstrained algorithm, and 97.5% with the NLS-LM algorithm.

Experiment 2: This experiment intends to show the efficiency of the proposed algorithm when the constraint

is active at the limiting point: sources s2 and s3 are highly correlated, and closely located. More precisely, we

still work with the same array, but only M = 6 time samples are used. The tensor size is then 4 × 3 × 6, and
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Fig. 3. Coherences (µA, µB , µS ) and Cρ(x) as a function of the number of iterations. This is a typical example among the trials where the

unconstrained optimization and the NLS-LM algorithm diverge.
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Fig. 4. Estimation error on DoAs for 1000 tensors

R = 3 sources impinge on the array, located in directions ψ1 = 40◦, ψ2 = 83◦ and ψ3 = 85◦ respectively. The

sources have been generated as follows. One realisation of three 6-dimensional independent random vectors with

i.i.d. entries has been drawn, yielding vectors c1, c2 and c3. Sources are then built as s1 = c1, s2 = c2/ε, and

s3 = c2/ε + c3, with ε = 0.005. Using these settings, the coherences are then equal to µA = 0.99, µB = 0.99,
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µS ≈ 1 up to a precision of 10−5, and Cρ = −0.99. In this experiment, η is initialized to 0.1, and is divided by

10 when the objective decreases less than 10−4 between two consecutive iterations, with however a minimal floor

value of ηmin = 10−5.

Figure 5 reports results obtained in the noiseless case, with 100 different initial points. It can be noticed that with

the same initialisations, the proposed algorithm is able to locate approximately the three sources, whereas the two

others algorithms do not even detect the source at 40◦. The best sum congruence, averaged over the three sources,

is plotted in 5(b); this index reveals poor performances of the unconstrained and the NLS-LM algorithms.

Figure 6 shows the robustness of the proposed algorithm in the presence of low noise. One can observe that

sources at ψ2 = 83◦ and ψ3 = 85◦ are well detected, but suffer from a larger directional bias. This bias comes

from the constraint itself, imposing a minimal angular separation.

Experiment 3: This experiment is similar to the previous one except for the tensor rank and the number of

time samples. The tensor size is then 4 × 3 × 10, and R = 4 sources impinge on the array, located in directions

ψ1 = 40◦, ψ2 = 83◦, ψ3 = 85◦ and ψ4 = 120◦ respectively. One realization of four 10-dimensional independent

random vectors with i.i.d. entries has been drawn, yielding vectors c1, c2, c3 and c4. Sources are then built as

s1 = c1, s2 = c2/ε, s3 = c2/ε + c3 and s4 = c4, with ε = 0.005. In this experiment, η is initialized to 1, and

is divided by 10 when the objective decreases less than 10−2 between two consecutive iterations, with however a

minimal floor value of ηmin = 10−5. The results of this experiment are reported in Figure 7. It can be observed

that, as in experiment 2, the proposed algorithms outperform the two others.

B. Monte Carlo experiments

To evaluate the efficiency of the proposed method, we compare its performances to two other algorithms, ESPRIT

and MUSIC [26], [27]. The performance criterion is the total root mean square error (RMSE) on DoAs defined as:

RMSE =

√√√√ 1

RN

R∑
r=1

N∑
n=1

(ψ̂r,n − ψr)2

where ψ̂r,n is the estimated DoA in the n-th Monte-Carlo trial and N is the number of trials. The deterministic

CRB computed in the previous section is reported as a benchmark. The scenario on which the proposed algorithm

is tested can be of interest in numerous applications, where translations δ` are unknown, as pointed out in Section

VI-E. To show the influence of various parameters of the problem on the estimation results, we study three examples,

whose parameters are reported in the table below, where δ2 = [0, 25λ, 0]T, δ3 = [0, 37.5λ, 5λ]T.

Subarrays Noise DoA

Exp. 4 L = 2, (δ2) CCG 11◦, 57◦, 84◦

Exp. 5 L = 3, (δ2, δ3) CCG 11◦, 57◦, 84◦

Exp. 6 L = 3, (δ2, δ3) NCCG 11◦, 57◦, 84◦

In these experiments, the array is still the one depicted in Figure 1, narrowband source signals have the same

power, M = 200 time samples are used, and 200 Monte-Carlo simulations are run for each SNR level. The value
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Fig. 5. Noiseless scenario with close and correlated sources, ψ = [40, 83, 85]. µA = 0.99, µB = 0.99, µS ≈ 1 up to a precision of 10−5,

and Cρ = −0.99; results with 100 random initializations.

of η is the same as in Exp. 1. Figures 8, 9 and 10 report the RMSE of the DoAs obtained in Exp. 4, 5 and 6,

respectively.

Experiment 4: Results reported in Figure 8 show that: (i) the proposed CP algorithm exhibits the same

performances as ESPRIT, which makes sense, (ii) MUSIC performs the best, but exploits more information, namely

the exact knowledge of sensor locations, whereas this information is actually not available in the present scenario.

Hence MUSIC performances just serve as a reference.

Experiment 5: Figure 9 shows that the proposed algorithm yields better results than ESPRIT. The reason is that

ESPRIT uses at most two subarrays, whereas the proposed algorithm uses all of them. Again, MUSIC is reported

just as a reference benchmark.
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Fig. 6. Noisy scenario with close and correlated sources, ψ = [40, 83, 85]. µA = 0.99, µB = 0.99, µS ≈ 1 up to a precision of 10−5,

Cρ = −0.99 and SNR= 20 dB; results with 100 random initializations.

Experiment 6: Unlike previous experiments, Monte Carlo runs in this example are performed with non-circular

complex Gaussian noise with ε = 0.1. The obtained results are similar to those obtained in Experience 5, as depicted

in Figure 10.

Experiment 7: To show the influence of the noise distribution on DoA and source estimation, we show results

obtained with two values of ε: 0 and 0.5, using the same array configuration and DoA parameters as in Experiment

6. The total RMSE for the parameters estimated by the proposed algorithm is compared to the CRB. Figures 11

and 12 depict, respectively, the results for DoA and source signals, each subfigure corresponding to one value of ε.

We conclude that the proposed algorithm yields accurate estimates in the presence of circular as well as noncircular



20 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, XXX.

0 50 100 150 200 250 300 350
0

50

100

 

 

Proposed

0 50 100 150 200 250 300 350
0

50

100

 

 

Unconstrained

0 50 100 150 200 250 300 350
0

50

100

Estimated DoAs (degree)

 

 

NLS−LM

(a) Histogram of estimated DoAs

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Congruence

 

 

Proposed

Unconstrained

NLS−LM

(b) Congruences

Fig. 7. Noiseless scenario with close and correlated sources, ψ = [40, 83, 85, 120]. µA = 0.99, µB = 0.99, µS ≈ 1 up to a precision of

10−5, and Cρ = −0.99; results with 100 random initializations.

additive Gaussian noise.

VIII. CONCLUSION

We propose an optimization algorithm including a new differentiable penalty ensuring existence of the low-rank

tensor approximation. This general purpose algorithm is applied to antenna array processing as an illustration. DoA

estimation of narrow-band far-field sources is formulated as a CP decomposition, when sensor arrays consist of L

identical displaced subarrays. We also derive the expressions of the Cramér-Rao bounds of DoA parameters in the

presence of nuisance parameters estimated by CP decomposition methods. It is shown that, thanks to our penalty,

the proposed algorithm converges quickly and is prevented to leave for long the feasible region. As expected, DoA
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Fig. 8. Total DoA error versus SNR, with L = 2 subarrays, ψ = [11◦, 57◦, 84◦].
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Fig. 9. Total DoA error versus SNR, with L = 3 subarrays, ψ = [11◦, 57◦, 84◦].

estimation results show that the CP algorithm exhibits better results than reference DoA estimation methods when

L > 2.
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