
HAL Id: hal-01005352
https://hal.science/hal-01005352v1

Preprint submitted on 12 Jun 2014 (v1), last revised 20 Feb 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Source Estimation and Localization
Souleymen Sahnoun, Pierre Comon

To cite this version:
Souleymen Sahnoun, Pierre Comon. Joint Source Estimation and Localization. 2014. �hal-
01005352v1�

https://hal.science/hal-01005352v1
https://hal.archives-ouvertes.fr


Joint Source Estimation and Localization
Souleymen Sahnoun,Member, IEEE,and Pierre Comon,Fellow, IEEE

Abstract

The estimation of directions of arrival is formulated as thedecomposition of a 3-way array into a

sum of rank-one terms, which is possible when the receive array enjoys some geometrical structure. The

main advantage is that this decomposition is essentially unique under mild assumptions, if computed

exactly. The drawback is that a low-rank approximation doesnot always exist. Therefore, a constraint

is first introduced that ensures the existence of the latter best approximate. Then Cramér-Rao bounds

are derived for localization parameters and source signals, assuming the others are nuisance parameters;

some inaccuracies found in the literature are pointed out. Performances are eventually compared with

reference algorithms such as ESPRIT, in the presence of additive Gaussian noise, with possibly non

circular distribution.

Index Terms

multi-way array, tensor decomposition, source localization, antenna array processing, low-rank

approximation, complex Cramer-Rao bounds

I. INTRODUCTION

Estimation of Directions of Arrival (DoA) is a central problem in antenna array processing, including

in particular radar, sonar, or telecommunications [1]. Over the last decades, several DoA estimation tools

have been developed, ranging from nonparametric Fourier-based methods to parametric high-resolution

techniques. The latter techniques, including linear prediction-based methods and subspace methods, are

often preferred to nonparametric ones since they achieve high resolution estimates. Recently, methods

based on sparse approximations have been proposed, which are considered as semi-parametric [2], [3].

Traditional subspace approaches such as MUSIC (multiple signal classification) are based on low-rank

approximation of the covariance matrix of observations, and on detecting points of minimal distance with
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the so-called array manifold [4] [5]. These approaches hence assume that (i) the measurements are weakly

stationary over sufficiently long observation lengths, (ii) the number of sources of interest is smaller than

the number of sensors, and (iii) spatial responses of all sensors are known, and in particular their location

(in other words, the sensor array needs to be calibrated). Another well-known subspace method is the

ESPRIT (estimation of signal parameters via rotational invariance techniques) algorithm [6] which is

applicable to sensor arrays consisting of two identical displaced subarrays. The displacement vector

between the two subarrays should be known, whereas, unlike MUSIC-type algorithms, the calibration

information of each subarray is not required.

In [7], a deterministic approach has been proposed, which permits not only to work with short data

lengths (and hence less stationary sources), but also to localize more sources than sensors present in the

reference array. This approach is based on the same rotational invariance as exploited in ESPRIT [6], but

can handle more than one displacement. It consists in storing the measurements in a 3-way array, and to

decompose it into a sum of rank-one terms. One very interesting by-product of [7] is that source copies

are also delivered for free, without any further estimationstage.

The most popular model for fitting a 3-way array using a sum of rank-one terms is the canonical

polyadic (CP) decomposition. Contrary to the decomposition of matrices in rank-one terms, the CP

decomposition is essentially unique under mild conditions. However, a best-fitting CP decomposition

may not exist for some tensors [8]. In this case, trying to finda low-rank tensor approximation results

in diverging components.

In this paper we revisit the approach of [7], where the important issue of the existence of a low-rank

tensor approximation has been neglected, so that the latterapproach is actually ill posed. This fact has

been already pointed out in [8], and additional constraintshave been suggested, which enjoy a reliable

physical meaning and at the same time ensure existence of a solution. In the present work, we shed some

light on conditioning and algorithmic issues. Our main contributions are the following. We first propose

a new differentiable constraint which guarantees existence of the low-rank tensor approximation. Then,

we derive the expressions of the Cramér-Rao bounds (CRB) related to the localization problem in the

presence of nuisance parameters estimated by CP decomposition methods. Note that the CRB for CP

decomposition of complex-valued and real-valued tensors were respectively studied in [9] and [10], but

without assuming that one of matrix factors is parameterized by angles of arrival.

The remainder of this paper is organized as follows. In the next section, we introduce notation and

formulate the DoA estimation as a low-rank decomposition ofa 3-way array. Then we define in Section

III the constraint ensuring existence of the best approximation. An optimization algorithm is described
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in Section IV, and Cramér-Rao bounds of DoA parameters are derived in Section V. Finally, we show

the benefit of the proposed algorithm via numerical experiments, and compare results to Cramér-Rao

bounds.

II. M ODELING AND NOTATION

In the following, vectors will be denoted by bold lowercases, e.g.a, whereas matrices or higher-order

arrays will be denoted by bold uppercases,e.g.A. Moreover,ar will denote therth column of matrix

A.

Suppose thatR narrow-band radiating sources impinge on an array of sensors, formed ofL subarrays of

K sensors each. We make the far-field assumption, that is, we assume that sources are located sufficiently

far from the array, compared to the array dimensions, so thatwaves can be considered as plane. The key

assumption made in [6], [7], [8] is that, taking one subarrayas reference, every subarray can be deduced

from the reference one by an unknown translation in space, defined by some vectorδℓ of R3, 1 ≤ ℓ ≤ L,

δ1
def
= 0.

Denoteςr(t) the signal transmitted by therth source,dr its DoA viewed from the array, ands(y, t)

the signal measured at a point in space defined by its coordinatesy (we consider complex envelopes

about the central frequency). Then we have:

s(y, t) =

R∑

r=1

ςr(t) ar(y), ar(y)
def
= exp{ ω

C
yTdr} (1)

whereω is the central pulsation of the narrow-band waves,C the wave celerity, and =
√
−1. Because

waves are plane and narrow-band, the signal measured at another pointy + τ , deduced fromy by a

translationτ takes the form:

s(y, τ , t) =

R∑

r=1

ar(y) br(τ ) ςr(t), br(τ )
def
= exp{ ω

C
τTdr} (2)

In other words, functions(y, τ , t) decomposes into a sum ofR simpler functions whose variables separate.

Now, if we discretize theR3 space with the above defined subarrays, and takeM time samples, we

end up with a multi-linear relationship1 in finite dimensional spaces. In fact, letpk be the coordinate

vector of thekth sensor of the reference subarray, andδℓ the translation defining the location of theℓth

subarray,1 < ℓ ≤ L. Then signal (2) can be stored in aK ×L×M three-way array, which follows the

model below, possibly corrupted by additive noise:

Tkℓm =

R∑

r=1

λr Akr Bℓr Smr (3)

1Seee.g. [11] for a definition of multi-linearity.
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whereAkr =
1√
K
exp

(
 ωCp

T

kdr
)
, Bℓr =

1√
L
exp

(
 ωCδ

T

ℓ dr
)
, Smr = ςr(tm)/‖ςr‖, andλr =

√
KL‖ςr‖.

Note thatar, br andsr are hence unitL2-norm vectors.

Model (3) is related to the Canonical Polyadic decomposition (CP)2, which consists of decomposing

a tensorT into a sum ofdecomposabletensors. For the sake of convenience, equation (3) is rewritten

in vector form as

t =

R∑

r=1

λr ar ⊠ br ⊠ sr (4)

where⊠ denotes the Kronecker3 product, andt = vec{T} is a column vector of dimensionKLM

containing the entries of the 3-way arrayT.

III. E XISTENCE AND UNIQUENESS

The goal is to identify the directions of arrival (DoA),ψr, of theR impinging plane waves and to

estimate corresponding transmitted source signalsςr(tm) up to a scaling factor, given the whole array

T. Clearly, a sufficient condition is to be able to identify allparameters in theRHS of (4).

A. Low rank approximation

Actually, observations are corrupted by noise, so that (3-4) do not hold exactly. A natural idea is then

to fit model (4) by minimizing the error

Υ(A,B,S;Λ) =

∥
∥
∥
∥
∥
t−

R∑

r=1

λr ar ⊠ br ⊠ sr

∥
∥
∥
∥
∥

2

(5)

whereΛ denotes the diagonal matrix containing theλr ’s, and‖ · ‖ the L2-norm. Minimizing error (5)

means finding the best rank-R approximate ofT and its CP decomposition. However, the infimum ofΥ

may not be reached; seee.g.[13], [8] and references therein. The reason is that the set of rank-R tensors

is not closed forR > 1. The idea we promote here is to impose an additional constraint that will ensure

the existence of a minimum, as elaborated in the next section. In addition, from the physical point of

view, one can make the following observations:

• sources that are totally correlated need to be localized separately only if they are sufficiently well

angularly separated. In that case they correspond to multi-paths of the same radiating source.

• sources that are located in the same direction need to be estimated separately only if they are

sufficiently decorrelated. In the latter case, they correspond to different sources.

2also sometimes called Candecomp/Parafac in Psychometry orChemometrics [12].

3This notation is chosen to make the distinction between tensor and Kronecker products, which are sometimes mixed up [11].



AUTHOR AND TITLE 3

• otherwise, one can assimilate highly correlated sources arriving from close directions to a singlefat

source, spread out in space.

The purpose of the section is to formalize these constraints.

B. Coherences

As in the compressed sensing literature [14], [15], we definethe coherence of a setof unit norm

vectors as the largest value of cross scalar products:

µA = sup
k 6=ℓ

|aHk aℓ| (6)

The coherence of matrixA is defined this way, ifak denote its (unit norm) columns. Coherences of

matricesB andS are defined similarly, and denoted byµB andµS, respectively. LetG be theR × R

Gram matrix defined by:

Gpq = (aHp aq)(b
H

p bq)(s
H

p sq)

Then for given matricesA, B andS, the optimal valueΛo minimizing errorΥ is obtained by cancelling

the gradient of (5) w.r.t.Λ, which leads to the linear system:

Gλo = f , (7)

where λo = diag(Λo) and vector f in the right hand side is defined by the contractionfr =
∑

ijk TijkA
∗
irB

∗
jrS

∗
kr, 1 ≤ r ≤ R. Equation (7) shows that coherences play a role in the conditioning

of the minimization problem. Also note that only theproduct between coherences appears, and not

coherences individually.

C. Existence

We are now in a position to state conditions of existence. It has been shown in [8] that if

µAµBµS <
1

R− 1
(8)

then the infimum of (5) is reached. This happens because error(5) becomes coercive as soon as (8) is

satisfied. And it must then reach its minimum since it is continuous.

Constraint (8) needs some care because it involvesmax operators, which are not differentiable. For this

reason, we propose to use the fact that theL∞ norm can be bounded byL2ρ norms, and approximated

for large values ofρ:

||z||∞ = max
k

{zk} ≤ ||z||2ρ =
(
∑

k

z2ρk

)1/2ρ

, ∀ρ ≥ 1
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for zk ∈ R+. Applying this inequality tozk ≡ |aHp aq| allows to bound coherences above by a differentiable

quantity, so that another (somewhat more constraining) sufficient condition can be obtained. More

precisely:

µA ≤ µ(A, ρ)
def
=

(
∑

p<q

|aHp aq|2ρ
)1/2ρ

We subsequently callCρ the constraint obtained by replacing the max operators by the L2ρ norms in

constraint (8):

Cρ def
= 1−R+ µ(A, ρ)−1µ(B, ρ)−1µ(S, ρ)−1 > 0 (9)

It is clear that if (9) is satisfied, then so is (8). The above isthus a sufficient condition.

D. Uniqueness

There exist sufficient conditions ensuring that the solution of (4) is unique, which involve coherences

[8]. However, the condition below is much less constraining[16, p.13]:

R ≤M andR(R− 1) ≤ K(K − 1)L(L− 1)

2
(10)

and guarantees that there exists almost surely a unique solution. Other sufficient conditions for generic

uniqueness exist [17], [18], but may be less attractive whenone dimension (i.e. M ) is large.

IV. D OA ESTIMATION

A. Optimization

The constrained optimization is carried out with the help ofgradient descent type algorithms, which

handle constraints in different manners. Denote for concisenessx = vec{[AT,BT,ST]} and define the

objective function:

Fρ(x;λ) = Υ(x;Λ) + η exp(−γ Cρ(x)) (11)

whereη is the penalty weight,γ is introduced to control the sharpness of penaltyCρ(x), andλ is defined

in (7) and depends onx andt. This leads to the algorithm below

ALGORITHM

1) ChooseR satisfying (10).

2) Initialize (A(0),B(0),S(0)) to matrices with unit-norm columns satisfyingCρ > 0.

3) ComputeG(0) and f(0), and solveG(0)λ(0) = f(0) for λ, according to (7)

4) For k ≥ 1 and subject to a stopping criterion, do
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a) Compute the descent direction as the gradient w.r.t.x:

d(k) = −∇Fρ(x(k − 1);λ(k − 1))

b) Compute a stepsizeℓ(k)

c) Updatex(k) = x(k − 1) + ℓ(k)d(k)

d) Extract the 3 blocks fromx(k): A(k), B(k) andS(k)

e) Normalize the columns ofA(k), B(k) andS(k)

f) ComputeG(k) and f(k), and solveG(k)λ(k) = f(k) for λ, according to (7).

In the algorithm,η is decreased as the reconstruction errorΥ(x;Λ) decreases, whereasγ is kept fixed.

We give now some gradient expressions4 necessary to determine the descent directiond(k) whenFρ
is used:

∂Υ

∂A
= 2AMA − 2NA

with
MA
pq

def
=
∑

jk λpBjpSkpS
∗
kqB

∗
jqλ

∗
q

NA
ip

def
=
∑

jk TijkB
∗
jpS

∗
kpλ

∗
p

and
∂ exp(−γ Cρ)

∂A
=

γ

exp (γ Cρ)
LAρ A

[

(AHA)⊡QA − I
]

where⊡ denotes the Hadamard entry-wise product,

LAρ
def
=

(
∑

q<p

|aHp aq|2ρ
)−1

2ρ
−1

µ(B, ρ)−1µ(S, ρ)−1,

andQpq
def
= |aHq ap|2ρ−2. Keep in mind that expressions above hold true because matrix A has unit-norm

columns. And expressions are similar for matricesB andS, which also have unit-norm columns.

B. Source localisation

Since in our algorithm, matrixA is computed without forcing any structure, it is necessary to extract

parameters of interest (namely DoAs) from the entries ofA. In the present framework, we consider

subarrays that are formed of linearly equispaced sensors with spacing∆. So the elements ofA are given

by:

Akr = exp

{


2π

λ
(k − 1)∆ cosψr

}

(12)

4Matrix gradients are written with the conventions described in [19], [20].
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y

z

δ2

δ3

Reference

subarray

⋆
source

ψ

Fig. 1. One source (R = 1) radiating on a sensor array withL = 3 subarrays.

whereλ = ω/2πC is the wavelength andψr is the DoA of therth source as illustrated in Figure 1.

In this case,A is a Vandermonde matrix with generatorsνr = e
2π

λ
∆cosψr , r = 1, . . . , R. In [21],

the generators of an estimated Vandermonde matrix are extracted using the following expression:νr =

1
L−1

∑K−1
k=1

Ak+1,r

Ak,r
. The same idea,i.e., computing the average over several estimates of the generator,

is used in [22]. We propose to extract the generator set usinginstead a least squares minimization. Let

ar = [A1,r, . . . , AK−1,r]
T and ār = [A2,r, . . . , AK,r]

T. Then we have,̄ar ∼= νrar. Hence the generators

are optimal solutions of the following minimizations:

min
υ

‖ār − υ ar‖2 (13)

Henceν̂r can be obtained by canceling the gradient of the previous error w.r.t υ, which yields :

ν̂r =
aHr ār

‖ar‖2
. (14)

V. COMPLEX CRAMÉR-RAO BOUNDS

When parameters are complex, expressions of Cramér-Rao bounds (CRB) depend on the definition

of the complex derivative. Since a real function is never holomorphic (unless it is constant) [19], this

definition is necessary; this has been overlooked in [23] butclarified in [9]. Originally, the derivative of

a real functionh(θ) ∈ Rp with respect to a complex variableθ ∈ Cn, θ = α+ β, α,β ∈ Rn, has been

defined as thep× n matrix [19]:
∂h

∂θ

def
=

∂h

∂α
+ 

∂h

∂β
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Even if the numerical results are independent of the definition assumed for theoretical calculations, we

shall subsequently assume the definition proposed in [20], for consistency with [9]:

∂h

∂θ

def
=

1

2

∂h

∂α
− 

2

∂h

∂β
(15)

With this definition, one has for instance that∂α/∂θ = 1
2I, and∂β/∂θ = − 

2I. This is a key difference

with [19], where we had instead:∂α/∂θ = I, and∂β/∂θ = I. Assume that parameterθ is wished

to be estimated from an observationz, of probability distributionp(z;θ), and denoteu(z;θ) the score

function. Then we have for any functionh(θ) ∈ Rp:

E{h(z)u(z;θ)T} =
∂

∂θ
E{h(z)}, with u(z;θ)T

def
=

∂

∂θ
logL(z;θ) (16)

This is a direct consequence of the fact thatE{u} = 0, valid if derivation with respect toθ and

integration with respect toℜ(z) andℑ(z) can be permuted. Now lett(z) be an unbiased estimator of

θ. Then, following [19], one can prove thatE{t uT} = E{(t − θ)uT} = I andE{t uH} = 0. Finally,

by expanding the covariance matrix of the random vector(t− θ)− F−1u∗, one readily obtains that:

V ≥ F−1, with V
def
= E{(t − θ)(t − θ)H} andF

def
= E{u∗ uT} (17)

Note that the definition of the Fisher information matrix is the complex conjugate of that of [19], because

of a different definition of the complex derivation (and hence a different definition of the complex score

function). Only notations differ, and bounds on variances remain eventually the same.

VI. CRAMÉR-RAO BOUNDS OF THE LOCALIZATION PROBLEM

A. Likelihood

The noisen = nx + ny is assumed to follow a complex normal distribution with zeromean. The

likelihood function oft, defined in (4), takes the form:

p (t, t∗)
def
= π−KLM (det(Σ) det(P))−1/2

· exp
{

−(t− µ)H(P−1)∗(t− µ) + Re
(

(t− µ)TRT(P−1)∗(t− µ)
)}

(18)

whereµ is the noise free part oft, Σ is the covariance matrix oft, C = E
{
(t− µ)(t − µ)T

}
is the

noncircular covariance (sometimes calledrelation matrix), and

P = Σ∗ −CHΣ−1C, R = CHΣ−1 (19)
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In our computer experiments, a general noise form will be considered, in which non-circularity will be

controlled using a variableε:

cov
{

[nT

x ,n
T

y ]
T

}

=




Σxx Σxy

Σyx Σyy



 =
σ2

2




(1 + ε)I ε I

ε I (1− ε)I



 (20)

In this caseΣ = σ2I andC = σ2ε (1 + )I. Therefore, the likelihood function becomes

p (t, t∗) =
(

σ2π(1− 2ε2)1/2
)−KLM

· exp
{ −1

σ2(1− 2ε2)
(t− µ)H(t− µ) + Re

(
ε(1− )

σ2(1− 2ε2)
(t− µ)T(t− µ)

)}

(21)

Now, let

θ = [ψ1, . . . , ψR
︸ ︷︷ ︸

ψ

, b̄T

1 , . . . , b̄
T

R, s
T

1 , . . . , s
T

R
︸ ︷︷ ︸

ξ

, b̄H

1 , . . . , s
H

R
︸ ︷︷ ︸

ξ∗

] (22)

denote the unknown parameter vector, whereb̄r
def
= [B2,r, . . . , BL,r]

T. Note that, by definition, the

likelihood p is a function of botht andt∗, and not of||t−µ|| only, especially if noise is non-circularly

distributed. In this eventuality, it is hence necessary to introduce both complex parameters and their

conjugates in the unknown parameter vectorθ, as displayed in (22).

B. Fisher Information

Our goal now is to derive the CRBs of the parameters inθ. The CRBs for factor matrices have been

computed in [9]. However, it should be emphasized that, unlike [9], no assumption is needed on the

elements of matrixS to derive the CRB. In fact, assuming that the first row ofA andB is fixed to

[1, . . . , 1]1×R is sufficient. Yet, the latter assumption is satisfied in the considered array configuration.

The CRB for unbiased estimation of the complex parametersθ is equal to the inverse of the Fisher

information matrixF, defined in equation (17). We start with the log-likelihood:

L(θ) = −KLM log
(

σ2π(1− 2 ε2)1/2
)

− 1

σ2(1− 2 ε2)
(t− µ)H(t− µ)

+ Re

(
ε(1 − )

σ2(1− 2 ε2)
(t− µ)T(t− µ)

)

(23)

A straightforward calculation then yields:

sT =
1

σ2(1− 2 ε2)

[

nT
∂µ∗

∂θ
+ nH

∂µ

∂θ
− ε

(

(1 + )nH
∂µ∗

∂θ
+ (1− )nT

∂µ

∂θ

)]

(24)
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wheren = z − µ. By substituting the score functions by its expression, the Fisher information matrix

can be written as:

F =
1

σ2(1− 2 ε2)

[(
∂µ∗

∂θ

)H (∂µ∗

∂θ
− ε(1− )

∂µ

∂θ

)

+

(
∂µ

∂θ

)H (∂µ

∂θ
− ε(1 + )

∂µ∗

∂θ

)]

(25)

Since parameters inψ are real and those inξ are complex, a first writing of the derivatives in (25) is:

∂µ

∂θ
=

[
∂µ

∂ψ
,

∂µ

∂ξ
, 0

]

and
∂µ∗

∂θ
=

[(
∂µ

∂ψ

)∗
, 0 ,

(
∂µ

∂ξ

)∗]

(26)

Therefore, the Fisher information matrix becomes:

F =
1

σ2(1− 2 ε2)














2Re {K11} K12 K∗
12

KH

12 G22 H∗
22

KT
12 H22 G∗

22














(27)

where

Kij = Gij +Hij (28)

Gij =

(
∂µ

∂θi

)H ( ∂µ

∂θj

)

(29)

Hij = ε (− 1)

(
∂µ

∂θi

)T ( ∂µ

∂θj

)

(30)

with (i, j) ∈ {1, 2} × {1, 2}, θ1 = ψ andθ2 = ξ.

To complete the calculation ofF, it remains to give partial derivative expressions ofµ with respect to

ψ andξ. This is addressed in the following subsection. To conclude, we present the Fisher information

Fc for a circular complex Gaussian (CCG) noise. In this case, wejust need to setε = 0 in (27), which

yields:

Fc =
1

σ2














2Re {G11} G12 G∗
12

GH
12 G22 0

GT
12 0 G∗

22














(31)

In view of (31), it is clear that the introduction ofξ∗ in the parameter vector is not necessary in the

case where the noise follows a CCG distribution. With a non circular complex Gaussian (NCCG) noise,

this is not the case.
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C. Derivatives ofµ with respect toψ

Using the chain rule we have
∂µ

∂ψf
=

(

∂µ

∂ aTf

)(

∂aTf
∂ψf

)

(32)

and [∂µ/∂aTf ] can be computed using complex derivative formulas. Then, weobtain:

∂µ

∂aTf
= IK ⊠ bf ⊠ sf ∈ C

KLM×K, 1 ≤ f ≤ R. (33)

To calculate[∂aTf /∂ψf ], we use the expressions of the considered sensor array configuration, namely

equation (12), which yields:
∂aTf
∂ψf

= −π sinψf (af ⊡ vK) (34)

wherevK = [0, 1, . . . ,K − 1]T . By substituting (33) and (34) in (32), we get

∂µ

∂ψf
= −π sinψf (IK ⊠ bf ⊠ sf ) (af ⊡ vK)

def
= φψf

(35)

and
∂µ

∂ψ
= [φψ1

, . . . ,φψR
] ∈ C

KLM×R (36)

D. Derivatives ofµ with respect toξ

Taking partial derivatives ofµ with respect tōbT

f andsTf , we obtain:

∂µ(θ)

∂b̄T

f

= (af ⊠ ILM )(IL ⊠ sf )JL
def
= φ

b̄f
∈ C

KLM×(L−1) (37)

∂µ(θ)

∂sTf
= af ⊠ bf ⊠ IM

def
= φsf ∈ C

KLM×M (38)

whereJL = [0(L−1),1 IL−1]
T ∈ CL×(L−1) is a selection matrix. To sum up,

∂µ

∂ξ
= [φ

b̄1
, . . . ,φ

b̄R
,φs1 , . . . ,φsR ] ∈ C

KLM×R(L+M−1) (39)

E. DoA Craḿer-Rao bound

The CRB related to DoAs only is obtained as the first leadingR × R block in matrix F−1, where

F is defined in (27). Doing this assumes that translationsδℓ are nuisance parameters,i.e. unknown but

not of interest. This assumption is relevant in various applications. For instance, consider sonar buoys

left floating on the surface and equipped with a device permitting to maintain their orientation towards

North. The shape and orientation of subarrays mounted on each buoy are known, but relative locations of

buoys are unknown. Similar examples can be encountered wheninstalling arrays of sensors far apart,e.g.
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when performing records on glaciers in difficult conditions: only locations of sensors within subarrays

are known accurately. This realistic context has not been considered in the literature. Note that the CRB

of the DoA where locations of all sensors are known can be found in [24], [25].

VII. C OMPUTER RESULTS

A. Advantage of the constraintCρ(x)

To see the interest of constraintCρ(x) used in the optimization algorithm, Figure 2 sketches the

evolution of the reconstruction errorΥ(x;Λ), andCρ(x) as a function of iterations. The figure shows

that thanks to the constraintCρ: (i) iterates are incited to remain inside (or turn back into) the feasible

region (where existence is guaranteed), (ii) the optimization algorithm converges quickly because iterates

are allowed to move away from the feasible region (dependingon parametersη andγ).

B. Monte Carlo experiments

To evaluate the efficiency of the proposed method, we compareits performances to two other

algorithms, ESPRIT and MUSIC [24], [25]. The performance criterion is the total mean square error

(total MSE) of the DoA: 1
RN

∑R
r=1

∑N
n=1(ψ̂r,n − ψr)

2 where ψ̂r,n is the estimated DoA at then-th

Monte-Carlo trial andN is the number of trials. The deterministic CRB computed in the previous

section is reported as a benchmark. The scenario on which theproposed algorithm is tested can be of

interest in numerous applications, where translationsδℓ are unknown, as pointed out in Section VI-E.

To show the influence of various parameters of the problem on the estimation results, we study four

examples, whose parameters are reported in the table below:

Subarrays Noise DoA

Example 1 L = 2, (δ2) CCG 40◦, 64◦, 83◦

Example 2 L = 3, (δ2, δ3) CCG 40◦, 64◦, 83◦

Example 3 L = 3, (δ2, δ3) CCG 7◦, 64◦, 83◦

Example 4 L = 3, (δ2, δ3) NCCG 7◦, 60◦, 70◦

whereδ2 = [0, 25λ, 0]T, δ3 = [0, 37.5λ, 5λ]T . In all examples, each subarray is an uniform linear array

(ULA) of 4-element with half-wavelength spacing (see Figure 1), and the narrowband source signals have

the same power. In all experiments,M = 200 time samples are used, and 200 Monte-Carlo simulations

are run for each SNR level. Figures 3, 4, 5 and 6 report the MSE of the DoAs obtained in Examples 1,

2, 3 and 4, respectively.
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Fig. 2. Reconstruction errorΥ(x;Λ) andCρ(x) as a function of the number of iterations. This is a typical example among

the Monte-Carlo experiments that have been run.

Example 1: This experiment shows that: (i) the proposed CP algorithm exhibits the same perfor-

mances as ESPRIT, which makes sense, (ii) MUSIC performs thebest, but exploits more information,

namely the exact knowledge of sensor locations, whereas this information is actually not available in the

present scenario. Hence MUSIC performances just serve as a reference.

Example 2:This experiment shows that the proposed algorithm yields better results than EPSRIT.

The reason is that ESPRIT uses at most two subarrays, whereasthe proposed algorithm uses all of them.

Again, MUSIC is reported just as a reference benchmark.
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Fig. 3. Total DoA error versus SNR, withL = 2 subarrays,ψ = [40◦, 65◦, 83◦].

Example 3:This experiment shows the same results as in example 2, except for an increase in MSE

at low SNR, which is due to the direction of arrivalψ = 7◦. Actually, for an ULA, the source localization

accuracy degrades as the DoAs come closer to the end-fire, so that the so-calledthreshold region[26],

[27] (which always exists at low SNR) becomes visible.

Example 4: Unlike previous experiments, Monte Carlo runs in this example are performed with

non-circular complex Gaussian noise. The obtained resultsare similar to those obtained in Examples 2

and 3.

To show the influence of the noise distribution on DoA estimation, we plot the results obtained by

varyingε using the same array configuration and DoA parameters as in Example 4. Figure 7 presents CRB

for different values ofε. This shows that the CRB changes withε. Figure 8 depicts results comparing
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total MSE obtained by the proposed algorithm to the CRB, eachsubfigure corresponding to one value

of ε. We conclude that the proposed algorithm yields accurate estimates in the presence of circular as

well as noncircular additive Gaussian noise.

VIII. C ONCLUSION

DoA estimation of narrow-band far-field sources is formulated as a CP decomposition, when sensor

arrays consist ofL identical displaced subarrays. We proposed an optimization algorithm including a

new differentiable penalty ensuring existence of the low-rank tensor approximation. We also derived

the expressions of the Cramér-Rao bounds of DoA parametersin the presence of nuisance parameters

estimated by CP decomposition methods. It was shown that, thanks to our penalty, the proposed algorithm

converges quickly and is prevented to leave for long the feasible region. As expected, DoA estimation

results show that the CP algorithm exhibits better results than reference DoA estimation methods when

L > 2.
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Fig. 4. Total DoA error versus SNR, withL = 3 subarrays,ψ = [40◦, 65◦, 83◦].
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Fig. 5. Total DoA error versus SNR, withL = 3 subarrays,ψ = [7◦, 65◦, 83◦].



18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, XXX.

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

T
ot

al
 M

S
E

 fo
r ψ

 

 
CP (3 subarrays)
ESPRIT
MUSIC
CRB

Fig. 6. Total DoA error versus SNR, withL = 3 subarrays,ψ = [7◦, 60◦, 70◦], non-circular noise (ε = 0.1).
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Fig. 7. CRB ofψ for different values ofε (0, 0.1, 0.3, 0.4),L = 3 subarrays,ψ = [7◦, 60◦, 70◦].
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Fig. 8. Total DoA error versus SNR, withL = 3 subarrays,ψ = [7◦, 60◦, 70◦]. (a) ε = 0, (b) ε = 0.1, (c) ε = 0.3, (d)

ε = 0.4.


