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Joint Source Estimation and Localization

Souleymen SahnounMember, IEEEand Pierre Comorkellow, IEEE

Abstract

The estimation of directions of arrival is formulated as tecomposition of a 3-way array into a
sum of rank-one terms, which is possible when the receivayanjoys some geometrical structure. The
main advantage is that this decomposition is essentiallguenunder mild assumptions, if computed
exactly. The drawback is that a low-rank approximation doeesalways exist. Therefore, a constraint
is first introduced that ensures the existence of the latist bpproximate. Then Cramér-Rao bounds
are derived for localization parameters and source sigaatiming the others are nuisance parameters;
some inaccuracies found in the literature are pointed ositfoRnances are eventually compared with
reference algorithms such as ESPRIT, in the presence ofia@aussian noise, with possibly non

circular distribution.

Index Terms

multi-way array, tensor decomposition, source local@atiantenna array processing, low-rank

approximation, complex Cramer-Rao bounds

. INTRODUCTION

Estimation of Directions of Arrival (DoA) is a central pravh in antenna array processing, including
in particular radar, sonar, or telecommunications [1]. Qe last decades, several DoA estimation tools
have been developed, ranging from nonparametric Fouasedh methods to parametric high-resolution
technigues. The latter techniques, including linear mtémh-based methods and subspace methods, are
often preferred to nonparametric ones since they achiayle tgsolution estimates. Recently, methods
based on sparse approximations have been proposed, wkidvm@sidered as semi-parametric [2], [3].

Traditional subspace approaches such as MUSIC (multigleasiclassification) are based on low-rank

approximation of the covariance matrix of observationsl an detecting points of minimal distance with
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the so-called array manifold [4] [5]. These approaches éaissume that (i) the measurements are weakly
stationary over sufficiently long observation lengthg, tfie number of sources of interest is smaller than
the number of sensors, and (iii) spatial responses of allagsrare known, and in particular their location
(in other words, the sensor array needs to be calibratedth&n well-known subspace method is the
ESPRIT (estimation of signal parameters via rotationahirance techniques) algorithm [6] which is
applicable to sensor arrays consisting of two identicapldised subarrays. The displacement vector
between the two subarrays should be known, whereas, unlidSIE-type algorithms, the calibration
information of each subarray is not required.

In [7], a deterministic approach has been proposed, whichite not only to work with short data
lengths (and hence less stationary sources), but also adizeanore sources than sensors present in the
reference array. This approach is based on the same ra@htimariance as exploited in ESPRIT [6], but
can handle more than one displacement. It consists in gtthig measurements in a 3-way array, and to
decompose it into a sum of rank-one terms. One very intaig$ty-product of [7] is that source copies
are also delivered for free, without any further estimatitage.

The most popular model for fitting a 3-way array using a sumaofkrone terms is the canonical
polyadic (CP) decomposition. Contrary to the decompasitid matrices in rank-one terms, the CP
decomposition is essentially unique under mild conditiddewever, a best-fitting CP decomposition
may not exist for some tensors [8]. In this case, trying to fintbw-rank tensor approximation results
in diverging components.

In this paper we revisit the approach of [7], where the imgatrissue of the existence of a low-rank
tensor approximation has been neglected, so that the kfgmoach is actually ill posed. This fact has
been already pointed out in [8], and additional constraiage been suggested, which enjoy a reliable
physical meaning and at the same time ensure existence tftaosoln the present work, we shed some
light on conditioning and algorithmic issues. Our main cifmitions are the following. We first propose
a new differentiable constraint which guarantees exigt@fdhe low-rank tensor approximation. Then,
we derive the expressions of the Cramér-Rao bounds (CRBeckto the localization problem in the
presence of nuisance parameters estimated by CP decoimpositthods. Note that the CRB for CP
decomposition of complex-valued and real-valued tensaewespectively studied in [9] and [10], but
without assuming that one of matrix factors is parametdrizg angles of arrival.

The remainder of this paper is organized as follows. In the section, we introduce notation and
formulate the DoA estimation as a low-rank decompositiom &way array. Then we define in Section

Il the constraint ensuring existence of the best approtiona An optimization algorithm is described
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in Section IV, and Cramér-Rao bounds of DoA parameters arivetl in Section V. Finally, we show
the benefit of the proposed algorithm via numerical expentsieand compare results to Cramér-Rao

bounds.

Il. MODELING AND NOTATION

In the following, vectors will be denoted by bold lowercaseg.a, whereas matrices or higher-order
arrays will be denoted by bold uppercasesy. A. Moreover,a, will denote therth column of matrix
A.

Suppose thaR narrow-band radiating sources impinge on an array of sepgwmed ofL subarrays of
K sensors each. We make the far-field assumption, that is, sueresthat sources are located sufficiently
far from the array, compared to the array dimensions, sowhses can be considered as plane. The key
assumption made in [6], [7], [8] is that, taking one subamayreference, every subarray can be deduced
from the reference one by an unknown translation in spadeeteby some vectaod, of R3,1</¢<L,
4 = 0.

Denoteg,(t) the signal transmitted by theh sourced, its DoA viewed from the array, ans(y,t)
the signal measured at a point in space defined by its codediga(we consider complex envelopes

about the central frequency). Then we have:
R
e w
sty.0) = D () ar(y), an(y) = explyg yTd} (1)
r=1

wherew is the central pulsation of the narrow-band waw@she wave celerity, ang = /—1. Because
waves are plane and narrow-band, the signal measured dtearpainty + 7, deduced fromy by a

translationr takes the form: "
e w
s(y.7,8) = Y ar(9) be(r) (1), br(7) = exp{y5 7T} 2
r=1

In other words, function(y, 7, t) decomposes into a sum &fsimpler functions whose variables separate.

Now, if we discretize theR3 space with the above defined subarrays, and fdkéme samples, we
end up with a multi-linear relationshign finite dimensional spaces. In fact, Ipj, be the coordinate
vector of thekth sensor of the reference subarray, @pdhe translation defining the location of tlith
subarray,l < ¢ < L. Then signal (2) can be stored infax L x M three-way array, which follows the
model below, possibly corrupted by additive noise:

R
Tk:Zm = Z >\7" Ak’r BZT Smr (3)

r=1

1Seee.q.[11] for a definition of multi-linearity.
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, and A, = VKL|s]-

where A, = \/%exp (j%pgdr), By, = ﬁ exp (]%cﬂ—dr), Smr = Sr(tm)/|lsr
Note thata,, b, ands, are hence uniL2-norm vectors.
Model (3) is related to the Canonical Polyadic decompasiiGP¥, which consists of decomposing
a tensorT into a sum ofdecomposabléensors. For the sake of convenience, equation (3) is tewrit
in vector form as "
t=> Aa ®b. Hs, (4)

r=1
where X denotes the Kroneck&product, andt = vec{T} is a column vector of dimensioi LM

containing the entries of the 3-way arrdy

[Il. EXISTENCE AND UNIQUENESS

The goal is to identify the directions of arrival (DoAY,., of the R impinging plane waves and to
estimate corresponding transmitted source siggdls,) up to a scaling factor, given the whole array

T. Clearly, a sufficient condition is to be able to identify pirameters in thaHs of (4).

A. Low rank approximation

Actually, observations are corrupted by noise, so that)(8e4not hold exactly. A natural idea is then
to fit model (4) by minimizing the error
R 2
t—ZATaT&bT&ST

r=1

T(A,B,S;A) = (5)

where A denotes the diagonal matrix containing thes, and|| - | the L2-norm. Minimizing error (5)
means finding the best ramk-approximate ofl’ and its CP decomposition. However, the infimumof
may not be reached; seeg.[13], [8] and references therein. The reason is that the fseini-R tensors
is not closed fork > 1. The idea we promote here is to impose an additional constifzét will ensure
the existence of a minimum, as elaborated in the next sediioaddition, from the physical point of

view, one can make the following observations:
« sources that are totally correlated need to be localizedraggy only if they are sufficiently well

angularly separated. In that case they correspond to pailtis of the same radiating source.
« sources that are located in the same direction need to bmatetl separately only if they are

sufficiently decorrelated. In the latter case, they comwespto different sources.

2also sometimes called Candecomp/Parafac in Psychomet®@hemometrics [12].

3This notation is chosen to make the distinction betweenoremsd Kronecker products, which are sometimes mixed up [11]
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« otherwise, one can assimilate highly correlated soura@gray from close directions to a singfat
source spread out in space.

The purpose of the section is to formalize these constraints

B. Coherences

As in the compressed sensing literature [14], [15], we defireecoherence of a sebf unit norm

vectors as the largest value of cross scalar products:
pa = sup [ajla| (6)
kL
The coherence of matriA is defined this way, ifa; denote its (unit norm) columns. Coherences of
matricesB and S are defined similarly, and denoted py; and g, respectively. LeiG be theR x R

Gram matrix defined by:

qu = (ayaq)(bybq)(sgsq)

Then for given matriceg\, B andS, the optimal valueA® minimizing errorY is obtained by cancelling

the gradient of (5) w.r.tA, which leads to the linear system:
G =f, (7)

where A° = diag(A°) and vectorf in the right hand side is defined by the contractifn =
Zijk Tijk A}, B}, Sk, 1 < 7 < R. Equation (7) shows that coherences play a role in the dondiy

of the minimization problem. Also note that only thpoduct between coherences appears, and not

coherences individually.

C. Existence

We are now in a position to state conditions of existencea#t been shown in [8] that if

1

HabBRS < 7 (8)

then the infimum of (5) is reached. This happens because @&Yydrecomes coercive as soon as (8) is
satisfied. And it must then reach its minimum since it is qumius.

Constraint (8) needs some care because it invalves operators, which are not differentiable. For this
reason, we propose to use the fact that £8& norm can be bounded b§?” norms, and approximated

for large values op:

1/2p
2p
1200 IHI?X{ZR} > HZHZP (Ek :Zk ) » VP Z
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for z;, € R™. Applying this inequality toz, = \a;'aq] allows to bound coherences above by a differentiable
guantity, so that another (somewhat more constrainingficgrit condition can be obtained. More
precisely:
1/2p
def
pa < p(A,p) = (Z Iap'?'aq|2”>
p<q
We subsequently call, the constraint obtained by replacing the max operators byL# norms in
constraint (8):

Co = 1= R+ p(A,p) " u(B.p) " (S, p) 7 > 0 ©)

It is clear that if (9) is satisfied, then so is (8). The abovéhiss a sufficient condition.

D. Uniqueness

There exist sufficient conditions ensuring that the soiutib (4) is unique, which involve coherences
[8]. However, the condition below is much less constrainibg, p.13]:

K(K —1)L(L-1)
2

R<MandR(R—1) < (10)

and guarantees that there exists almost surely a uniquaosol®ther sufficient conditions for generic

uniqueness exist [17], [18], but may be less attractive whresm dimensionife. M) is large.

V. DOA ESTIMATION
A. Optimization

The constrained optimization is carried out with the helpgaddient descent type algorithms, which
handle constraints in different manners. Denote for cemessx = vec{[AT,BT,ST]} and define the
objective function:

Fo(x;0) = T(x;A) + 1 exp(—7Cp(x)) (11)

where is the penalty weighty is introduced to control the sharpness of pendjjx), and\ is defined

in (7) and depends or andt. This leads to the algorithm below

ALGORITHM

1) ChooseR satisfying (10).

2) Initialize (A(0),B(0),S(0)) to matrices with unit-norm columns satisfyiy > 0.
3) ComputeG(0) andf(0), and solveG(0) A(0) = £(0) for A, according to (7)

4) Fork > 1 and subject to a stopping criterion, do
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a) Compute the descent direction as the gradient wr.t.
d(k) = ~VF,(x(k — 1): A(k — 1))
b) Compute a stepsiz&k)
c) Updatex(k) = x(k — 1) + £(k) d(k)
d) Extract the 3 blocks fronx(k): A(k), B(k) andS(k)
e) Normalize the columns oA (k), B(k) andS(k)
f) ComputeG (k) andf(k), and solveG(k) A(k) = f(k) for A, according to (7).

In the algorithmyy is decreased as the reconstruction eff¢x; A) decreases, whereass kept fixed.

We give now some gradient expressibnecessary to determine the descent directioh) when 7,

is used:
(9T . A A
A - 2AM” —2N
MA SNBSSt B
with Jk p JP kp~kq—3q9"'q
def
Nz’? = 2k Tk Bip Sty
and
dexp(—vCp) Ap A
0A _exp(70)£ {( AEQ I}

wherel[] denotes the Hadamard entry-wise product,

-1
def _ _
L)<= (Zlaﬂaqlz”> w(B,p) " (S, p) 7,

q<p

def
andQ,, =

columns. And expressions are similar for matri#&snd S, which also have unit-norm columns.

]aqHapr"z. Keep in mind that expressions above hold true becausexmathas unit-norm

B. Source localisation

Since in our algorithm, matriA is computed without forcing any structure, it is necessargxtract
parameters of interest (namely DoAs) from the entriesAofin the present framework, we consider
subarrays that are formed of linearly equispaced sensadsspacingA. So the elements oA are given
by:

27
Ay = exp ‘]T(k — 1)A cos ¥, (12)

“Matrix gradients are written with the conventions desadtilie [19], [20].
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source
*

Referenc

subarray

Fig. 1. One sourceR = 1) radiating on a sensor array with = 3 subarrays.

where A\ = w/27C' is the wavelength and, is the DoA of therth source as illustrated in Figure 1.
In this case,A is a Vandermonde matrix with generatars = eﬂzT"ACOWT, r=1,...,R. In [21],
the generators of an estimated Vandermonde matrix arecgadiausing the following expression; =

1 K—-1 Agt1,.r

-1 2k—1 4. The same ided,e, computing the average over several estimates of the genera

is used in [22]. We propose to extract the generator set usstgad a least squares minimization. Let
a, =[A1,,...,Ax_1,]" anda, = [As,,..., Ak,]T. Then we havea, = v,.a,. Hence the generators

are optimal solutions of the following minimizations:
min [|a, — va, |’ (13)
v

Hencer, can be obtained by canceling the gradient of the previous evr.t v, which yields :

(14)

V. COMPLEX CRAMER-RAO BOUNDS

When parameters are complex, expressions of Cramér-RandboCRB) depend on the definition
of the complex derivative. Since a real function is neverohwrphic (unless it is constant) [19], this
definition is necessary; this has been overlooked in [23]charified in [9]. Originally, the derivative of
a real functionh(0) € R? with respect to a complex variabec C", 8 = o+ )83, a, 3 € R™, has been

defined as the x n matrix [19]:
Oh ag b Oh
20 ~ oa  ’op
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Even if the numerical results are independent of the dedimitissumed for theoretical calculations, we

shall subsequently assume the definition proposed in [B@]cdnsistency with [9]:

90 20a 208 (15)

With this definition, one has for instance thiad /06 = %I, andoB/06 = —%I. This is a key difference
with [19], where we had insteadla/06 = 1, and 93/00 = jI. Assume that parameté is wished
to be estimated from an observatianof probability distributionp(z; @), and denotea(z; 8) the score

function. Then we have for any functidmn(@) € R?:

T def 0

20 log L(z; 0) (16)

E{h(z)u(z;0)"} = %E{h(z)}, with u(z; 0)

This is a direct consequence of the fact tiigtu} = 0, valid if derivation with respect t@ and
integration with respect tét(z) and<(z) can be permuted. Now lafz) be an unbiased estimator of
6. Then, following [19], one can prove th&{tu'} = E{(t —0)u'} = I andE{tu"'} = 0. Finally,

by expanding the covariance matrix of the random ve¢tor 8) — F~'u*, one readily obtains that:
V>F!  with v & E{(t - 0)(t — )"} andF & E{u*u"} (17)

Note that the definition of the Fisher information matrixhe tcomplex conjugate of that of [19], because
of a different definition of the complex derivation (and heracdifferent definition of the complex score

function). Only notations differ, and bounds on varianca®ain eventually the same.

VI. CRAMER-RAO BOUNDS OF THE LOCALIZATION PROBLEM

A. Likelihood

The noisen = n, + yn, is assumed to follow a complex normal distribution with zemean. The

likelihood function oft, defined in (4), takes the form:
p(t,t7) & 7 EKLM (Qet(S) det(P)) />
cexp {~(6— WM P (6 - )+ Re (6~ w)TRTPT) (6 - )} (28)

where v is the noise free part of, 3 is the covariance matrix of, C = E {(t — p)(t — p)" } is the

noncircular covariance (sometimes callethtion matriy), and

P=>"-cCcHz-lc, R=CMx! (19)
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In our computer experiments, a general noise form will besa®red, in which non-circularity will be

controlled using a variable:

Yor 2 2 [(1+¢e) el
cov {[nl,n;]T} = W= ( ) (20)
S Tl 2| eI (1-e

In this caseX = ¢*I and C = o2¢ (1 + 7)I. Therefore, the likelihood function becomes

p(t,t°) = (0277(1 - 252)1/2)_KLM
oo { oy - e re (U - wTe-w) | @)

Now, let

6 =1[Y1,...,0p bl ,....bL s, ... sk bt . sH (22)

% 3 3

def [Ba,...,Br,]T. Note that, by definition, the

denote the unknown parameter vector, where
likelihood p is a function of botht andt*, and not of||t — u|| only, especially if noise is non-circularly
distributed. In this eventuality, it is hence necessaryniwoduce both complex parameters and their

conjugates in the unknown parameter vedors displayed in (22).

B. Fisher Information

Our goal now is to derive the CRBs of the parameteré.iThe CRBs for factor matrices have been
computed in [9]. However, it should be emphasized that,ken]B], no assumption is needed on the
elements of matrixS to derive the CRB. In fact, assuming that the first rowAfand B is fixed to
[1,...,1]1xr is sufficient. Yet, the latter assumption is satisfied in thasidered array configuration.

The CRB for unbiased estimation of the complex parameieis equal to the inverse of the Fisher

information matrixF, defined in equation (17). We start with the log-likelihood:

1

£(6) = ~KLMlog (o*m(1 - 2¢%)"/2) — s (U OMURYD)
e (s (e (- ) (23)

A straightforward calculation then yields:

*

T_ 1 Top” Hon Hop _aaTIM
s e n—p +n 20 ¢ (1+7)n 20 +(1—)n 20 (24)
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wheren = z — u. By substituting the score functianby its expression, the Fisher information matrix

ou* H ou* ou ou H on ou*
(ae) <aa —e=0%5¢ ) \28) \36 1 +9 %8

Since parameters ifp are real and those ig are complex, a first writing of the derivatives in (25) is:

op  [op O o' [(op\" op\*
o= o se 9 ™ % =|(5) o (%)) 2o

Therefore, the Fisher information matrix becomes:

can be written as:

B 1
-~ 02(1—2¢2)

(25)

2 Re {Kll} K12 KE
1
F = 02(1 _ 262) I<1H2 Gz H§2 (27)
K/, Hyy Giy
where
Kz'j = Gij + Hij (28)
_(ou\" [ ou
cs= () (50) 29
B op\' (on
Hijj=¢(1-1) <591> <8—0j> (30)

with (i,7) € {1,2} x {1,2}, 6; = andf, = &.
To complete the calculation @, it remains to give partial derivative expressiongoiith respect to
v and €. This is addressed in the following subsection. To congluge present the Fisher information

F. for a circular complex Gaussian (CCG) noise. In this casejuseneed to set = 0 in (27), which

yields:
2 Re {Gn} G12 GTZ
1 H
G1r2 0 52_

In view of (31), it is clear that the introduction &f in the parameter vector is not necessary in the
case where the noise follows a CCG distribution. With a neoutar complex Gaussian (NCCG) noise,

this is not the case.
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C. Derivatives ofu with respect toy

Using the chain rule we have

dal
o auT f (32)
0V 8af 0y
and [8u/8a}] can be computed using complex derivative formulas. Thenphbiain:
g—*_‘rlexbfxsf € CKLMxK | < f <R, (33)
a
!

To calculate[aa}/azpf], we use the expressions of the considered sensor array waiitmn, namely

equation (12), which yields:
8aJTc
oYy

wherevg = [0,1,..., K — 1] . By substituting (33) and (34) in (32), we get

= —yrsinyy (ay D vg) (34)

3_/1 = —ymsinyy (Ig®byRsy)(afHvg) o Py (35)
0y !
0

and ﬁ = [¢1/)17 cry ¢1/1R] € (CKLJV[XR (36)

D. Derivatives ofu with respect tog

Taking partial derivatives of: with respect tob} ands}, we obtain:

EC. ) B

géT) = (ay R ) (I Msp)dp € gy, € CHLMXE-D (37)
!

A0 ;

gs(T) —a;Rb;RIy ¥ ¢, eCKMM (38)
f

whereJ = [0(;_1); Ir—1]" € CEX(E71) is a selection matrix. To sum up,

on _

85 o [¢Bl 3o >¢BR> ¢517 SRR ¢SR] € CKLMXR(L+M_1) (39)

E. DoA Crangér-Rao bound

The CRB related to DoAs only is obtained as the first leadihg R block in matrix F~!, where
F is defined in (27). Doing this assumes that translati®nare nuisance parameters. unknown but
not of interest. This assumption is relevant in various @pgibns. For instance, consider sonar buoys
left floating on the surface and equipped with a device péingito maintain their orientation towards
North. The shape and orientation of subarrays mounted dmlaamy are known, but relative locations of

buoys are unknown. Similar examples can be encountered inktatling arrays of sensors far apaetg.
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when performing records on glaciers in difficult conditiomsly locations of sensors within subarrays
are known accurately. This realistic context has not be@sidered in the literature. Note that the CRB

of the DoA where locations of all sensors are known can beddnri24], [25].

VIl. COMPUTER RESULTS
A. Advantage of the constraig},(x)

To see the interest of constraidf,(x) used in the optimization algorithm, Figure 2 sketches the
evolution of the reconstruction errdf(x; A), andC,(x) as a function of iterations. The figure shows
that thanks to the constraid},: (i) iterates are incited to remain inside (or turn back jritee feasible
region (where existence is guaranteed), (ii) the optinomadlgorithm converges quickly because iterates

are allowed to move away from the feasible region (dependmgarameterg and~).

B. Monte Carlo experiments

To evaluate the efficiency of the proposed method, we comfargerformances to two other
algorithms, ESPRIT and MUSIC [24], [25]. The performancéetion is thetotal mean square error
(total MSE) of the DoA: 7L =% S™N  (4),,, — ¢,)? where),, is the estimated DoA at the-th
Monte-Carlo trial andN is the number of trials. The deterministic CRB computed ia firevious
section is reported as a benchmark. The scenario on whicpridposed algorithm is tested can be of
interest in numerous applications, where translati®nsre unknown, as pointed out in Section VI-E.
To show the influence of various parameters of the problemhenestimation results, we study four

examples, whose parameters are reported in the table below:

Subarrays | Noise DoA

Example 1| L =2, (d2) CCG | 40°,64°,83°
Example 2| L =3,(d2,d3) | CCG | 40°,64°,83°
Example 3| L = 3,(d2,03) | CCG | 7°,64°,83°
Example 4| L = 3,(d2,603) | NCCG | 7°,60°,70°

wheredy = [0,25),0]T, 83 = [0,37.5),5A]T. In all examples, each subarray is an uniform linear array
(ULA) of 4-element with half-wavelength spacing (see Fagdj, and the narrowband source signals have
the same power. In all experiment®, = 200 time samples are used, and 200 Monte-Carlo simulations
are run for each SNR level. Figures 3, 4, 5 and 6 report the MSReoDoAs obtained in Examples 1,

2, 3 and 4, respectively.
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0 50 100 150 200 250

0 50 100 150 200 250
Iteration

(b) ConstraintC,(x)

Fig. 2. Reconstruction errdf (x; A) andC,(x) as a function of the number of iterations. This is a typicadraple among

the Monte-Carlo experiments that have been run.

Example 1: This experiment shows that: (i) the proposed CP algorithimikéts the same perfor-
mances as ESPRIT, which makes sense, (ii) MUSIC performbdise but exploits more information,
namely the exact knowledge of sensor locations, whereasrtfarmation is actually not available in the
present scenario. Hence MUSIC performances just serve efer@mce.

Example 2: This experiment shows that the proposed algorithm yieldeebeesults than EPSRIT.
The reason is that ESPRIT uses at most two subarrays, whbeeasoposed algorithm uses all of them.

Again, MUSIC is reported just as a reference benchmark.
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Fig. 3. Total DoA error versus SNR, with = 2 subarraysg = [40°,65°,83°].

Example 3:This experiment shows the same results as in example 2, eiorean increase in MSE
at low SNR, which is due to the direction of arrival= 7°. Actually, for an ULA, the source localization
accuracy degrades as the DoAs come closer to the end-fireasthe so-calledhreshold region26],
[27] (which always exists at low SNR) becomes visible.

Example 4: Unlike previous experiments, Monte Carlo runs in this exirgre performed with
non-circular complex Gaussian noise. The obtained resudtssimilar to those obtained in Examples 2
and 3.

To show the influence of the noise distribution on DoA estiorgtwe plot the results obtained by
varyinge using the same array configuration and DoA parameters asampbe 4. Figure 7 presents CRB

for different values of. This shows that the CRB changes withFigure 8 depicts results comparing
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total MSE obtained by the proposed algorithm to the CRB, eadifigure corresponding to one value
of e. We conclude that the proposed algorithm yields accurdimates in the presence of circular as

well as noncircular additive Gaussian noise.

VIIl. CONCLUSION

DoA estimation of narrow-band far-field sources is formedaas a CP decomposition, when sensor
arrays consist of. identical displaced subarrays. We proposed an optimizaigorithm including a
new differentiable penalty ensuring existence of the lawkr tensor approximation. We also derived
the expressions of the Cramér-Rao bounds of DoA paramitdie presence of nuisance parameters
estimated by CP decomposition methods. It was shown thatk#to our penalty, the proposed algorithm
converges quickly and is prevented to leave for long theilidémsegion. As expected, DoA estimation
results show that the CP algorithm exhibits better restlis treference DoA estimation methods when
L> 2.
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Fig. 4. Total DoA error versus SNR, with = 3 subarraysg = [40°,65°,83°].
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Fig. 5. Total DoA error versus SNR, with = 3 subarraysg = [7°, 65°,83°].
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Fig. 6. Total DoA error versus SNR, with = 3 subarraysg = [7°, 60°, 70°], non-circular noiseg = 0.1).
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Fig. 8. Total DoA error versus SNR, with = 3 subarrays) = [7°,60°,70°]. (@) e = 0, (b) e = 0.1, (c) e = 0.3, (d)

e =04.



