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A linear model approach for ultrasonic inverse

problems with attenuation and dispersion
Ewen Carcreff, Sébastien Bourguignon, Jérôme Idier, Member, IEEE, and Laurent Simon, Member, IEEE

Abstract—Ultrasonic inverse problems such as spike train
deconvolution, synthetic aperture focusing or tomography aim
to reconstruct spatial properties of an object (discontinuities,
delaminations, flaws, etc.) from noisy and incomplete mea-
surements. They require an accurate description of the data
acquisition process. Dealing with frequency-dependent attenu-
ation and dispersion is therefore crucial since both phenomena
modify the wave shape as the travel distance increases. In an
inversion context, this paper proposes to exploit a linear model
of ultrasonic data taking into account attenuation and dispersion.
The propagation distance is discretized in order to build a finite
set of radiation impulse responses. Attenuation is modeled with
a frequency power law and then dispersion is computed in order
to yield physically consistent responses. Using experimental data
acquired from attenuative materials, this model outperforms
the standard attenuation-free model and other models of the
literature. Due to model linearity, robust estimation methods
can be implemented. When matched filtering is employed for
single echo detection, the model that we propose yields precise
estimation of the attenuation coefficient and of the sound velocity.
A thickness estimation problem is also addressed through spike
deconvolution where the proposed model also achieves accurate
results.

I. INTRODUCTION

Ultrasonic waves are widely used for non destructive test-

ing (NDT) of materials [1, 2], tissue characterization [3] and

biomedical imaging [4, 5]. Many applications in these fields

can be formulated as inverse problems such as spike train

deconvolution [6–8], biomedical image restoration [4, 9], time-

of-flight tomography [10–12] and synthetic aperture focusing

techniques (SAFT) [13–15]. Such problems rely on both an

accurate direct model describing the acquisition process and

appropriate prior information constraining the solution [8].

Attenuation and dispersion can arise in the applications

cited above. Attenuation is due to two basic causes, namely,

scattering and absorption. Scattering results from the fact that

the material is not strictly homogeneous, implying multiple

direction propagation. Absorption is caused by the excitation

of the particles that converts sound energy into heat. Con-

sequently, attenuation increases with frequency. Most models

in the literature consider a frequency power law [3, 16]. This

frequency-dependent loss has a low-pass filtering effect on

the transmitted waves and grows as propagation distance

increases. It generates a shape broadening of the echoes

that degrades the resolution [17]. Dispersion – a by-product

of attenuation – means that the phase velocity depends on

frequency, producing a frequency-dependent phase variation

of the echoes [5, 17, 18].

Attenuation and dispersion are often overlooked in ultra-

sonic direct models for inversion purposes. Most formulations

consider a linear model that is invariant with respect to the

propagation distance. However, if the ultrasonic propagation

characteristics are not considered, the performance of the

algorithms can be degraded because the model accuracy is

too weak. Several approaches have been developed to include

attenuation in acoustical inverse problems, mostly in geo-

physics [19–21]. Indeed, similar effects impact the propagation

of seismic waves that is modeled as the Q-filter [19, 22]. In

the field of ultrasonic NDT, some methods overcome the issue

of wave distortion by proposing a greater flexibility in the

direct model. On the one hand, parametric methods associate

a specific shape to each echo, which is usually modeled as

a modulated Gaussian pulse. The parameters of each echo

are then estimated by non-linear least-squares fitting [23] or

by greedy procedures such as matching pursuit [24–26]. On

the other hand, non-parametric approaches employ a blind

strategy where weaker constraints are imposed on the echo

shape – as, for example, slow variations between neighboring

intervals of the propagation distance [27]. Even if such models

allow for some shape variation of the echoes with respect to

the propagation distance, they do not introduce any physical

knowledge about the propagation properties.

The present paper aims at contributing to the solving

of ultrasonic inverse problems by including attenuation and

dispersion in the direct model. In particular, we propose to ac-

count for physical attenuation profiles defined in the frequency

domain such as power law attenuation models. Our objective

is threefold. First, we improve the ultrasound model accuracy

compared to the standard attenuation-free model. Second, in

contrast with the methods described above [23–27], we yield a

more constrained description of the data. Consequently, better

performance of the inversion procedure is expected. In partic-

ular, a more accurate model aims at improving echo detection

for long propagation distances where the signal-to-noise ratio

is low. Last, our framework yields a linear direct model which

enables the use of many acknowledged inversion methods [8].

Related works [7, 28] proposed similar approaches but with

an empirical description of attenuation within a time-domain

signal model. The model that we propose is derived from the

physics of wave propagation and is described in the frequency

domain [3, 16].

In this paper, the signal model is formulated as a set

of transfer functions in the Fourier domain [29]. The prop-

agation in the medium is modeled by a so-called radia-

tion transfer function [30] depending on the wavenumber

k(f) = β(f)− jα(f). The term β(f) is related to the phase

velocity and α(f) is the attenuation. To ensure the con-

sistency of the corresponding radiation impulse response,
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α(f) and β(f) are analytically linked by conditions derived

from the Kramers-Kronig relations [31]. Several models have

been developed, both for continuous-time and discrete-time

signals, and validated for materials having linear and non

linear attenuation [31–34]. In this paper, we will use the

formulation proposed by Kuc [35, 36]. As attenuation depends

on propagation distance, we build a set of radiation impulse

responses by an appropriate discretization of the space domain.

We then obtain a discrete linear model of data y = HeHax.

The matrix He represents the instrumental response, which is

invariant with respect to the propagation distance. The matrix

Ha stands for the set of radiation impulse responses. The

vector x represents the unknown spatial distribution of targets.

Note that standard direct models consider an invariant model

with respect to the propagation distance, that is, y = Hex.

A major advantage of the obtained model holds in its

generality for a large variety of ultrasonic inverse problems.

The purpose of inversion is then to estimate the object x

based on the knowledge of y, He and Ha, and on some prior

information on x. In NDT for example, x is expected to have

a few non-zero elements, corresponding to the positions of

impedance discontinuities including flaws [6]. The description

and the validation of sophisticated inversion algorithms are

out of the scope of this paper. Consequently, experiments are

dedicated to rather simple estimation problems in homoge-

neous plates. We use two basic inverse methods, namely, a

matched filtering procedure and an ℓ1-norm-based spike train

deconvolution method [6] applied to non-overlapping echoes.

The paper is organized as follows. Section II describes the

model of ultrasonic signals, defined in the frequency domain.

The relation proposed by Kuc [35] between the phase and

the magnitude of the radiation transfer function is detailed.

The model is validated on experimental data acquired in a

polymethyl methacrylate (PMMA) plate. Then, in Section III,

a linear direct model is built, based on the discretization of the

unknown spatial source distribution. Such a frequency-based

approach is compared with Olofsson’s time-domain model [7].

In Section IV, experimental results are shown through the

non destructive evaluation of a polycarbonate plate in order to

estimate the attenuation coefficient and the velocity. Section V

considers a typical plate thickness estimation problem where

a spike train deconvolution method is considered using our

model. The paper ends with a discussion in Section VI.

II. PROPAGATION MODEL OF ULTRASONIC SIGNALS

A. Model for a single target

Here, the ultrasonic measurement is made in a homogeneous

and isotropic medium containing a single point-like target

placed at spatial location rT . The configuration can either use

two transducers, a transmitter and a receiver (T/R), or a single

transducer in pulse/echo (P/E) mode – see Figure 1 for the

description of both configurations. The received signal can be

defined in the Fourier domain by a set of transfer functions [29,

37]:

Y (f, rT ) = U(f) Hea(f) Hr(f, rT ) Hae(f), (1)

as illustrated in Figure 2. U(f) is the electrical excitation pulse
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Fig. 1. Two possible configurations for ultrasonic data aquisition: (a) Trans-
mit/Receive mode and (b) Pulse/Echo mode.
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Fig. 2. Pulse-echo measurement for a target located at rT using a radiating
surface S. The received signal Y (f, rT ) is modeled through a set of transfer
functions: Y (f, rT ) = U(f)Hea(f)Hr(f, rT )Hae(f). z is the overall
propagation distance.

sent to the emitting transducer. The functions Hea(f) and

Hae(f) are the electro-acoustical and acousto-electrical fre-

quency responses of the transducers, respectively. The global

instrumental function He(f) = U(f)Hea(f)Hae(f) can be

defined by collecting the functions that do not depend on the

propagation in the material. The received spectrum is hence:

Y (f, rT ) = He(f) Hr(f, rT ). (2)

The radiation transfer function Hr(f, rT ) represents the trans-

fer function related to the propagation path [29, 30]. As an

example, let us consider the one-way path from the emitting

transducer with surface S to the target. The radiation transfer

function1 in rT is the sum over elementary contributions of

sources over the surface S [30]:

H1
r (f, rT ) =

∫

r0∈S

e−jk(f) ‖rT − r0‖

2π ‖rT − r0‖
dS. (3)

In T/R mode, as represented in Figure 1, the overall radiation

transfer function is the product of two different radiation

functions (transmitter to target and target to receiver), whereas

in P/E mode, the two transfer functions are equal [38]. Note

that one could consider specific target surfaces, leading to

different reflector signatures [37]. For example, Lhémery has

developed a model with small oriented targets, including the

diffraction of the transducers [38]. In the current paper, we

consider targets with identical signatures.

The complex-valued frequency-dependent wavenum-

ber k(f) can be written:

k(f) = β(f)− jα(f). (4)

The term β(f) describes the propagation of the wave such

that β(f) = 2πf/c(f), with c(f) the phase velocity. The

term α(f) represents the attenuation in the material. By

neglecting the diffraction of the transducers, we assume that

1By convention, for a frequency f , we consider a plane
wave ej(2πft−k(f)x) propagating in the positive x direction, where
k(f) is the wavenumber.
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the distance of propagation is roughly constant for all points

of the radiating and receiving surfaces [29]. Let z represent

the distance of the travel path from the center of the emitter to

the center of the receiver through the target. From (3) and (4),

one can write the radiation transfer function:

Hr(f, z) = b(z) e−α(f)z e−jβ(f)z

= b(z) e−α(f)z e−j2πfz/c(f). (5)

The frequency-independent term b(z) depends on the propa-

gation distance and on several factors such as the transducer

and target surfaces and their relative positions. For each z,

the radiation impulse response hr(t, z) is given by the inverse

Fourier transform of Hr(f, z). Similarly, he(t) is the impulse

response corresponding to He(f). From (2), the time-domain

signal received by the transducer for a single target is:

y(t, z) = he(t) ∗ hr(t, z), (6)

which is the convolution between the instrumental impulse

response he(t) and the radiation impulse response hr(t, z)
depending on the propagation distance z.

Most ultrasound propagation models in tissue characteri-

zation and NDT consider a frequency power law attenuation

model [16]:

α(f) = α0|f |
γ , (7)

where α0 and γ are real positive parameters characterizing

a given material. Generally, the frequency power parame-

ter satisfies 1 ≤ γ ≤ 2 [16, 34]. For tissues, one has typi-

cally 1 ≤ γ ≤ 1.5 [39]. Many materials have linear attenu-

ation, that is, γ = 1 [3, 32]. Numerous methods have been

proposed to measure the parameter α0 in such a case [3, 35,

36, 40]. In NDT, γ > 1 corresponds to non-linear attenuation

and is related to more complex material structures, for instance

polyethylene (γ ≈ 1.13), synthetic rubber (γ ≈ 1.38) or castor

oil (γ ≈ 1.67) [34, 40].

Note that the attenuation model (7) is similar to the constant-

Q model employed in geophysics for seismic waves [22]. Q is

a quality factor and can be defined as Q = π/α0c0, if c0 is the

constant wave velocity [21]. The parameter Q is also inversely

proportional to α0, meaning that infinite Q corresponds to a

lossless medium (α0 = 0). Similarly, it has been shown that

propagation in soils is adequately modeled with γ ∈ [1, 2] [21].

From (5) and (7), attenuation has a low-pass effect, causing

a downshift of the center frequency of the echoes as the

propagation distance increases [16, 17, 41] and limiting the

resolution. Such effect is represented in Figure 3a which shows

a typical radiation transfer function |Hr(f, z)| as a function

of both frequency f and propagation distance z. This implies

the use of relatively low-frequency transducers and a strong

amplitude loss for high distances. In the time domain, this

effect causes a broadening of the echoes that lessens the

resolution as the distance increases.

B. Causality of the radiation impulse response

For physical reality purpose, constraints are applied on the

radiation impulse response hr(t, z). First of all, the response

is real-valued and therefore implies the Hermitian symmetry

property Hr(−f, z)∗ = Hr(f, z), where superscript ∗ stands

for complex conjugation. As a consequence, according to (4)

and (5), the wavenumber has the anti-Hermitian symmetry

property, leading to α(f) even and β(f) odd. Secondly, in

acoustics, the phase velocity c(f) increases as a function

of frequency, which is called the anomalous dispersion [34].

Therefore, there exists a maximum velocity for f = ∞ [42],

say, c0. For a given distance z, this maximum velocity is

directly linked to a minimum time of flight t0 = z/c0 such

that hr(t, z) = 0 for t < t0. In other words, an ultrasonic wave

emitted at t = 0 should not appear before t0 for a target located

at distance z. Note that c0 is larger than the group velocity

which is the velocity of the envelope of the waveform. Such

causality principle implies specific relations between the phase

and the magnitude in (5) [34, 43].

Kak and Dines [3] proposed a linear phase model, under a

linear attenuation assumption α(f) = α0|f |, by considering a

constant phase velocity c(f) = c0:

Hr(f, z) = b(z) e−α(f)ze−j2πfz/c0 . (8)

In this case, c0 also corresponds to the group velocity. The

inverse Fourier transform of e−j2πfz/c0 is a delta function

δ(t − z/c0) corresponding to a pure delay of t0 = z/c0.

However, under this linear phase assumption, the impulse

response hr(t, z) is symmetric with respect to t0 and hence is

not causal [3].

Indeed, the Paley-Wiener condition states that hr(t, z) is

causal if and only if [44]:

∫ +∞

−∞

∣∣ ln |Hr(f, z)|
∣∣

1 + f2
df < ∞. (9)

In such a case, the corresponding phase term is derived from

the Kramers-Kronig relations [31, 44]. For the power law at-

tenuation model (7), equation (9) is verified only for γ < 1 [40,

42, 43], that is, hr(t, z) is not causal for γ ≥ 1.

Gurumurthy and Arthur [32] considered a minimum-phase

model [44, 45] accounting for dispersion in the case γ = 1.

They considered that attenuation grows only sub-linearly at

high frequencies in order to compute the dispersion from

the Kramers-Kronig relations [32]. Nevertheless, this model

is not strictly causal since the Paley-Wiener condition is not

respected. A dispersion term ǫ(f) is added to the linear phase

term in (8), which yields:

Hr(f, z) = b(z) e−α(f)ze−j2πfz/c0e−jǫ(f)z. (10)

Hr(f, z) can then be separated into the linear-phase func-

tion b(z)e−j2πfz/c0 and the attenuation function:

Ha(f, z) = e−α(f)ze−jǫ(f)z, (11)

that is, in the time domain:

hr(t, z) = b(z) ha(t, z) ∗ δ(t− z/c0)

= b(z) ha(t− z/c0, z). (12)

with ha(t, z) the attenuation impulse response corresponding

to Ha(f, z).
Analogously, Kuc derived a minimum-phase model for

discrete-time signals for γ = 1 [35, 36], that can be easily
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Fig. 3. Examples of attenuation as a function of frequency f and of propagation distance z. The larger the distance, the more important the low-pass filtering
effect of attenuation. (a): Linear attenuation model: |Hr(f, z)| = e−α0|f |z , with α0 = 50 Np/MHz/m. (b): Olofsson’s model [7] with a = 0.2 (see III-C).

extended to non-linear attenuation. In this paper, we will

use this formulation to describe Ha(f, z), which is detailed

hereafter.

C. Causality constraint on the discrete-time impulse response

For continuous-time signals, the causality of the system

defined by the transfer function H(f) = HR(f) + jHI(f)
imposes that HI is the Hilbert transform of HR [44]. The

equivalent characterization for discrete-time signals reads [45]:

HI(f) = −
1

fS
P

∫ fS
2

−
fS
2

HR(g) cot

(
π

fS
(f − g)

)
dg, (13)

where fS is the sampling frequency and P denotes the

Cauchy principal value of the integral. Taking the logarithm

of Ha(f, z) in (11): lnHa(f, z) = −α(f)z − jǫ(f)z and as-

suming that the corresponding impulse response is causal [45]

leads to:

ǫ(f) = H (α(f)) , (14)

where H (α(f)) is defined by:

H (α(f)) = −
1

fS
P

∫ fS
2

−
fS
2

α(g) cot

(
π

fS
(f − g)

)
dg. (15)

Note that this expression is well-defined for a large class of

attenuation models α(f). Moreover, H (α(f)) has an analytic

expression for linear attenuation as established in Appendix,

which is useful for fast and precise computations. For power

law attenuation models with γ 6= 1, (15) can be computed by

numerical integration.

The dispersion term (15) has been used in the case of linear

attenuation to model attenuated signals in PMMA plates [35,

36]. Several studies precisely compared phase velocities from

measured signals with the model in (14) [40, 43]. They con-

cluded to a satisfactory agreement from materials having linear

and non-linear attenuation (PMMA, rubber, castor oil).

A synthetic example of impulse responses hr(t, z) is

presented in Figure 4. A single target is located at dis-

0.4 0.5 0.6 0.7
0

1

t [µs]

h r(t
,z

)

 

 

Without attenuation
Linear phase
Dispersive phase

Fig. 4. Simulated impulse responses hr(t, z) using three propagation models:
without attenuation, with linear phase and with dispersive phase. Parameters:
c0 = 2000 m/s, γ = 1, α0 = 50 Np/MHz/m, z = 1 mm and b(z) = 1. The
minimum time of flight is then t0 = z/c0 = 0.5 µs. This value corresponds
to: (1) the position of the delta function δ(t − t0), (2) the center of the
linear-phase impulse response and (3) the starting time of the dispersive-phase
impulse response.

tance z = 1 mm in a homogeneous and isotropic ma-

terial with propagation parameters c0 = 2000 m/s, γ = 1,

α0 = 50 Np/MHz/m and b(z) = 1. Three propagation models

are used: without attenuation, with linear phase (8) and with

dispersive phase (14). The response without attenuation is a

delta function with a shift of t0 = z/c0 = 0.5 µs. The impulse

response of the linear phase model has a symmetric shape

on both sides of t0, that violates the causality condition. As

expected, the impulse response of the dispersive model appears

to be causal since the values are very close to zero – less

than 10−10 – before t0.

D. Validation with experimental data

We now assess the accuracy of the dispersive model and

compare it with other available models. The measurements

are performed using a flat circular transducer of diameter

12.7 mm and center frequency 2.25 MHz. The object under

test is a 25 mm-thick PMMA plate, immersed in a water tank

as illustrated in Figure 5. The plate is in the far field of

the transducer and with normal incidence. Data are acquired

at sampling frequency fS = 100 MHz and averaged over 100
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Fig. 5. Simplified data measurement setup. The plate of thickness d is placed
normally in the far field of the transducer.

realizations in order to reduce the noise level. We extract the

two significant echoes from the data: the frontwall echo yf (t)
(Figure 6a) and the backwall echo yb(t) (Figure 6b). Their

respective Fourier transforms, say Yf (f) and Yb(f), are plotted

in moduli in Figure 6c, showing a strong amplitude loss and a

frequency downshift between the frontwall and the backwall

echoes.

From (2) and (5), one has:

Yf (f) = b(2D)He(f)e
−(αw(f)+jβw(f))2D, (16)

where b(2D) is the reflection coefficient at the front face of

the plate [46]. The terms αw(f) and βw(f) stand for the

propagation parameters in water (see (4)). The backwall echo

is modeled as:

Yb(f) = b(2D+2d)He(f)e
−(αw(f)+jβw(f))2D−(α(f)+jβ(f))2d,

(17)

with b(2D + 2d) the resulting amplitude for the whole wave

travel. Dividing Yb(f)/Yf (f) enables the cancellation of

He(f) and of the terms related to the propagation in water:

1

2d
ln

(
|Yb(f)|

|Yf (f)|

)
= α(f) +

1

2d
ln

∣∣∣∣
b(2D + 2d)

b(2D)

∣∣∣∣ . (18)

Figure 6d shows that such a function is approximately linear

with respect to frequency, say α(f) ≃ α0|f |. A linear regres-

sion leads to α0 ≃ 11.55 Np/MHz/m that is coherent with the

values proposed in the literature [40, 47].

By neglecting attenuation and dispersion in water, which

is usually assumed in the literature [40], one has αw(f) = 0
and βw = 2πf/cw where cw is the constant speed of sound

in water. Therefore, the frontwall echo is:

Yf (f) = b(2D)He(f)e
−j2πf2D/cw (19)

in the frequency domain, that is, in the time domain:

yf (t) = b(2D)he(t− 2D/cw). According to (17), we then fit

the backwall echo yb(t) with

ŷb(t) = b(2D + 2d)he(t− 2D/cw) ∗ hr(t, 2d), (20)

where he(t− 2D/cw) is obtained from yf (t) and hr(t, 2d)
is set from the three models introduced in II-B: without

attenuation, with linear phase as in (8) and with dispersive

phase as in (14). In the two last cases, attenuation is supposed

linear, with α0 at the previously estimated value. The velocity

c0 is calculated from 2d/(tb−tf ) where tf and tb stand for the

frontwall and backwall times of flight, respectively, yielding

c0 ≈ 2802 m/s. For each model, the amplitudes and the times
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Fig. 6. Attenuation and dispersion models for data acquired from a PMMA
plate with thickness d = 25 mm using a 2.25 MHz probe. (a): frontwall and
(b) backwall echoes. (c): Magnitude spectra |Yf (f)| (solid line) and |Yb(f)|

(dashed line). (d): Spectral magnitude ratio 1
2d

ln
(

|Yb(f)|
|Yf (f)|

)
(circles) and

linear regression (solid line). (e-f-g): Measured backwall echo (solid line) and
three different models (dashed line), with r the quadratic error between data
and model. Parameters : c0 = 2802 m/s, α0 = 11.55 Np/MHz/m, γ = 1 (linear
attenuation assumption).

of flight of the echoes are optimized in order to achieve the

best least-squares fit. The results are plotted in panels e-f-

g of Figure 6. The quadratic error between the data yb(t)
and the model ŷb(t) is also computed and displayed on the

corresponding subfigures. As expected, the dispersive model

gives the best results, followed by the linear phase model.

III. A DISCRETE-TIME LINEAR MODEL FOR INVERSE

PROBLEMS

A. Inversion framework

Let us consider a propagation medium composed of an un-

known distribution of point-like targets. From (6) and (12), the

received signal is then the sum over all the target contributions:

y(t) =

∫

z

he(t) ∗ hr(t, z)dz

=

∫

z

b(z) he(t) ∗ ha(t− z/c0, z)dz

=

∫

z

b(z)

(∫

u

he(u)ha(t− u− z/c0, z)du

)
dz (21)

where b(z) describes the material spatial content indepen-

dently of the ultrasonic wave propagation effects. In this

context, inversion aims at reconstructing such a function from

a finite number of noisy samples of y(t). The reconstruction

procedure might incorporate some prior knowledge on b(z).
For example, from an acquired A-scan in NDT, b(z) may be

a spike train containing the spatial positions of the acoustical

impedance changes [7]:

b(z) =

K∑

k=1

bkδ(z − zk), (22)
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where unknown parameters zk and bk represent the position of

the k-th impedance discontinuity and the associated amplitude,

respectively. In the case where no attenuation is taken into

account, that is ha(t, z) = δ(t), (21) and (22) formulate the

classical spike train deconvolution problem that has been

widely addressed in the literature [6–8].

Note that such a formulation can be extended to bi-

dimensional data such as B-scan images. It can also be adapted

to two-dimensional data in ultrasonic image restoration [4, 9]

and SAFT [13–15].

B. A linear model including attenuation and dispersion

Let us consider the discrete-time signal yn = y(n∆t),
n = 0, . . . , Ny − 1 where ∆t = 1/fS is the sampling period.

From (21), one has:

yn =

∫

z

b(z)

∫

u

he(u)ha(n∆t − u− z/c0, z)dudz. (23)

Discretizing the time integral at rate ∆t yields:

yn ≃

∫

z

b(z)∆t

∑

m

he(m∆t)ha

(
(n−m)∆t −

z

c0
, z

)
dz

≃ ∆t

∑

m

he(m∆t)

∫

z

b(z)ha

(
(n−m)∆t −

z

c0
, z

)
dz.

(24)

Note that using the data sampling period for the discretization

rate is a practical choice that is commonly made in inverse

problems. In particular, it yields a Toeplitz matrix structure

that can be exploited for fast computations [48]. In [49], we

have recently proposed a model with higher discretization

rate, showing better estimation performance in some spike

train deconvolution problems – but under the usual frame-

work ha(t, z) = δ(t). In this paper, we restrict the description

to the discretization at rate ∆t for the sake of clarity.

Similarly, the spatial integral is discretized at a given step-

size ∆z:

yn ≃ ∆t∆z

∑

m

he(m∆t)
∑

i

b(i∆z)ha

(
(n−m)∆t −

i∆z

c0
, i∆z

)
.

(25)

A natural choice is to consider ∆z corresponding to the data

time sampling ∆z = c0∆t. We then obtain:

yn ≃ ∆t∆z

∑

m

he(m∆t)
∑

i

b(i∆z)ha ((n−m− i)∆t, i∆z) .

(26)

Let us now denote xi = ∆t∆zb(i∆z) and let us

consider the column vectors y = [y0, . . . , yNy−1]
T and

x = [x0, . . . , xNx−1]
T , where superscript T denotes matrix

transposition. Note that Nx and Ny are not necessarily

equal, depending on the boundary assumptions of the

convolution [8]. We finally obtain the matrix-vector model:

y = HeHax+ e = Gx+ e, (27)

where:

• He is the convolution matrix corresponding

to the instrumental response with elements

{he ((p− q)∆t)}p=0,...,Ny−1, q=0,...,Nx−1, where p

and q respectively denote the line and the column

indices. This matrix has a Toeplitz structure.

• Ha is the attenuation matrix with elements

{ha ((n− i)∆t, i∆z)}n=0,...,Nx−1, i=0,...,Nx−1. That

is, the i-th column of Ha corresponds to the

radiation impulse response at distance zi = i∆z . In

our approach, it is computed from Ha(f, i∆z) in (11),

with the power law attenuation model in (7) and the

corresponding dispersive phase model defined by (14).

In practice, Ha(f, i∆z) is evaluated on a frequency

grid in [−fS/2, fS/2] with thin spacing such that

temporal aliasing can be neglected. Then, the impulse

response ha ((n− i)∆t, i∆z) , n = 0, . . . , Nx − 1 is

obtained by inverse discrete Fourier transform. Causality

is imposed by setting ha ((n− i)∆t, i∆z) = 0 for n < i.
Consequently, Ha is lower triangular.

• G = HeHa combines the effects of the instrumental

impulse responses and of the radiation impulse responses.

• x is the unknown sequence describing the target distri-

bution.

• e is a perturbation term accounting for noise and model

errors.

An example of matrices He, Ha and G is given in

Figure 7. The matrix He is built from the frontwall echo

in Figure 6a. The matrix Ha is generated from the linear

attenuation model α(f) = α0|f | and the dispersive relation

defined in (14), with α0 = 50 Np/MHz/m. An example of data

generated from the columns 200 and 1000 of the previous

matrix G is also plotted in Figure 8. Note that attenuation

provokes the widening of the second echo. Dispersion causes

a phase distortion that creates a time shift of the echo envelope.

Indeed, in Ha, the maximum of each column is down-shifted

away from the diagonal.

0 5 10 15
−1

0

1

t [µs]

Fig. 8. Example of signal generated from the matrix G in Figure 7. The
data y are computed from the columns 200 and 1000 of matrix G such that:
y = g200 + g1000 where gi is the i-th column of G. Both echoes are
normalized in amplitude for visualization clarity.

The model (27) states that data y are a noisy linear

combination of columns of G, and x collects the associated

weights. Estimating x from y is an inverse problem that cannot

be satisfactorily inverted in a least-squares sense: the matrix G

is ill-conditioned and the generalized inverse
(
G

T
G
)−1

G
T
y

hence suffers from uncontrolled noise amplification [8]. In the

example above, the condition number of matrix G (which is

a 1500 × 1500 matrix) is approximately 9. 1019.
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He Ha G = HeHa

Fig. 7. Example of matrices He, Ha and G, where each column is normalised for representation clarity. He is the instrumental convolution matrix obtained
from the frontwall echo in Figure 6. In Ha, each line corresponds to an instant tn = n∆t and each column corresponds to a spatial distance zi = i∆z .
Ha depends on both the attenuation and dispersion models. In this example, α(f) = α0|f | with α0 = 50 Np/MHz/m. The dispersion is set using the model
in (14). The matrix G combines both instrumental and attenuative effects.

C. Comparison with Olofsson’s model

From (5), the radiation transfer function at zi = i∆z reads:

Hr(f, zi) = b(zi)e
−[α(f)+jβ(f)]i∆z

= b(zi)
[
e−(α(f)+jβ(f))∆z

]i

= b(zi)P (f)i. (28)

It corresponds, up to a multiplicative constant, to the i-th
power of the frequency kernel P (f) = e−(α(f)+jβ(f))∆z . Let

ρn, n = 0, . . . , N−1 represent the discrete-time sequence with

Fourier transform P (f) for f ∈ [−fS/2, fS/2]. It represents

the radiation impulse response between two elementary spatial

layers, separated by ∆z . Equation (28) states that the radiation

impulse response at zi is equal to i − 1 self-convolutions of

the time kernel ρ.

In a time-domain setting, Olofsson and Stepinski [7] pro-

posed an empirical choice for the kernel ρ, defined by:

ρ0 = 0, ρ1 = 1− a, ρ2 = a and ρn = 0 ∀n ≥ 3, (29)

with a > 0 and close to zero. Such a kernel implies a small

distortion between two elementary layers spaced by ∆z and

is hence close to a delayed Kronecker delta function. Because

of its first zero, this kernel generates causal impulse responses

in Ha. The transfer function between two elementary layers

consequently behaves as a low-pass filter:

|P (f)|2 = 1− 4a(1− a) sin2(π∆tf). (30)

The corresponding attenuation function can be found by:

α(f) = −
ln |P (f)|

∆z
. (31)

Such a model has shown satisfactory results in a deconvolution

context [7]. However, it seems less accurate in terms of

physical reality, since α(f) is more adequately modeled by

a frequency power law. In addition, the tuning of parameter a
looks somehow arbitrary, whereas frequency-based models can

be tuned according to physical models, or even set from a ma-

terial catalog [47]. An example of radiation transfer functions

|Hr(f, z)| for Olofsson’s model is plotted in Figure 3b for

a = 0.2. As it will be shown in IV-C, this value yields a model

which can be compared to the linear attenuation model with

α0 = 50 Np/MHz/m at propagation distance z = 10 mm. How-

ever, the two attenuation models yield quite different radiation

transfer functions for other distances, as shows the comparison

between Figures 3a and 3b. The performances of frequency-

based models and of Olofsson’s model are compared for basic

experimental data in the following section.

IV. MODEL EXPLOITATION IN THE CASE OF A SINGLE

ECHO: ESTIMATION OF MATERIAL PARAMETERS

A. Single echo detection by ”matched filtering”

We consider data made up of two well-separated echoes

in a configuration similar to the one of Figures 5 and 6. The

instrumental response he is identified from the frontwall echo,

from which the matrix He in (27) is built. The matrix Ha

depends on the considered attenuation model. Identifying the

backwall echo then amounts to selecting the column of matrix

G, say gı̂, that best fits the data2. That is, x should have only

one non-zero coefficient at index ı̂ that corresponds to the

spatial position zı̂ = ı̂∆z of the back surface. Consider the

minimization of the least-squares misfit criterion between the

data and the model:

(̂ı, x̂ı̂) = argmin
i=0,...,Nx−1, xi∈R

‖y − gixi‖
2
, (32)

which statistically corresponds to the maximum likelihood

estimation of the one-column model y = gixi + e under the

assumption that the noise samples in e are independently,

identically and normally distributed [8]. As this problem is

linear in xi, the best x̂i can be found for a given gi by:

x̂i =
g
T
i y

‖gi‖
2 . (33)

Inserting (33) into (32), after simple manipulations, the opti-

mal position ı̂ is:

ı̂ = argmax
i=0,...,Nx−1

|gT
i y|

‖gi‖
2 . (34)

2In practice, the contribution of the frontwall echo is previously removed
from the data.
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Finally, the estimated echo is obtained by ŷ = gı̂x̂ı̂. Such

a procedure follows a matched filtering approach in that it

selects the column in G that yields the maximum correlation

with data y – up to a normalization term. However, it is not

strictly speaking a matched filter since G is not a convolution

matrix due to the spatially-variant nature of the attenuation

matrix Ha.

B. Joint estimation of the attenuation parameter and sound

velocity

For a frequency power law attenuation

model α(f) = α0|f |
γ with given γ, the previous echo

detection procedure enables the joint estimation of the

attenuation parameter α0 and the reference velocity c0, which

are physical quantities of interest for a given material. Indeed,

the attenuation transfer function in (11) at distance zi = i∆z

reads:

Ha(f, zi) = e−[α(f)+jH(α(f))]i∆z

= e−[|f |γ+jH(|f |γ)]α0c0i∆t . (35)

Hence, for a given γ, the model (11) only depends on the

single parameter χ0 = α0c0. For each χ0, the velocity c0 can

be deduced from the optimal position ı̂, found by the matched

filter as in (34), and from the thickness of the plate d by:

c0 =
2d

ı̂∆t
. (36)

The associated attenuation parameter is then given by α0 =
χ0/c0. As mentioned in II-B, c0 is not the group velocity

but the phase velocity for f = ∞. Note that standard non

destructive evaluation (NDE) methods generally rely on the

estimation of the group velocity because dispersion is not

considered.

In practice, we can apply the matched filtering procedure for

different values of χ0 in an arbitrarily thin grid, and select the

best value χ̂0 that minimizes the residue between the data and

the model: r = ‖y − ŷ‖/‖y‖. This value consequently leads

to ĉ0 and α̂0 that are the best estimations in a least-squares

sense of those material quantities for a given propagation

model. This procedure can be used for NDE which aims at

estimating the material properties. However, it can only be

applied if the frontwall and the backwall echoes are well-

separated.

Note that if the mechanical properties of the material are

known, c0 can be obtained from the analytic formula of sound

speed of longitudinal waves [1]:

c0 =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
, (37)

with E the Young’s modulus, ν the Poisson’s ratio and ρ the

density.

C. Application to polycarbonate

We apply the method described above to estimate the atten-

uation and velocity parameters of an homogeneous material.

The same measurement configuration as in II-D is designed

with a 2.25 MHz center frequency transducer used in pulse-

echo mode. We use a clear polycarbonate plate of thickness

e = 10.2 mm, known to have linear attenuation (γ = 1) and to

be highly attenuative [5, 47]. The thickness is measured with a

digital caliper, with precision ± 0.1 mm, accounting for both

instrument imprecision and irregularities of the plate.

We compare the estimations obtained with the following

propagation models:

1) without attenuation

2) with linear attenuation and linear phase

3) with linear attenuation and dispersive phase

4) Olofsson’s model

For Olofsson’s model, we select parameter a in (29) that best

fits the echo. The corresponding matched filtering procedure

also yields an estimation of c0 – see (36) – but it does

not provide any estimation of α0. The residue values of the

estimated backwall echoes are displayed in Figures 9a and 9b,

as a function of χ0 for linear attenuation models and of a for

Olofsson’s model, respectively.
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Fig. 9. Matched-filtering-based backwall echo estimation from a polycarbon-
ate plate of thickness d = 10.2 mm using a 2.25 MHz transducer. (a): Residue
of estimation as a function of the parameter χ0, for several models of linear
attenuation (without attenuation, linear phase, dispersive phase). (b): Residue
of estimation as a function of the parameter a for Olofsson’s model. (c-d-e-f):
Data y (solid line) and estimation ŷ (dashed line) with the optimal attenuation
parameters, (c) without attenuation, (d) with linear phase, (e) with dispersive
phase and (f) with Olofsson’s model (r is the residue).

One can clearly see that the dispersive model produces

the lowest residue (r ∼ 0.08). The linear phase model and

Olofsson’s model lead to approximately the same residue,

r ∼ 0.27 and r ∼ 0.25 respectively. The estimated waveform

without attenuation shows the greatest discrepancy with the

data (r ∼ 0.45). Because of the poor adequacy of the

model, the matched filter returns a positive amplitude x̂ı̂

whereas a negative value is expected. Indeed the reflection

coefficient between polycarbonate and water is negative [46].

As a consequence, a better estimated waveform should be left-

shifted by half the wave cycle. The corresponding values of ĉ0
and α̂0 are listed in Table I. The attenuation parameter given by

the dispersive model is 54.1 Np/MHz/m, and the one obtained
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χ̂0 ı̂∆t (µs) ĉ0 (m/s) α̂0 (Np/MHz/m)

1 Without att. 8.76 2329
2 Lin. phase 0.118 8.97 2274 52.1
3 Disp. phase 0.129 8.57 2380 54.1

4 Olofsson 7.42 2749
TABLE I

ESTIMATED χ̂0 , TIMES OF FLIGHT, REFERENCE VELOCITIES AND

ATTENUATION COEFFICIENTS FOR A 10.2 MM-THICK PLATE OF

POLYCARBONATE USING A 2.25 MHZ PROBE. FOR MODELS 2 AND 3,
γ = 1.

from the linear phase model is 52.1 Np/MHz/m. Both are in

the range of the values reported in the literature (for example,

[50, 57] Np/MHz/m in [47]). We consider the value given by

the dispersive model as more likely as this model yields the

lowest estimation residual. The optimal attenuation parameter

of Olofsson’s model is 0.210 but it cannot be linked to any

reference value.

As expected, the linear phase model that considers a con-

stant phase velocity c(f) leads to ĉ0 = 2274 m/s very close

to the reference group velocity given in [47]: 2270 m/s. The

value returned by the dispersive model, 2380 m/s, is logically

larger than the group velocity, since it corresponds to the phase

velocity at infinite frequency (see II-B). Olofsson’s model

leads to 2749 m/s, that is difficult to interpret. The inaccurate

modeling obtained with the non-attenuated waveform leads to

an estimated velocity of 2329 m/s, whereas it should return

the same value as the linear phase model since both models

consider constant phase velocity.

In this study, the dispersive model gives accurate results for

polycarbonate, for which frequency-dependent attenuation can

be well represented by a linear model. Such an approach could

also be applied to non-linear attenuation models with given γ,

e.g., for synthetic rubber and castor oil [40].

V. APPLICATION TO THE DECONVOLUTION OF NDT DATA:

ESTIMATION OF THE THICKNESS OF A PLATE

In this section, an inverse problem of spike train deconvolu-

tion is considered. From a pulse-echo measurement, our goal

is to estimate the thickness of the polycarbonate plate that was

already used in section IV-C. More precisely, we consider the

problem of estimating a spike train x from data y = Gx+ e,

where the locations of the spikes – the non-zero elements in

vector x – correspond to the positions of the echoes. The

distance between consecutive spikes then corresponds to the

plate thickness.

Such a framework can be applied to a large variety of

practical NDT problems [1], in order to measure the thickness

of a layer or a wall. Applications occur for the manufacture

of pipes, plates, strips, etc. and for the control of walls in

severe environments (power plants, chemical industry), when

the back area is out of reach. In such cases, a pulse-echo

acquisition may be an appropriate solution. Note that, in the

presented example, the echoes are well separated, hence the

deconvolution problem is not complex from an informational

point of view. In the case of thinner layers, the reflected

echoes overlap and advanced processing methods such as

deconvolution are appropriate tools to estimate the positions

of the echoes.

Here, we use a transducer with 5 MHz center-frequency.

Compared to the 2.25 MHz transducer used in the previous

experiment, better resolution is expected but the attenuation

effect is stronger. The backwall echo is strongly distorted and

highly attenuated in amplitude, with a very low signal-to-

noise ratio (see Figures 10a and 10b). A direct time-of-flight

identification by visual inspection might lead to inaccurate

thickness estimation because of the low signal to noise ratio

and of the phase shift.
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Fig. 10. Deconvolution of data acquired from a polycarbonate plate of
thickness d = 10.2 mm with a 5 MHz transducer. (a) Data for t ∈ [0, 2] µs
corresponding to the frontwall echo, (b) data for t ∈ [2, 10] µs where a zoom
in amplitude is performed. (c-d): deconvolution without attenuation model
(c0 = 2274 m/s). (e-f): deconvolution with linear attenuation and dispersive
model (c0 = 2380 m/s, γ = 1, α0 = 54.1 Np/MHz/m).

Deconvolution is performed through the minimization of

the least-squares data misfit function, penalized by the ℓ1-

norm ‖x‖1 =
∑

i |xi|:

x̂ = argmin
x

‖y −Gx‖
2
+ λ‖x‖1. (38)

Such a sparsity-inducing penalization produces few non-zero

elements in the solution for appropriate λ. Criterion (38)

is a convex function and admits a unique minimum for a

given λ. The regularization parameter λ introduces a trade-

off between the least-squares fit and the penalization. The

value λ = 0 corresponds to the least-squares solution, that is

not acceptable due to the ill-posedness of the problem [8].

Then, as λ increases, the number of spikes in x tends to

decrease. This kind of formulation has shown a great interest

in inverse problems in the past decades [50], and particularly

in ultrasonic deconvolution problems [6, 8]. Optimization is

performed using the homotopy continuation method described

in [51]. In this part, λ is set manually in order to retrieve one

spike in the area of 10 mm.

We consider deconvolution using the attenuation-free model

and the model with attenuation and dispersion. The first

model is the approach commonly adopted in deconvolution

problems. The matrix G is equal to He, that is built from

the frontwall echo shown in Figure 10a. The second model
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includes G = HeHa where Ha is built from the dispersive

model (11). Its parameters are set from the experimental

results in Table I. We have seen in IV-C that the estima-

tion of c0 for the model without attenuation was erroneous.

Hence, for this model, we set c0 to the most plausible

estimated group velocity, that is 2274 m/s. Note that the sam-

pling frequency is 100 MHz, leading to the spatial precision

∆z = c0∆t = 0.0274 mm and 0.0238 mm for the two models,

respectively. According to [46], the true sequence is composed

of a positive spike at 0 mm and of a negative spike at 10.2 mm.

Results are shown in panels c–f of Figure 10. Deconvolution

with the attenuation-free model estimates four spikes. They

correspond to the frontwall position, two false detections

and the backwall position. The last spike has a positive

amplitude, which is inconsistent with the truth (as in IV-C).

The corresponding thickness estimation is 10.5 mm. As shown

in subplots e-f, the result using attenuation and dispersion in

the model shows two spikes, that correspond to the frontwall

and the backwall positions. They have a positive and a negative

sign respectively, which is coherent with the expected object.

The estimated distance is 10.23 mm, that is closer to the mea-

sured value. Using the model with attenuation and dispersion

in criterion (38) achieves more accurate spike detection than

the standard convolution model with G = He, and hence leads

to more satisfactory thickness estimation.

VI. DISCUSSION AND FUTURE WORKS

We have presented a discrete model of ultrasonic signals

that considers attenuation and dispersion. The model is built

in the frequency domain, where specific radiation transfer

functions are computed for a finite set of distances. We obtain

a linear model between the data and the unknown spatial

distribution of targets. Compared to the usual formulation, it

amounts to introducing an attenuation matrix depending on

acoustic propagation parameters. Experimental results from

attenuative materials reveal the accuracy of such a formulation

for the modeling of the backscattered echoes. Better results

are obtained compared to the non-causal model that considers

constant phase velocity [3] and to the causal empirical model

proposed in [7]. The proposed model also yields the best

results on the problem of detecting and locating the backwall

echo in a polycarbonate plate. Finally, we consider a spike

train deconvolution problem based on ℓ1-norm regularization

in order to estimate the thickness of a plate. With the proposed

model, the backwall echo blurred into noise is successfully

located whereas the solution based on the standard model

shows false detections and an imprecise echo location.

Future works could concern the application of the developed

model to more complex data, in particular to the deconvolution

of A-scans with overlapping echoes. In such cases, the better

adequacy of the proposed model should improve the spike

detection performance compared to standard deconvolution

approaches using the generic, stationary, convolution model.

We also expect that algorithms based on such a model can

yield better performance than parametric models [23, 24],

which also allow some flexibility in the echo shapes but do

not integrate any constraint due to the ultrasound propagation

properties.

Similar models for ultrasonic data could also be developed

for two and three-dimensional acquisitions. In particular, our

approach could be extended for modeling SAFT [13, 14] and

Full Matrix Capture [15] data in ultrasonic imaging.

We have seen that our model depends on a reference

velocity, which corresponds to the phase velocity at infinite

frequency. It can be obtained from the mechanical properties of

the material. We have also shown that it can be estimated from

a material evaluation process. In addition, complementary

works could link such reference velocity to the group velocity,

inspired by Gurumurthy and Arthur [32] who proposed an

empirical relation between the two quantities.

Finally, our model considers a single geometrical signature

of the acoustical targets, which is particularly appropriate if

the targets have the same shape, as for plane surfaces in the

presented experiments.

Future works could include the diffraction of typical reflec-

tors (Flat Bottom Holes for instance) by considering different

possible signatures. In such an approach, the attenuation

matrix would be replaced by a set of matrices, each one

characterizing a specific diffraction signature. We believe that

such dictionary-based model, coupled with efficient sparsity-

aware algorithms [50], may be appropriate to address complex

NDT problems for the detection and the characterization of

flaws. A similar approach could be used to detect cracks

or delaminations in multilayered materials. Indeed, a set of

several attenuation matrices can also describe the different

paths produced by multiple reflections.
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APPENDIX

EXPRESSION OF THE DISPERSIVE PHASE WITH LINEAR

ATTENUATION

With linear attenuation α(f) = α0|f |, the phase term (15)

reads H (α(f)) = −
α0fS
4π2

J

(
2πf

fS

)
, with:

J (ω) = P

∫ π

−π

|v| cot

(
ω − v

2

)
dv, ω ∈ [−π, π]. (39)

Function J (ω) is odd with J (π) = 0. Consider ω ∈]0, π[.
With u = ω − v, one has:

J (ω) = P

∫ ω

ω−π

(ω−u) cot
u

2
du−

∫ ω+π

ω

(ω−u) cot
u

2
du, (40)
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where the Cauchy principal value of the first integral ex-

cludes 0 from its domain. Let Fω(u) be an antiderivative of

(ω − u) cot u
2 . An antiderivative of cot u

2 is 2 ln
∣∣sin u

2

∣∣. Hence

integration by parts yields for any u ∈]− 2π, 2π[, u 6= 0:

Fω(u) = 2(ω − u) ln
∣∣∣sin u

2

∣∣∣+ 2

∫ u

0

ln
∣∣∣sin ϕ

2

∣∣∣ dϕ. (41)

The last integral also reads:
∫ u

0

ln
∣∣∣sin ϕ

2

∣∣∣ dϕ = −Cl2(u)− u ln(2), (42)

where Cl2(u) = −
∫ u

0
ln
∣∣2 sin ϕ

2

∣∣ dϕ is the Clausen function

of order 2, i.e., the imaginary part of the dilogarithm of

eju [52]. From (40)-(42), one can show that:

J (ω) = 2Cl2(ω + π) + 2Cl2(ω − π)− 4Cl2(ω)

= 4 (Cl2(ω + π)− Cl2(ω)) . (43)

Finally, it can be shown that (43) also holds for w ∈ [−π, 0].
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