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Buckling and wrinkling of prestressed membranes

Adama Diaby, Anh Le van, Christian Wielgosz
GeM (Research Institute in Mechanics and Civil Engineering), Faculty of Sciences at Nantes, 2, rue de la Houssiniere, BP 92208, Nantes 44322 cedex 3, France

This paper deals with the numerical computation of buckles and wrinkles appearing in membrane structures by means of the total Lagrangian
formulation, using genuine membrane finite elements (with zero bending stiffness) and a prestressed hyperelastic constitutive law. The bifurcation
analysis is carried out without assuming any imperfections in the structure. The standard arclength method is modified by means of a specific
solution procedure to cope with the occurrence of complex roots when solving the quadratic constraint equation. Applying the proposed
formulation to a set of typical numerical examples shows its ability to correctly predict the wrinkling and buckling behaviour in membrane
structures.
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1. Introduction

The wrinkling of nonlinear elastic membranes has been in-
vestigated by many authors using a variety of approaches.
Among those, two solution procedures are widely used: the bi-
furcation analysis and the tension field theory.

The tension field theory is generally applied on membrane el-
ements, which have zero bending stiffness. In conjunction with
wrinkling material models, the state (wrinkled, slack or taut) of
each membrane element is assessed using different wrinkling
criteria and the material properties are adjusted iteratively dur-
ing the analysis to account for the behavior associated with the
particular state of the element in hand. Wagner in 1929 [1] was
the first to apply this theory in order to estimate the maximum
shear load that can be carried by a thin web. In the early 1960’s,
Stein and Hedgepeth [2] predicted the stresses and strains in
stretched membranes for both the wrinkled and unwrinkled re-
gions, by employing the usual theory of elasticity. They dealt
with the wrinkling of the membrane by modifying the consti-
tutive equation of the material so that the membrane remains
in a state of simple tension throughout the wrinkled region.

A wrinkling region is created when one of the two in-plane
principal stresses becomes negative. Simple formulations and
extensions of this theory were later proposed in Refs. [3–11].
The tension field theory can also be addressed from an ener-
getical point of view, as presented in Refs. [12,13]. According
to this, the relaxed energy density ensures that unstable com-
pressive stresses should never appear in the solution. Barsotti et
al. [14] considered the membrane as a von Karman plate with
negligible bending stiffness. Their relaxed energy concept re-
sults in a consistent linear-wrinkle-elasticity theory, which al-
lows identifying the boundary between taut, slack and wrinkled
regions. The tension field theory provides correct stress distri-
butions and predictions for wrinkled and slack regions, yet not
wrinkle details such as amplitude, wavelength and number of
wrinkles.

To take into account wrinkle details, another representation
of membrane wrinkling can be obtained by using the bifurca-
tion analysis coupled with shell elements with non-zero bend-
ing stiffness. The shell-based techniques make use of thin shell
elements in conjunction with geometric imperfections embed-
ded into the initial mesh to perform a postbucling analysis.
Wong and Pelligrino [15–17] used this approach to study the
wrinkling formation and evolution in a sheared membrane. In
the analytical approach, they assumed that a membrane carries
a uniform compressive principal stress equal to the buckling
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stress of an infinitely wide thin plate. On the basis of this as-
sumption, they showed that the wavelength and the amplitude
of the wrinkles are functions of the shear angle and of the ge-
ometric and material properties of the membrane. The results
were then compared to both experimental measurements and
finite element simulations. Other authors [18,19] investigated
the wrinkle formation in the membrane using an updated La-
grangian schemes on similar shell elements.

Modelling the thin-film membranes can be made by using
the cable method. Stanuszek [20,21] created a membrane/cable
finite element based on the “natural approach” and subelement
technique. He showed that the resulting element was able to
predict the folds in several complex examples.

Few studies investigated wrinkles in membrane structures by
coupling genuine membrane elements and the bifurcation anal-
ysis. Miyumura [22] studied the wrinkles on a stretched circular
membrane under in-plane torsion experimentally and numeri-
cally. He formulated a four-node isoparametric membrane el-
ement without bending stiffness and used bifurcation analysis
to study the wrinkles.

In this paper, we propose a finite element analysis of the
buckling/wrinkling phenomenon in membranes in the spirit of
the last above-mentioned approach. Use will be made of the
total Lagrangian formulation and the resulting membrane el-
ement has zero bending stiffness with a prestressed hypere-
lastic constitutive law. The bifurcation analysis is carried out
without introducing any imperfections in the structure. Sim-
ple efficient techniques will be shown to deal with the pos-
sible initial singularity of the stiffness and the occurrence of
complex roots when solving the arclength method. A number
of typical numerical examples will be presented in order to
assess the validity of the proposed formulation. The outlined
nonlinear procedure has been developed using a home made
FORTRAN 90 program.

2. Finite element formulation

In this section, the finite element formulation is presented
within the framework of the total Lagrangian formulation. In the
3D space with a fixed Cartesian coordinate system (O; e1e2e3),
consider a membrane with the reference configuration defined
by the middle surface S0 and the thickness h0. Its current con-
figuration is defined by the middle surface S and the thickness
h. The reference surface S0 is discretized into isoparametric el-
ements, the current element will be denoted e and its reference
(or parent) element is denoted e�. The reference and current po-
sitions of a material point on the membrane surface—X=Xiei

and x = xiei , respectively—are parametrized by the reference
coordinates (�1, �2) as shown in the following chain: (�1, �2) ∈
e� �→ X ∈ e ⊂ S0 �→ x ∈ S, see Fig. 1. The mid-surface
displacement field U is defined by U = x − X.

The covariant base vectors on the undeformed membrane are
defined by

G1 = �X
��1

, G2 = �X
��2

, G3 = G1 ∧ G2

‖G1 ∧ G2‖ . (1)

The homologous vectors on the deformed membrane are de-
fined by

g1 = �x
��1

, g2 = �x
��2

, g3 = g1 ∧ g2

‖g1 ∧ g2‖ . (2)

The deformation gradient tensor F relates the base vectors of
the reference configuration to the base vectors of the deformed
configuration as

F = g1 ⊗ G1 + g2 ⊗ G2 + �3g3 ⊗ G3, (3)

where �3 represents the through-thickness stretch. The strains
are measured by the Green tensor E and its covariant compo-
nents

E = 1
2 (FT · F − G), E�� = 1

2 (g�� − G��),

E�3 = 0, E33 = 1
2 (�2

3 − 1), (4)

where Greek indices range from 1 to 2, and g�� and G�� are
the metric tensor components in the deformed and undeformed
configurations defined by

g�� = g� · g�, G�� = G� · G�. (5)

Assuming a compressible hyperelastic behaviour of the mem-
brane, the second Piola–Kirchhoff (symmetric) stress tensor �
is given by differentiating the strain energy function per unit
volume w with respect to the Green strain E

� = �ij Gi ⊗ Gj = �w

�E
↔ �ij = �w

�Eji

, (6)

where Latin indices take the values 1, 2 and 3. The simplest
constitutive model is described by the Saint-Venant Kirchhoff
strain energy

w(E) = �0 : E + 1
2�(trE)2 + � tr(E2), (7)

where � and � are the Lamé’s constants and �0 the prestress.
In the present work, all the numerical computations are per-
formed with a compressible neo-Hookean model defined by the
following strain energy [23]

w = �0 : E + �

2
(lnJ )2 − � ln J + �

2
(tr C − 3), (8)

where C = 2E + I is the right stretch tensor, J = √
det C, and

� and � are material constants. It can be checked that in small
deformations, the strain energy (8) gives the same response as
the linear isotropic model with the same � and � values.

Since the thickness of the membrane is small compared
with other dimensions, one assumes the plane stress condition
�13 =�23 =�33 =0. With potentials (7) and (8), the conditions
�13 = �23 = 0 are equivalent to E13 = E23 = 0, whereas the
condition �33 = 0 entails an expression for E33 in terms of the
in-plane strains. Accordingly, the 3D constitutive law should
be modified in order to obtain in-plane contravariant stresses
��� as functions of in-plane covariant strains E��. In the case
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Fig. 1. Parametrization of initial and current configurations of the membrane.

of potential (8), the 2D stress–strain relationship is

��� = �(G�� − (C−1)��)

+ �

2
ln

[
�q

2�
W

(
2�

�q
exp

(
2�

�

))]
(C−1)��,

q ≡ det(g��)

det(G��)
, (9)

where W is the so-called Lambert W function giving the solution
of equation u exp(u) = z as u = W(z).

In order to derive the discretized equilibrium equations for
the membrane, use is made of the principle of virtual work: for
all virtual displacement field U∗, one has

−
∫

S0

� : grad U∗h0 dS0 +
∫

S0

f0.U∗ dS0

+
∫

S

U∗.pn dS = 0, (10)

where � = F� is the first Piola–Kirchhoff (nonsymmetrical)
stress tensor, f0 the dead load per unit reference surface, p a
possible pressure over the membrane and n the unit outward
normal in the deformed configuration. The resulting discretized
equations form a nonlinear matrix equation system with un-
known {U}—the nodal displacement vector of the membrane,
which is solved by means of the Newton iterative scheme. By
denoting NNE the node numbers in element e, the element
stiffness matrix due to the internal force is computed by

∀i, j ∈ [1, 3NNE],
Ke

ij =
∫

e
Na,�Nb,�

[
�pq��� + xp,�xq,�

����

�E��

]
h0 dS0. (11)

In the above, the integers a, b ∈ [1, NNE] and p, q ∈ [1, 3]
are determined from indices i, j ∈ [1, 3NNE] by i = 3(a −
1) + p, j = 3(b − 1) + q, and there is implicit summation over
Greek indices �, �, �, �= 1, 2. The notation Na,� means partial
differentiation of the shape function Na with respect to ��.

If the membrane is subjected to a pressure p which is a
follower force, the following stiffness matrix is added to the

previous one: ∀i, j ∈ [1, 3NNE],

(Ke
pressure)ij = 1

2

∫
e�

p[(NaNb,1 − NbNa,1)xp∧q,2

− (NaNb,2 − NbNa,2)xp∧q,1]d�1 d�2

+ 1

2

∮
�e�

pNaNb(xp∧q,2	1 − xp∧q,1	2) ds.

(12)

The integers a, b ∈ [1, NNE] and p, q ∈ [1, 3] are related
to indices i, j ∈ [1, 3NNE] in the same way as in (11). The
symbol xp∧q means xp∧q = 
pqmxm (the integers p and q being
fixed, there is only one value for m so that 
pqm is not zero), � is
the unit outward normal to the reference element e�, at a point
on its boundary �e�. The surface integral over e� is symmetric,
whereas the line integral along �e� is skew-symmetric. Let the
pressure be applied over a surface portion Sp ⊂ S, the line
integral contribution at a point located on the boundary of an
element inside Sp cancels out with that of an adjacent element,
so that at last there only remains the contribution at those points
located on the boundary of Sp.

In the following numerical examples, whenever there is a
pressure over the membrane, this pressure is uniform on Sp.
Moreover, either the boundary of surface Sp is fixed or Sp is
split by a symmetry plane. Consequently, the contribution of all
the line integrals in (12) to the stiffness matrix is always zero.

The usual arclength method [24] is used in order to proceed
on the response curves. The nodal displacement vector {U} is
split into two parts: one denoted {Ũ} contains the unknown de-
grees of freedom, the other denoted {U} contains the prescribed
degrees of freedom. The external force vector {�} is split in the
similar way: one part {�̃} corresponding to {Ũ} contains the
prescribed force components, the other part {�} corresponding
to {U} contains the unknown reaction force components. Either
the prescribed displacement or the external loading is assumed
to be proportional

{U} = {U}0 + �{U}ref ,

{�̃} = �{�̃}ref , (13)

where � is the control parameter, {U}ref and {�̃}ref denote ref-
erence prescribed quantities. Vector {U}0 related to zero pre-
scribed displacements does not change the value of {U}. The
arclength method consists of moving forward on the response
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curve by a given arclength ��, see Wempner [WEM71] and
Riks [RIK72], [RIK79]. The constraint equation is either of
the following relations, depending on one has proportional pre-
scribed displacement or loading:

‖�Ũ‖2 + ��2‖U
ref‖2 = ��2,

‖�Ũ‖2 + ��2C2
ref = ��2. (14)

In Relation (14b), the scalar Cref is a scale factor which
makes the relation consistent dimensionally, it will be taken to
be zero in the numerical examples. Combining relation (14)
with the equilibrium equation leads to a quadratic equation in
�� [CRI91]. Eventually, the branch switching techniques have
to be included in the numerical procedure in order to deal with
limit and bifurcation points. The details of these techniques will
be given for each examples treated in the next section.

3. Numerical examples

We consider some numerical examples to assess the capac-
ity of the proposed approach to catch bubbles and wrinkles
in membrane structures. In all examples the Newton–Raphson
method is used for solving the matrix nonlinear equations of
the problem. The path following is carried out either by dis-
placement (14a) or force control (14b), use is also made of an
extended version of the arclength method as proposed by Lam
and Morley [25] to deal with the complex roots in the solution
scheme.

3.1. Inflated torus

In the first example, we consider the buckling of a toric
membrane subjected to an internal pressure. This example is
chosen in order to assess the ability of the numerical procedure
to correctly compute both limit and bifurcation points.

In the reference configuration, which is assumed to be stress
free, the middle surface of the toroidal membrane is generated
by rotating the circle of radius r0 = 0.1 m with its center at the
distance R0 =0.4 m about the axis of symmetry, the z-axis (see
Fig. 2). The membrane is of constant thickness h0=10−4 m. The
numerical computation is carried out assuming a neo-Hookean
material (8) with Young modulus E = 4.0 MPa and Poisson
ration 	 = 0.49, where E et 	 are related to Lamé’s constants �
et � by � = E	/(1 + 	)/(1 − 2	), � = E/2/(1 + 	).

Taking into account the symmetry allows us to consider the
fourth of the torus only. The mesh is made of 600 eight-node
quadrilateral elements, generated by 50 elements along the
large circumference (the circle of radius R0) and 12 elements
along the small one (the circle of radius r0). Full integration
is used throughout the paper: 3 × 3 Gaussian points in eight-
node quadrilateral elements and 7 points in six-node triangular
elements. Fig. 3 shows the displacement at point I defined in
Fig. 2 versus the internal pressure.

The numerical computation shows that critical points appear
on the fundamental branch, beyond a certain deformation level.
The detection of such critical points is based on the singularity

R o

xO

y

2r o

I

Ro = 0.4 m 
ro = 0.1 m 
ho=10-4m

Fig. 2. Reference geometry of the torus. Definition of point I.

Fig. 3. Pressure versus displacement curves for the torus.

of the tangent stiffness matrix K, which is factorized as

K = LDLT, (15)

where L is a lower triangular matrix with unit diagonal ele-
ments and D is a diagonal matrix. Since the number of negative
eigenvalues of K is equal to the number of negative diagonal
elements (pivots) of D, the critical points are determined by
counting the negative pivot number.

Each critical point has to be isolated in order to determine its
nature: limit point or bifurcation point. To do this, the current
arclength �� is re-estimated several times using a dichotomy-
like method, such as those proposed in [26].

A suitable way to distinguish a limit point from a bifur-
cation point is to calculate the current stiffness parameter
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Fig. 4. Fundamental solution and buckling modes of the torus.

defined as [27]

k = �̃
ref

.Ũ�ref

Ũ�ref .Ũ�ref
, (16)

where Ũ�ref = ˜̃K−1�̃
ref

, ˜̃K is the square matrix extracted from
the tangent stiffness matrix K according to the partition U =
(Ũ, U) described in Section 2. The sign of parameter k changes
when passing a limit point, whereas it remains unchanged when
passing a bifurcation point. On the fundamental branch of the
considered example, it is found that the pressure reaches one
limit point at p=1030 MPa and all the bifurcation points occur
after this point.

The switching on a bifurcated branch is performed by using
the mode injection [28]: at the first step of a bifurcating branch,

the eigenvector Z̃, solution of ˜̃K.Z̃ = 0, is computed and the
following predictions are used:

�� = 0, �Ũ = ±��Z̃/‖Z̃‖. (17)

Fig. 4 displays the four bifurcation modes corresponding to the
appearance of asymmetrical bubbles on the torus.

It should be noted that no bifurcation is obtained if one con-
siders a Saint-Venant Kirchhoff material defined by the strain
energy (7).

3.2. Pinched hemisphere

Now consider the problem of a hemispherical membrane
fixed along its rim and subjected to a pressure over one face and
a vertical concentrated force at the center. An analytical study of
axisymmetrical solutions was performed by Szyszkowski and
Glockner [29], who obtained the deformed configuration by
relaxing the constraint of inextensibility of the latitude circles so
as to allow them to grow shorter in regions where the hoop stress
vanishes. By definition, the axisymmetrical approach does not

exhibit wrinkles. Experimental investigations of this problem
were also made by Szyszkowski and Glockner in [30], who
showed that wrinkles are displayed for various pinching forces.
A recent numerical computation was carried out by Stanuszek
[21] who developed a new method for catching wrinkles using
the cable analogy.

In this paper, we aim to compute the wrinkles using a more
traditional bifurcation analysis. For the purpose of compar-
ing with the results in [21,30], the present study uses the
same geometry and material data as therein. Thus, in the ref-
erence configuration, the thickness of the membrane is taken
as h0 = 25.4 �m and the radius as R0 = 0.155 m. Note that
the radius–thickness ratio is R0/h0 = 6102, which means that
the membrane is very thin. The membrane is made of a neo-
Hookean material defined by (8), with Young’s modulus E =
2.7 MPa and Poisson’s ratio 	 = 0.4.

Due to the symmetry, only one quarter of the hemisphere is
modelled with a mesh of 25 × 25 elements (see Fig. 5). All of
them are eight-node quadrilateral elements, except for those at
the center, which are six-node triangular ones.

The loading is applied in two stages: first, the membrane is
inflated to a given pressure p, and then a concentrated force F is
applied at its vertex. Fig. 6 shows the axisymmetrical deformed
shape corresponding to the fundamental solution, where there
is no bifurcation. It is seen that the sinking at the apex does not
show any fold.

When computing the bifurcated branches, one encoun-
ters severe computational difficulties due to complex roots
which occur repeatedly when the quadratic equation in the
arclength method is solved. It is found that a efficient way
to cope with these complex roots is to modify the solution
scheme according to Lam and Morley [26]. The main idea
of the procedure is to project the residual force onto the ex-
ternal load vector. At a current iteration where complex roots
occur, the residual force is split into one component in the
load direction and another component orthogonal to this load.
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Fig. 5. Mesh of the pinched hemispherical membrane.

Fig. 6. Fundamental solution for a hemispherical membrane loaded by vertical
force.

The last component is mainly responsible for the complex roots
and which should be eliminated. The algorithm is modified as
summarized below.

Iteration loop
[. . .]
In the standard arclength method, solve the quadratic equation.
If the roots are complex, then
(i) Recast the displacement �U as �U = x�UH + ��U�, where �UH = −K−1H, H
is the component of the residual force orthogonal to reference load {�̃}ref

(see Eq. (13b)), �U� = −K−1�, x and � are scalar factors.
(ii) The new incremental displacement �U is replaced into the constraint equation of
the standard arclength method, which leads to a new quadratic equation to be solved
for x. One chooses the root that enables the solution point to advance in the desired
direction.
End if
[. . .]
End of iteration loop.

To make sure that the quadratic equation in x gives real roots,
factor � is chosen at 5% of |�2 − �1, where �1 and �2 are the
roots of another quadratic equation in �.

Fig. 7 shows the bifurcated solutions of the pinched hemi-
sphere problem for two inflation pressures, p=120 and 5000 Pa
(the same values as in Refs. [30,21], respectively).

In both cases, the folds are regularly distributed in the vicin-
ity of the concentrated load. In the low pressure case (p =
120 Pa), the membrane cannot bear a large pinching force, so
that the folds are very fine and the depression is quite shal-
low. The computed deformed shape shown in Fig. 7a agrees
very well with the experimental tests presented in [30]. In the
high pressure case (p = 5000 Pa), the pinching force F can be
given larger values and the folds are more visible, as shown
in Fig. 7b.

The dimensionless load F/pR2
0 is plotted versus the di-

mensionless deflection w/R0 in Fig. 8. As expected, the bifur-
cated curve is very close to the fundamental curve since the
deflection w does not change very much.

3.3. Square thin film membrane subjected to in-plane shear
loading

This section deals with a square membrane clamped along
the bottom edge and subjected to a horizontal shear displace-
ment on the top edge. The sheared membrane is known as one
of the most difficult tests. Numbers of works have been de-
voted to this problem in the literature. Rossi et al. [31] used a
membrane element with a ‘no-compression’ material based on
a modification of the standard linear material and introduced a
“dynamic relaxation” into the process. Löhnert et al. [32] also
used membrane elements and split the strain tensor into a purely
non-wrinkling part and a wrinkling strain to study shearing
effect in orthotropic membranes. Wong and Pellegrino [15,16],
studied a sheared membrane by using shell elements. Their
numerical simulation is done in three main parts, namely (i) to
apply a small uniform prestress to the membrane by moving the
upper edge in the y-dimension; (ii) to predict buckling modes
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Fig. 7. Bifurcated solutions for a hemispherical membrane loaded by vertical force.

by using a combination of eigenvectors to generate geometric
imperfections; and (iii) to continue the post-buckling analysis.
Tessler et al. [19] also investigated sheared membrane. They
used an updated Lagrangian shell formulation and added to
the structure an imperfection which varies as a function of the
membrane thickness.

In our computations, one has to slightly stretch the membrane
before shearing in order to give it a preliminary stiffness at the
beginning of the process. Moreover, it should be noted that,
contrary to the previous examples, here it is essential to apply
the arc-length method with the displacement control (13a), not
with he force control (13b); the arc-length parameter is then the
shear displacement. As a matter of fact, it turns out that there
are convergence difficulties when the arc-length parameter is
related to the shearing force rather than the shear displacement.
Use is also made of the treatment of complex roots described
in Section 3.2.

In its reference configuration, the membrane side is 0.25 m,
the thickness is h0=25 �m. The material is assumed to be of the
neo-Hookean type, with Young’s modulus E = 2500 MPa and
Poisson’s ration 	=0.34. The computed mesh contains 40×40
eight-node quadrilateral elements. First, a stretching of 0.5%
of the length is prescribed in the y-direction, and in the second
stage the shear displacement is applied in the x-direction up to
5% of the side length. Whereas the fundamental solution which
corresponds to an in-plane deformed shape is rather trivial, the
bifurcated solution displays out-of-plane wrinkles which are
much more difficult to be obtained. Fig. 9 gives the deformed
shape of the bifurcated solution, where four large folds and two
hardly noticeable smaller ones are observed in one diagonal
direction.

Fig. 10 depicts the shear displacement versus the out of plane
deflection at point A of coordinates (0, 12.5, 0). As the mem-
brane was stretched before being sheared, the wrinkles appear
only beyond a certain shear displacement level.

3.4. Square airbag

Eventually, let us consider the problem of a pressurized
airbag. Consider an initially flat square airbag inflated by an

Fig. 8. Load–displacement curves for pinched hemispherical membrane.

internal pressure. Although the airbag inflation is essentially a
dynamic problem, here we confine ourselves in a static analysis
framework.

The specific difficulty of this problem comes from the com-
bination of two facts: (i) the whole boundary of the airbag is
completely free to move in its plane, and (ii) the pressure is act-
ing normally to the membrane surface. As a consequence, the
stiffness matrix presents a high singularity at the very first com-
putational step, when the pressure is still very low. To overcome
this numerical difficulty, it is necessary to stretch the structure
along x and y directions by means of dead forces applied on
the outer boundary. Afterwards, those forces are gradually re-
moved when keeping the internal pressure at a fixed value.

The reference thickness is h0 =10−4 m and the reference di-
agonal length is 1.2 m (Fig. 11), the material is of neo-Hookean
type (8) with Young’s modulus E = 588 MPa and Poisson’s ra-
tio 	 = 0.4 (all the numerical values are those used in [5]). The
airbag is subjected to an internal pressure p =5000 Pa. By tak-
ing into account symmetry considerations, one can reduce to
studying one upper quarter of the airbag only. The deformed
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Fig. 9. Sheared membrane.

Fig. 10. The shear displacement versus the out of plane deflection.

shapes obtained with coarse meshes—4 × 4 and 5 × 5 eight-
node quadrilateral elements—as shown in Fig. 12 are in good
agreement with Contri’s results [5].

Fig. 13 shows a more realistic solution of the airbag using
25×25 eight-node quadrilateral elements. The deformed shape
is close to that computed by Stanuszek [21]. Furthermore, be-
side two deep central folds near point B, other small wrinkles
are found on the sides, this result is in very good agreement
with experimental results.

Table 1 compares the following displacements obtained with
several different meshes: (i) the deflection wM at the center

Fig. 11. Initial geometry of the airbag.

point M of the airbag, (ii) the displacement uA in the x-axis at
the corner A, and (iii) the displacement uB in the x-axis at the
mid-point B of the airbag (see Figs. 12 and 13). The number of
elements in Table 1 is related to one upper quarter of the airbag.

Table 1 shows that the results from the present work agree
quite well with the others. It should be noted that in this ex-
ample, the wrinkles appear naturally while the dead forces are
gradually removed. No bifurcation is detected during the com-
putation, so that here one need not have recourse to the bifur-
cation analysis.

4. Conclusions

The objective of this paper has been to propose a robust tool
to study the wrinkling in membrane structures. To this end, a
membrane element has been presented and the pure bifurcation
analysis has been carried out without introducing any imper-
fections in the structure. Also, a simple yet efficient technique
as proposed by Lam and Morley [24] has been incorporated in
the solution procedure to deal with the possible complex roots
when solving the arclength method, making thus possible the
treatment of the wrinkles by the bifurcation. The whole pro-
posed formulation has been programmed in the FORTRAN 90
language by the authors.

The selected numerical examples have shown the ability of
the proposed formulation to correctly predict the critical values
for the wrinkles to appear as well as the wrinkled regions. The
usual singularity of the stiffness matrix at the beginning of the

8



Fig. 12. Deformed airbag using: (a) 4 × 4 elements; (b) 5 × 5 elements in one fourth of the upper surface.

Fig. 13. Deformed airbag using 25 × 25 elements.

Table 1
Displacements at some particular points of the airbag and comparison with the results in the literature

Bauer (quoted in [5]) Contri and Schrefler [5] Kang and Im [33] Present work

16 Elements 25 Elements 16 Elements 25 Elements 16 Elements 25 Elements 625 Elements

wM (m) 0.205 0.209 0.217 0.215 0.216 0.2145 0.2144 0.2245
uA (m) 0.033 0.04 0.045 0.043 0.042 0.0282 0.0265 0.0307
uB (m) 0.13 0.102 0.11 0.117 0.117 0.126 0.1207 0.1158

process has been avoided by preloading the structure, either
with an artificial internal prestress or a real load or displacement
prescribed on the boundary.

Although the wrinkle patterns have been correctly described,
further analyses should be carried out in order to determine
more quantitative results such as the amplitude, the wavelength
and the number of wrinkles.
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