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Boundary integra-differentiai equations for three-dimensional anisotropie cracked bodies are derived. Both the cases of the infinite body (with an embedded crack) and a finite body with an embedded or surface crack are considered. Detailed mathematical conditions for the results to be va/id are specified throughout.

Introduction

In the field of numerical techniques, the most widely known is undoubtedly the domain finite element method (FEM). In recent years, the structural components engineers have to cape with become more and more complex, and the number of degrees of freedom entailed by a sufficiently refined mesh is continually increasing to obtain more and more accurate results. lt was precisely for this reason that the advent of the boundary integral equation method (BIEM) is of great significance since it allows the structure to be meshed over the boundary only, at least when the body forces are absent. In any case, the BIEM allows the solving of problems with smaller matrices because the unknowns are exclusively boundary quantities.

The pioneering works in the BIEM were those of Rizzo, 1 Cruse and Rizzo, 2 and Cruse. 3 • 4 The regularized expression of the BlE was first given by Rizzo and Shippy. 5 Since then the boundary method bas been extensively developed showing its ability to deal with various types of mechanical problems. In the field of fracture mechanics, the BlE, or more precisely the boundary integra-differentiai equation (BIDE), bas been formulated for elastostatic, thermoelastic as weil as elastodynamic problems. 6 -10 Regularized BIDEs have also been given elsewhere. 11 -14 A complete review of different works in the BlE field can be found in the paper of Tanaka et al., 15 though related to regularization techniques.

As a matter of fact, whereas most of the materials are more or less anisotropie, the BIEM was mainly developed for isotropie materials. This can be accounted for by two reasons. First, equations for the isotropie case are simpler to solve from the theoretical and numerical standpoints alike. Second, the elastie material properties are much more difficult to be determined experimentally in anisotropy. Nevertheless, increasing use is being made of anisotropie structural components, and this requires more efficient studies for this class of materials. Using the decomposition of the Dirac function into plane waves, Vogel and Rizzo 16 derived the integral representation of the fundamental solution for a general anisotropie elastic three-dimensional (3-D) continuum. Later on, an efficient numerical implementation for anisotropie problems was proposed by Wilson and Cruse. 17 In fracture mechanics, Sladek and Sladek 18 and Balas et al. 19 (pp. 50-52) have discussed the boundary formulation for anisotropie cracked bodies, and the corresponding BIDE bas been proposed, conjecturing that sorne results in isotropy can be extended to anisotropy.

In the first part of this paper, the integral representation of the fundamental solution for an anisotropie elastie medium derived by Vogel and Rizzo 16 is briefly reviewed and its basic properties are investigated. In particular, relations describing the limit behavior of the fundamental solution near a closed or open surface are presented. Ali the results obtained are generalizations of the well-known ones in the isotropie case. As an application, in the second part of the paper, the BlE and BIDE are derived for the prob\em of ani"&otropic cracked bOO\'è'i>. Th<ë oou'i\-dâr'.f formulation includes both the cases of the infinite body (with an embedded crack) and a finite body with an embedded or surface crack. Throughout the paper, emphasis is made on the mathematical conditions fo r the results to be obtained.

The fondamental solution and its basic properties

In this section, the fundamental solution for a homogeneous anisotropie linear elastic medium is recalled and its basic properties are given. The components of the fourthorder elastic tensor C written in a fixed base (e 1 e 2 e 3 ) of the 3-D space g are material constants verifying the usual symmetries:

(1)

Let us introduce the following definition where the summation convention is implied over repeated subscripts, which ali have the range (1, 2, 3).

Definition

Given a unit vector em of the base (e 1 e 2 e 3 ), the fundamental solution related to em and denoted by U(em, x, y) is the solution of the partial differentiai equation in the infinite space e:

div[C: grad U(em, x ,y )] + 8(y -x)em = 0 (2)
where My -x) is the Dirac function.

The corresponding stress tensor is defined as:

= C: grad U(em, x, y)
where the tensor product a ® b is defined by (a ® b ); 1 = a,.bi. The differentiation in equation ( 9) is performed with respect to variable y, and tu(em. x,y)(y, n y) denotes the stress vector at point y with respect to normal n Y and corresponding to the displacement field U( e m, x, y). Now the fundamental displacement tensor is defined by:

E(x,y) = U(em,x,y) ®em, i.e., E,./x, y)= lf;(ei, x, y) (4) 
This, in turn, gives rise to the third-order tensor of the fundamental stress:

(5) Eventually, the Kupradze tensor is defined by 20 (p. 99):

The relationships between the above-defined tensors are straightforward:

T;k(x , y, n y ) = 'I;/ek, x, y )n/y) = Dijk(x , y )n/y) [START_REF] Weaver | Three-dimensional crack analysis. !nt[END_REF] Conversely:

Because tensors I and T are functions of D , any equation in the sequel cao be expressed in terms of D alone. In practice, however, the simultaneous use of notations T and D proves to be more convenient.

The equilibrium equation in terms of the fundamental solution reads

'tf k' \1 i' div I ( e k, x, y) + 8 (y -x) • e k = 0, aD k k,-'-1 (x, y)+ô(y -x)•ô;k =O a yi i.e.,
which gives rise to the so-called rigid body identity:

where n is any bounded region and S its boundary. [START_REF] Sladek | Dynamic stress intensity factors studied by boundary integra-differentiai equations[END_REF] We now come to the expression of the fundamental solution and its derivatives. For this purpose, let us introduce the following notations. Given two points x and y of space g , let (a 1 , a 2 , a) be an orthogonal base with the third vector a equal to e, = (y -x)jlly -xli, a 1 and a 2 being arbitrary. This based allows us to define the spherical coordinates (x , lj!) E [0, 7T[ X [0, 27T[ such that the line x= 0 coïncides with e" whereas the origin for 1/1 ts arbitrary.

Let us define the tensor Q as Q,.k(() = C ijkt (j( 1 , Ç i is the j-component of vector t in the global ftxed base (ep e 2 , e 3 ) . The inverse of Q is denoted by P:

P(() = Q -1 ({), i.e ., 1 
P;k( () = 2 det Q 8 kpq eirsQp,Qqs
where ekpq is the permutation symbol. Both P and Q are symmetric tensors. Since a unit vector ~ can be entirely determined by its spherical coordinates (x, 1/1) in the base (op Oz, a), tensors P( n and Q( n are also written as P(a , x , 1/1) and Q(a, x, 1/1 ).

The following theorem was proved by Vogel and Rizzo 16 by decomposing the Dirac function into plane waves.

Theorem

The fondamental solution for an anisotropie elastic medium is given by: [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF] in which r = li y -xli and P(a, 1/J) stands for P(a, x= 7T /2, "').

1 i21T Vm, U(em, x, y)= -2 - P(a, 1/J) dr/rem 87T r o 1 f21T =E(x,y)=- 8 2 P(a,!/f)d!/1 7T r o
The integral is taken along the unit circle in the plane normal to a =er and passing through x.

The derivatives of tensor E(x, y) can be computed by [START_REF] Bui | Regular BlE for three-dimensional cracks in elastodynamics[END_REF] where r,; =dr j dy; = er •e; and Q(a, 1/J) stands for Q(a, x= 7T /2, "').

The following properties result from the above theorem.

• The symmetry of E:

E(x,y) =ET(x,y) (13) 
• By applying the same reasoning made for E(x, y ) to E(y, x), we obtain the variable interchange properties: • The singularity of the fundamental solution:

E(x,y) =E(y,x) aE aE -( x, y)=--(x, y)
E(x,y) = o( ~) D(x,y) = o( r\ ) T(x ,y,ny) = o(, 1 2 )
asr=lly -xii~O

(16) (17) (18) 
• The asymptotic behavior at infinity:

E(x,y) = o( ~) D(x,y) = o( ,\) T (x, y, n) = 0 (, 1 2 ) 
as r = Il y -x Il ~ oo [START_REF] Halas | Stress Analysis by Boundary Equation Methods[END_REF] Of course, in isotropie or transversely isotropie cases, relations [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF] and [START_REF] Bui | Regular BlE for three-dimensional cracks in elastodynamics[END_REF] simplify appreciably, yielding wellknown expressions. 21 The fundamental solution for a general anisotropie medium is known only by the integral representation [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF], but the expression in closed form is not available in general since the actual integration is not possible for any time of anisotropy. Nevertheless, the above properties prove to be sufficient to establish the so-called limit theorems in what follows, without the knowledge of any closed form expressions for E and T whatever.

Limit theorems

The purpose of this section is to present sorne results about the limit behavior of the fondamental solution when the load point x approaches a point y 0 belonging to a given surface S. These results hold in the case of general anisotropy, thus constituting the generalization of the well-known ones in the isotropie case. They ali are based on the !emma below, which alone exploits the integral representation [START_REF] Bui | Regular BlE for three-dimensional cracks in elastodynamics[END_REF] of the fondamental solution.

First let us introduce sorne notations. Given a point y 0 and a unit vector Dyo• let n be the plane passing through y 0 and perpendicular to Dyo• The normal Dyo defines two si des of plane n, which will be recognized by the signs + and -, the + side being the half-space containing the point y 0 +nyo• Let 8 be an arbitrary positive number, B(y 0 , 8) the bail centered at y 0 , and with radius 8. The plane n divides the boundary a B(y 0 , 8) of the bail into two parts denoted by S 1 (y 0 , 8) and Sz(y 0 , 8 ), situated in the sides + and -, respectively.

L em ma V y 0 , Vnyo• "18, Vk , l,p , q , [START_REF] Kupradze | Three-Dimensiona/ Prob/ems of the Mathematical Theory of Elasticity and Thermoelasticity[END_REF] where the normal n Y is outward to B(y 0 , e ).

Proof:

Re garding the integral over S 2 (y 0 , 8 ), relation ( 12) yields:

1 f7r /27T { f27T = -87T2 ll=O cp=o'.t r,q 1/f=Oppk(a,l/f)d!/J ( / 27T aQ,m + Snq-r.nr.q) PP 1 (a, 1/J )--(a, 1/J) 1/J=O
oan XPmk(a, 1/J) dl/f} sin ()d0dcp [START_REF] Willis | The elastic interaction energy of dislocation loops in anisotropie media[END_REF] in which r =il y-y 0 ll, r.q = (yq-Yoq)jr, e, =(y-y 0 )jr,

the spherical coordinates ( 0, cp) E [0, 7T[x[O, 27T
[ are so defined that the Iine (} = 0 coïncides with n whereas the origin for cp is arbitrary. As for the integral Y~ver S (y 8)

it is identical to that of ( 21), only the bounds fo~ o' ar~ different, since now (} varies from 7Tj2 to 7T. Using the variable change ()' = 7T-0, cp' = 7Tcp and introducing n~w notations: y' denoting the symmetrical point of y wtth respect to y 0 , r' = lly'y 0 il, r' = ar'jay' =(y' -

) / 1 d 1 ,q q q
Yoq r an a = -a, we have:

r aEpk ], -a-(y 0 ,y)n 1 (y)dYS SICYo• e) Yq 1 Jo -7T = --- J (-r') 8 7T 2 0' = 7T 12 cp' = 7T ,/ x {c-r,' q) f 2 7T ppk( -a''"') dl/f .P=O + ( 8 1 1 )f21T p ( 1 ) aQ/m nq-'.n',q pl -a'"' a( 1) 1/f=O -an X (-a', 1/1 )Pmk( -a', 1/1) dl/f} sin(}' d(}' dq/ (22)
Eventually, by comparing relations [START_REF] Willis | The elastic interaction energy of dislocation loops in anisotropie media[END_REF] and ( 22) and by noting that: '

we obtain the proof of the lemma. Applying relations (5) and ( 6) to relation [START_REF] Kupradze | Three-Dimensiona/ Prob/ems of the Mathematical Theory of Elasticity and Thermoelasticity[END_REF], we directly deduce the following propositions.

Proposition (23) Proposition Vy 0 , Vnyo• 'V8, Vi,j, k, l, (24)
1t should be noted that the above propositions involve the plane II passing through ;>' o an~ normal to vector "ro• Moreover, the value of 8 JS arb1trary, not necessarily small. !n t~e subsequent applications where y 0 belongs to an arbitranly shaped surface S, the neighborhood of y in S is not plane, this is why we shall have to take the li':nit 8~0.

Relations ( 23) and ( 24) allow us to prove the so-called limit theorems below. Let us first agree about notations for the orientation of a surface. Of course, any surface S

(closed or open) considered here is assumed to be orientable. This implies that, for any point y 0 ES '\. as, we can locally define two sides of S which we label side + and si de -, ail the normals to S being directed from si de -to side +.

Theorem

Let S be a surface (closed or open) and u a vector field defined on S. If: • Let us denote r =li y -xli, r 0 = lly 0 -xli and p =li yy 0 ll. From (18) and hypothesis (ii), we have:

T(x, y, n y) = O(ljr 2 ) = 0[1/( p 2 + rJ)], u(y)-u(y 0 ) = 0( p 13 ),
and dYS = 0( p). Hence:

lim J T(x, y, ny)[u(y)-u(y 0 )] dYS = 0(8f3)
x--+y 0 ± S(y 0 , e)

• It remains to investigate the last integral in equation (26). For brevity, let us denote:

where the normal ny for y E S 1 (y 0 ,8)USiy 0 ,8) is outward to the bali B(y 0 , 8) while we recall that n Y for y E S(y 0 , 8) is directed from side -to side +.

The rigid body identity (10) yields:

(

) 27 
where 1 is the unit tensor. Similarly, we have:

(28)

On the other band, from hypothesis (i), S 1 (y 0 , 8) and S 2 (y 0 , 8) tend to two symmetrical hemispheres as e --+ 0 e---> 0

Solving equations ( 27) to (29) gives

1 limA±=+-. e -->0 - 2
The theorem is proved.

Theo rem

Let S be a surface (closed or open) and t a vector field defined on S. If:

(i) SE C 1 • a, Û <a~ 1 (ii) tE C 0 • f3(S), 0 < f3 ~ 1 th en (30)
where n y o is the normal vector at y 0 to S and the product of the third-order tensor D and vector t is the second-arder tensor defined by

(D • t)ij = Dijmtm.

Proof'

The proof is similar to that of equation ( 25), bearing in mind that, in view of relations [START_REF] Weaver | Three-dimensional crack analysis. !nt[END_REF] and ( 16):

The following theorem requires a somewhat stronger condition for the function u.

Theorem

Assuming that where the symbol .9f represents the differentiai operator defined as: =.9fijm( a y, x' y, n y)um(y) = CiJk!Dmnk(x, y) .gn,( a y, n y)um(Y) (32) 9Jn 1 (ay, ny) is the tangential differentiai operator defined as (33) (there is no possible confusion of the normal ny with the subscript nE {1,2,3}), the symbol ay recalls that the differentiation is carried out with respect to variable y.

(i) SEC 1 •a,O<a~l (ii) u E C 1 •f3 (S), 0 < f3 ~ 1, i.

Proof"

Invoking arguments similar to those in the proof of (25), we can write:

The main work is the study of Let us also denote where the normal n Y on different surfaces is defined as in the proof of (25).

• First let S 1 (y 0 , e) be involved by writing X [nnum,l(y 0 ) -n 1 um,n(y 0 )] dyS • Djo (34) where n 1 = n 1 (y ). For the sake of brevity, the right-hand side of the previous equation will be written in the form of a difference (35) In virtue of the rigid body identity [START_REF] Le Van | Integral equations for three-dimensional problems[END_REF], we have -Cijmnum,n<Yo)njo Then, substituting equations (36) and (37) into (35) gives:

x Dij/x, y)( -njonq + njnq 0 ) dYS

• 0 m,n<Yo)
where But, from equation (18) and hypothesis (i):

Th us,

• The same treatment can be applied to S 2 (y 0 , e ), with special attention to the normal orientation. The corresponding results for the ± cases are interchanged with respect to those obtained with S 1 (y 0 , e), and we are led to

-A ±+ C =E + O(ea) (39)
where • Furthermore, according to hypothesis (i), S 1 (y 0 , e) and S 2 (y 0 , e) tend to two symmetrical hemispheres as e ~ 0, so that equation ( 24 where as outward with respect to the body considered, in accordance with the usual convention. In the sequel, ali the equations will be written using s;;, so that normal n;

is taken as the reference one. This section gives the displacement at any interior point of the body in terms of boundary quantities. Two cases are considered: the infinite body (with an embedded crack) and a finite body with an embedded or surface crack.

1 nfinite body

Consider the infinite body 0 containing the crack Scr = S~ Us:;. The following hypotheses referred to as the regularity conditions are assumed. The radiation condition for the body forces is assumed as: f(y)=O(r - 2 -8 ) when r~oo, where ô is a positive constant smaller than 1.

Regularity conditions

Note that condition (ii) is identically verified if the body forces f is confined to a finite region. Given any point x, let B(x, R) denote the bali centered at x with radius R large enough for B(x, R) to include the crack. Let SR be the exterior surface of B(x, R) and O.R, be the bounded region within s;;u s;; and SR, with boundary sc--;.u s;;u Sw The second condition (ii) ensures that limR_,cofnRE(x,y)f(y)dYV is bounded.

The following theorem holds.

Theorem

Provided the regularity conditions are fulfilled, we can write the integral representation of the displacement as:

u(x)= j_[E(x , y)It(y)
Sc.

+T 7 (x,y,ny)Àu(y)] d YS

+ * j 0 E(x,y)f(y)dyV (42)
in which It(y) is the sum of the stress vectors on the crack faces: It(y) = t(y +,n;) + t(y-,n ; ) (if the crack is loaded symmetrically, i.e., t(y+,n ; ) = -t(y-,n;), then It(y) = 0) Àu is the displacement jump through the crack: Âu(y) = u(y+)u(y-), and the asterisk denotes an improper integral.

The proof of the theorem does not formally differ from that in the isotropie case.

2 Finite body

Consider a finite body 0 with outer boundary SB, containing a crack Scr• The following theorem can be proved in a similar way as in the infinite body case.

Theorem

The integral representation of the displacement reads:

V xE n " (SB u scr), u(x) = J:_[ E ( x,y)It(y) sn +T 7 (x,y,ny)Âu(y)] dYS + J [ E(x,

y)t(y , n y)

So -T 7 

(x ,y, n y)u( y )] dyS

+ * lr/(x, y )f(y)dYV (43) Note that the regularity conditions are useless in the finite body case.

Integral representation of the stress

In practical purposes, it is often necessary to compute the complete stress tensor at any point inside the body. This section is thus devoted to the integral representation of the internai stress.

Infinite body Theo rem

Assuming that:

(i) the regularity conditions are fulfilled.

(ii) S;;E C 1 •a, 0 <a~ 1 (iii) Àu E C 1 (5;;)
we have the integral representation of the stress:

Vx~Scr • u( x ) = J: {D(y,x)It(y ) Sc~ + * j D( y, x)f( y ) drV (44) n Proof"
The integral representation of the displacement (42) holds because of hypothesis (i). Given a point x ~ Scr> the derivative auk(x)j ax 1 will be investigated to obtain the stress u(x). Ali integrais in equation ( 42) can be differentiated behind the integral sign. Indeed, since x is interior to fl the surface integral is regular. Moreover, relation [START_REF] Sladek | Three-dimensional crack analysis for an anisotropie body[END_REF] implies that the kernel of the volume integral behaves as 1/ r as r ~O. Thus:

(45)
The first and third integrais containing aEmd ax 1 do not require any further transformations. As regards the second integral, exploiting hypotheses (ii) and (iii) it can be transformed by means of the so-called regularization the-orem (see Appendix): (46) In writing equation (46), use bas been made of the boundary condition along the crack front: ~u(y) = 0 for y E aSer• The theorem is proved.

Note the order of variables x and y in the D-terms of equation (44): D(y, x) instead of D(x, y). On the other band, the volume integral in equation ( 44) is improper convergent on account of the regularity condition fE O(r-2-o).

2 Finite body Theo rem

Assuming that:

(i) (ii) s-ec 1 •()' s EC 1 •"'0<aa'<l cr ' B ' ' - ~u E C 1 (S;), u E C 1 (S 8 )
we have the integral representation of the stress for a finite cracked body:

'V xE 0" (Sa U Scr), u(x) = j {D(y,x)It(y)
s~ + Bf( a y, x, y, ny) ~u(y )} dYS + j {D(y,x)t(y,n y)

Sa

-.9f(ay,x,y,nY)u(y)}dYS

+ * f D(y, x)f(y) dy V n (47) 
In the case of a surface crack, Sa must be replaced by Sa " L throughout, where L = as;n Sais referred to as the surface line.

Pro of'

Only the case of the surface crack, which needs special attention, is investigated; the proof for the embedded crack can be deduced in an obvions way. The reasoning is essentially the same as in the infinite body case, the difference being in that here there are two surfaces: the closed surface Sa upon which the displacement u and the stress vector tare defined and the open surface s; upon which the displacement jump ~u and the stress sum It are defined.

The surface tine L being positively oriented with respect to the normal n; of sc -;, let us introduce the closed contour L -U L + made up to two arcs L-and L + such that both of them coïncide with L whereas the orientation of L-(respectively L + ) is the opposite to (respectively the same as) that of L (Figure 1).

Assume for definiteness that the contour L-U L + is oriented negatively with respect to the outward normal to the exterior boundary Sa, as shown in Figure 1. In fact, it can be easily verified that the final result does not actually depend on this assumption. Hypotheses (i) and (ii) make it possible to apply the regularization theorem (see Appendix) successively to surfaces S; and S 8 " L the boundary of which is L -u L +: =surface integral over sc-; 48) and (49), it turns out that, although line integrais appear in the case of a surface crack, their very sum is zero. The theorem is proved.

Notes

(a) In the case of a surface crack, it has been assumed

that u E C 1 (Sa "L), not u E C 1 (Sa). Indeed, the surface line L corresponds to an incision in the boundary Sa, giving rise to a displacement discontinuity on S 3 along L and making the hypothesis u E C 1 (S 

Boundary integro-differential equation

It is well-known in isotropy that the BlE obtained in usual way by taking the limit 0 '-Scr 3 x---+ y 0 E Scr in equation ( 42) is nonunique and insufficient for the determination of the unknowns on the crack. Indeed, the loading on the crack faces is involved in the BlE only through the sum '!.t so that, if the stress vector is continuous, i.e., !.t = 0, there is no information about the loading at ali. The purpose of this section is to overcome this deficiency by obtaining an adequate BIDE, possibly combined with a BlE.

Infinite body Theo rem

Under the following assumptions: where by x ---+ y 0 ± are meant the upper and lower limits with respect to normal n; 0 , respectively. According to the hypotheses, the integral representation (44) of the stress holds. Then multiplying it by n; 0 and taking the limit as x---+ y6' gives (50). The theorem is proved.

If the loads t+ and r are specified, the solution of the BIDE (50) gives the displacement jump du , and then u+ and uusing the integral representation of the displacement (42). Conversely, if du is prescribed, the BIDE (50)

does not allow to obtain r+ and r separately, unless an additional information is supplied, e.g., t+= -t-. This is better accounted for by the particular case of the plane crack considered below.

Plane crack in the isotropie medium

From equation (50) immediately results the following corollary.

Corollary

Consider a plane crack imbedded in the infinite medium and lying in the plane y 3 =O. Assuming that:

(i) the medium is isotropie (ii) the regularity conditions are fulfilled (iii) !luE C 1 (S,;) we have the BIDE for a plane crack: 

'fly o E Scr 'Va E {1, 2}, 1 2[ta(yr), e3) -ta(yt,-e3 )] 1-2v 1 = 8 ( 
(51a) 1 z-ltiy 0 ,e3) -tiyti, -eJ)] 1-2v 1 = - ( )pvj 2Ita(y)r,adyS 87T 1-V Sc~ r IL 1 + 4 ( )pvj-zra~u 3 ady S 7T 1-v s~ r ' ' + W/y 0 ) (51b)
where r= lly-Yoll, r,; =(y;-Yo)fr,

W(yo) = * fo_D(y,yo)f(y)dYV.e3

There is no coupling between (ta, ,lua)a E 11 , 21 and (t 3 , ~u 3 ) if and only if the loading on the crack is symmetrical, i.e., It =O. The case of the plane crack allows us to go deeper into the question of the aforesaid indetermination of t+ and t-. For simplicity, let us consider a circular crack free of body forces (W = 0). The crack is symmetrical with respect to its plane y 3 =O. The prescription of ,lu 3 can be realized by inserting a rigid wedge, axisymmetrical and dissymetrical with respect to the plane y 3 = 0, between the crack faces. It is assumed that there is no friction between the wedge and the crack faces, then Ita = 0, a E {1, 2} and equation (51b) cao be written in the abbreviated form (lj2)(tjt;) = function of ,lu 3 •

The knowledge of ,lu 3 implies that the difference tj-t:; is known, but not tj and 13 separately. This is confirmed when the wedge is turned upside down: the same quantity ~u 3 is prescribed, the difference tj-t3 remains the same, as can be easily verified, but tj and t3 are modified individually. This simple example shows that knowing Au in equation ( 50) is not enough to determine the loads t+ and t -.

2 Finite body Theo rem

Consider a finite body n containing an embedded or surface crack Scr• Assuming that:

(i) s-EC 1 • " s ECI,a' O<a a'<1 cr " B ' ' - (ii) ,luE C 1 •'\S;), u E C 1 (SB), 0 < {3 ~ 1
we have the following system of BlE and BIDE:

+ * j {E(y 0 ,y)t(y,ny) Vyo E scr t(tCy 0 ,n; 0 ) -t(yti,n; 0 )] =pu j {D(y , y 0 )It(y)

s.;

-~(ay , y 0 ,y,nY)u(y)}dY S • n; 0

+ * jnD(y,yo)f(y)dYV.n ;o (53)
where in the case of a surface crack, SB must be replaced by SB '-. L throughout.

Proof' Equation ( 53) is obtained in a similar way as equation (50). To prove equation ( 52), let us transform the integral representation of the displacement (43) by means of the rigid body identity (10):

+ j {E(x,y)t(y,n y )

Ss

-TT(x, y ,ny)[u(y) -u(x)]}dYS

+ * /,E(x,y) f (y)dyV=O !1 (54)
Now, we proceed to the limit in equation (54) as n'-. (SB u s cr) 3 x~ Yo E SB. From hypothesis (ii) and relation [START_REF] Sladek | Three-dimensional crack analysis for an anisotropie body[END_REF], the integral over SB is weakly singular white that over s.; is regular. Thus, the limit is performed by replacing x by y 0 in equation (54). The theorem is proved.

The solution of the system (52) and ( 53) give (u, t) on SB and (Au, It) on scr• The coupling between these equations accounts for the interaction between the outer boundary and the crack. In the case of a surface crack, the system provides no equations along the surface tine, since y 0 $ L. However, the lacking equations are compensated for by expressing the displacement compatibility at the surface line. With notations introduce in equation (49), we cao write at every point on L : Also, it should be noted that the principal value integral in the BIDE (50) or (53) cao be numerically transformed in the manner indicated by Balas et al. (Ref. 19, p. 166) into a regular one which in turn can be easily computed.

Conclusions

The specifie feature of the formulation has been the general anisotropy of the medium. The results have consisted of:

(1) the limit theorems (25), (30), and (31), which describe the limit behavior of the fundamental solution when the Joad point x approaches a point y 0 belonging to a given surface S, closed or open. These theorems are generalization of the well-known ones in the isotropie case. It is noteworthy that they have been obtained without even knowing the closed form expression of the fundamental solution. A minimum amount of basic properties, relations [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF] to [START_REF] Kupradze | Three-Dimensiona/ Prob/ems of the Mathematical Theory of Elasticity and Thermoelasticity[END_REF], has been enough to complete the proofs. (2) the BIDEs for crack problems, equation (50) for the infinite body with an embedded crack, and the system of coupled equations, (52) and ( 53), for a finite body with an embedded or surface crack, which clearly shows the interaction between the outer boundary and the crack.

From the numerical points of view, the success of the boundary formulation in anisotropie problems depends on an efficient computation of the integral representations [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF] and ( 12) of the fundamental solution. Wilson and Cruse 17 have shawn that the anisotropie solution cao be numerically evaluated with essentially arbitrary accuracy. Further improvements in the numerical scheme should allow to more precisely calculate the fundamental solution as weil as to significantly save the CPU time.

Nomenclature

c fourth-order elasticity tensor em a unit vector 

•

  Using relation (5) and the foregoing properties, we obtain similar relations for I and D: I(ek,x,y) = -I(ek,y,x) and D(x,y) = -D(y,x) ai ai -(ek,x ,y) = --(ek ,x,y) and ax[

1 =

 1 (i) Sis a Lyapunov surface: SEC 1 • ", O<a~l, which means that 3C > 0, \/y, y' ES, liny'-nyll ~ Clly' -y ll" (ii) u satisfies the Holder condition on S: u e C 0 • f3(S), 0 < {3 ~ 1, i.e., 3C > 0, \lx,y ES, llu(y)-u(x)ll ~ Clly -xii 13 th en lim Jrcx,y , nY)u(y)d s x--->y<f S Y ± 2u(yo) +pu fs T(y 0 , y, n y)u(y) dYS (25) where by x~ y 0 ± are meant the limits as x approaches y 0 , x belonging to the side + and the side -: r~spectively .. The symbol pu denotes a Cauchy pnnc1pal value mtegral. Relation (25) also holds if tensor T is replaced by its transpose Tr. Prooj-By denoting S(y 0 , 8) =Sn B(y 0 , 8 ), the left-hand side of (25) can be recast as • The first integral is continuous at y 0 when y-Yo• It tends to the Cauchy principal value integral appearing in the right-hand side of (25) as 8 -O.

  e., ali the derivatives of u belong to the class C 0 • 13 (S) we have the property of continuity across the boundary:

  ± can be transformed successively as follows. Using equation (5), Now, since S(y 0 , e) U S 1 (y 0 , e) is a closed surface, we have Then, owing to the symmetry of E, relation (14), and relation (5): Using equation (10) and the symmetry CmniJ = CiJmn relation (1), we get and a-= lim cmnpqf x--->ycr S(y 0 , e)US 1 (y 0 , e) X D;j/njonq-njnq 0 ) dYS •um,n(y 0 )

  (i) The radiation condition for unknown displacement and stress is assumed as: u(y)=o(l), O'(y) = o(ljr), i.e., t(y, ny) = o(ljr ), when r = /ly-xli~ oo, x being a fixed point. (ii)

Figure 1 .

 1 Figure 1 . Definition of the closed contour L-u L + in the case of a surface crack.

1 (

 1 (i) the regularity conditions are fulfilled (ii) S,;E C 1 • ", 0 < a :5: 1 (iii) du E C 1 • i3(S,; ), 0 < (3 :5: from hypotheses (ii) and (iii), it follows that 2-t = -[C: (graddu)]•n ; EC 0 •/3 '(sc~), 0<(3':5:1) the BIDE writes Vyo E scr -}[ t(y 0 , n; 0 ) -t(yt, n; 0 )] =pu J {D(y,y 0 )2.t(y) sc-; +~(ay,y 0 ,y,n y ) du(y)} dyS•n;o + * J D(y, y 0 )f(y)dYV• n ; 0 (50) n Proof' Equations (30) and (31) are valid in view of hypotheses (ii) and (iii), yielding and

Ss-

  T T(y 0 , y, ny)[u(y)-u(y 0 )]}dYS + * jE(y 0 ,y)f(y)dyV=O fl (52)

  8 ) impossible. (b) The theorem cannat be proved by considering Sa U Scr as a single closed surface. The crack geometry clearly indicates that, contrary to s,;, scr = s:;u s,; cannat be assumed to belong to the class C 1 • ".

Appendix

Regularization theorem

Let S be a surface (open or closed) with edge aS. If:

where fgnt is the tangent differentiai operator defined by equation (33). If S is a closed surface, the line integral along as is zero.

Proof"

Relations ( 7) and ( 17) give Now, it is easy to verify the following formula of compound derivatives: for any differentiable functions and using the equilibrium equation ( 9) with x =1= y ES, the theorem is proved.