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BOUNDARY ELEMENT ANALYSIS OF AN INTEGRAL 
EQUATION FOR THREE-DMENSIONAL CRACK 

PROBLEMS 

A. LE V AN• AND B. PESEUX' 

Laboratoire de Mecanique des Structures, Ecole Na1tionale Superieure de Mecanique, /, ra4re de Ia Noe, Nantes 44072 Cedex, 
France 

SUMMARY 

In another paper, the authors proposed an integral equation for arbitrary shaped three-dimensional cracks. 
In the present paper, a discretization of this equation using a tensor formalism is formulated. This approach 
has the advantage of providing the displacement discontinuity vector in the local basis which varies as a 
function of the point of the crack surface. This also facilitates the computation of the stress intensity factors 
along the crack edge. Numerical examples reported for a circular crack and a semi-elliptical surface crack in a 
cylindrical bar show that one can obtain good resuhs, using few Gaussian poilnts and no singular elements. 

INTRODUCTION 

The integral equation method has been thoroughly experienced in structure analysis. Integral 
equations derived from the Somigliana representation were successfully applied to three­
dimensional problems, such as in References 1 and 2. In the latter reference, a particular 
symmetrical problem of cracked bodies was also investigated. Integral equations with kernels 
containing singular solutions, usually referred to as Kupradze elastic potentials, 3 are particularly 
well suited to crack analysis. The use of these potentials in linear fracture mechanics is 
advantageous as it permits one to obtain directly stress intensity factors from the computed vector 
density. Embedded cracks in an infinite medium were studied in References 4-7. In particular, 
Bui4 showed that for plane cracks the mode I is entirely uncoupled from modes II and III. Later 
on, integral equations for three-dimensional cracks were proposed;8 • 9 in the last reference use was 
made of a Kupradze double layer potential, and the unknown was the vector density directly 
related to the displacement discontinuity through the crack surface. In this paper, we carry out the 
discretization of the integral equation proposed in Reference 9, with a view to studying imbedded 
or surface crack problems. 

For numerical purposes, the main difficulty is the reckoning of singular integrals defined in the 
sense of the principal value. Cruse1 succeeded in giving the closed form of the principal value 
integral, using planar boundary elements. A more general way to evaluate two-dimensional 
singular integrals was investigated by K.azantzakis and Theocaris, 10 who also reduced these to 
one-dimensional finite-part integrals. 11 Among the most recent works, one can find References 12 
and 13 where exact expressions for some specific two-dimensional finite!-part integrals are derived. 
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As for Kupradze potentials, Bui4 took a small polygon instead of a circle to perform principal 
value integrals, it seems, however, that this procedure cannot be used with ease. Lastly, one can 
find in Reference 14 an improvement of the evaluatjon of integrals of order 1 /r, 1 fr2, 1 fr3

, by means 
of a minimum number of Gaussian points. As the considered distance r, small though it may be, 
remains always finite, these integrals are actually not singular ones. In any case, difficulties must 
certainly be expected when dealing with principal value integrals defined on curved surfaces. 

In our analysis, we limit consideration to classical Gaussian quadrature, with no actual 
principal value computations. Nevertheless, two numerical examples given in the last section show 
that one can obtain fair results, using few Gaussian points, no singular integral computations and 
in particular, no singular elements around the crack edge. First, we deal with the embedded penny­
shaped crack. The numerical results obtained proved to fit well to the analytical solution of 
Sneddon.15 Then we treat the problem of a semi-elliptical crack in a cylindrical bar under 
combined loads. In the opening mode, the numerical results can be compared to the existing 
results16 - 18 which involved analogous crack geometries. 

THEORETICAL BACKGROUND 

Let us consider the problem of an elastic solid ~ containing an arbitrary shaped, imbedded or 
surface crack S, with the mixed boundary conditions: 

y0 eSuD.: lim t(x, Dx) = tg(y0, Dyo) 
!i)\S ~ x-. y~ , n .. = n70 

(Ia) 

or: y0 eSuD: lim u(x) = u8 (Yo) (lb) 
!i)\S 3x-+y~ 

where the superscript g stands for given, and the double sign + is related to the surface 
orientation, locally defined by the normal nyo at each point y0 . 

1. Displacement field expression 

Let the displacement field be expressed by means of the Kupradze double-layer potential of the 
first kind3 

u(x)= LTT(y-x, n,)<p(y)d,S (2) 

where the density cp is a vector function defined in the crack S, and T the Kupradze tensor 

2p, 6(1 + p,)e,-ny 
T(y - X, Dy) 8n(A.+ 2Jl)·r2 [ny®er-er®ny-(e,:ny)I]- 8n(A.+ 2p,)·r2 er®er 

1 is the unit tensor, r= lly-x !l , e,.=(y-x)/lly-xl!. 
The displacement discontinuity on the crack is obtained from 

[u(y0)] =u(yri)-u(yi))='P<yo) (3) 

Using (3), one can calculate the stress intensity factors which are now directly related to the 
density cp. 
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2. Integral equations 

It was shown in Reference 9 that, under the assumptions SeC1·cz, O<a~ 1, <peCl.lf(S), 0<{3~ l, 
the integral equation for a general crack is expressed by 

Vy0 ES, t(y 0 , O,.ol = 167<(~ _ v2 ) pv 1 (2(<1>. •• e, F. ,)n,0 - (1-2 v)H+ .•• e, n,.o) F., 

+(F,v·ny0 )<P,u A e,)+3(e,-<P,u)((F,v, ny0 , e,)e,+(n10·e,)e, A F,v) 

- 2(cl»,v, e,, F,u)Dyo + (1- 2 v )( (clJ,v, e,, Dyo) F,u + (F,u ·nyo)cl»,v A e,) 

- 3(e, ·<P,v)((F,u, Dy0 , e,)e,+(ny0 ·e,)e, 1\ F,u)) dudv 

-16n(~-v2) f .. 'C(n,o, y-Yo• ~)op(y)d,l (4) 

with now (Figure l): r=lly-y0 ll,e,=(y-yo)/IIY-Yoll 
F: a parametrization of S, defined on a domain A in IR2

: A3(u, v)~ y 
=F(u, v)ES 
cJ»(u, v)=q>(F(u, v))=<p(y) 
t: the unit vector tangent to the crack edge aS, oriented according to the 
orientation of S. 

One should notice that the symbol pv before the two-dimensional integral relates to the principal 
value on S (not on A), and that the expression still holds in the general case when F.u is not 

::lo- ---

.. 
e, 

i 
Figure 1. General crack configuration with respectively a particular and an ordinary point, Yo and y 
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perpendicular to F. v· The kernel of the line integral has been expressed for brevity as the product 
of a linear operator~ and the density q». Such line integrals appear when surface crack problems 
are involved. 

In the next section, we shall concern ourselves with the discretization of the two-dimensional 
integral. As previously mentioned, this discretization will not include the study of the principal 
value. 

DISCRETIZATION OF THE INTEGRAL EQUATION 

1. Shape functions 

The co-ordinates transformation is given by 

-r: e --+(u, v) = ( (N (e)){ u }e, (N(e) ){ v} e) (5) 

where e is a point of the reference element and the superscript e relates to an ordinary element. In 
this paper, we are interested to the most commonly encountered co-ordinate systems: the 
Cartesian, the polar and the cylindrical ones. In Cartesian co-ordinates (u, v)=(y1 , y2 ), in polar 
co-ordinates (u, v) = (p, 8) (Figure 2) and in cylindrical co-ordinates, with p constant, (u, v) = (8, y 3 ) 

(Figure 3). 

2. Interpolation of~ 

In practice, it is advantageous to obtain the components of the density~ in the local basis which 
varies with the pointy of S. For this reason, we attach much importance to the choice of the co­
ordinates system and we will consider different ways to interpolate the components of q, in the 
local basis. Use will be made of isoparametric elements. 

In Cartesian co-ordinates, for instance, the local basis b is invariant; it coincides with the global, 
- -fixed basis e of the space E 3 : 

1 

~-

~" 
0 -1 

0 ... 

b) 
a,) 

Figure 2. Interpolation with polar co-ordinates: (a) local co-ordinates ~ =(~ 1 , ~2 ); (b) global coordinates (p, 0) 
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(b) 

(a) 
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Figure 3. Interpolation with cylindrical co-ordinates: (a) local co-ordinates ~ = (~ 1 , ~2 ); (b) global co-ordinates (0, y3 ) 

The density q, is considered in the fixed basis: 

~=cfJ1e1 +cfJ2e2+t/>3e3 

Each of the components of ~ is then interpolated classically by 

cPi = (N (~)){ cPi} e, iE { 1, 2, 3} 

In cylindrical co-ordinates, the local basis varies with the point y: 

The density will be considered in the variable basis: 

cl» = 4> PeP+ l/Joe6 + ¢3 e3 

and its components are now interpolated by 

cP i = ( N (e)) { </J i} e, iE{p, e, 3} 

Relations (6) in turn yield 

Cn 

b { cfJ( e) } = b [ .Af ( ~) J • C 11 { cP} e 

(6a) 

(6b) 

(7) 

where c, denotes the canonical basis of IR". The letters b, c" added in small characters recall the 
bases under consideration. In the case of four-node elements, the matrix [ JV] can be explicited as 
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fol1ows: 

Nl 0 0 l N 2 0 0 I N3 0 0 I N4 0 0 
Cl2 

o 1 o o I o o I b[JV (~)] = 0 Nl Nz N3 0 N4 0 
I I I 0 0 N 1 I 0 0 Nz: 0 0 N3 I 0 0 N4 
I I 

and the density t1l in the case of cylindrical co-ordinates can be expressed by 

( tP )e = ((t/Jp, t/Jo, tP3)\ (t/Jp, t/Jo, ¢3)2, (t/Jp, t/Jo, ¢3)3, (t/Jp, tPo, tP3)4)e 

One can then express the derivatives of t1l with respect to the parameters u and v: 

where 

.d.. = .4{ . .d.. e 
'JI,u u 'JI 

.d.. = vi( . .d.. e 
'+', v v 'f' 

if u =I(} 

if u = 0' 
if v =I(} 

if v = (} 

The matrical representation of .#1 in the bases b and c12 (case of four-node elements) is 

0 -N~ ol 0 -N2 ol 0 -NJ ol 0 -N4 0 I I I ctz I I I b[Ai'1 (~)] = Nt 0 0 1 N 2 0 0 I N3 0 01 N 4 0 0 

0 0 o I o 0 o I o 0 ol 0 0 0 
I l I 

3. Discretization of the integral equation 

(8a) 

(8b) 

(9) 

We study next how to transform each of the terms of the right-hand side of (4). First, let us 
consider the terms containing «Jl. u· We have 

(cp,u, e, F,Jny0 =[cp,u·(er 1\ F,v)]ny0 

Similarly 

As for the term «11. u 1\ e, we have 

= [(Aucpe)·(er 1\ F.J]nyo (using (8a)) 

= [ny0 ® A!J (er 1\ F.v)J«Jle (lOa) 

(lOb) 

(11) 

where an implicit sum is implied on the repeated subscript iE{l, 2, 3} or {p, (}, 3}, b0 =(b0 J is the 
basis related to y0 . It should be noted that the components of the given stress t(y0 , ny0 ) in the left­
hand side of(4) are obtained in the basis b0 . Furthermore, in interacting or surface crack problems, 
b0 may differ or not from b, according to the relative position of the particular point y0 and the 
ordinary one y. Now in virtue of (11): 

(F,v ·ny0 )«Jl,u 1\ er = (F, v ·ny0 )[b0 i ® AJ(er 1\ b0 J]cpe (1 Oc) 
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In the same manner, the fourh terms of (4) can be expressed by 

(e,:cl-,u)[(F,v, Dy0 , e,.)e,.+(ny0 ·e,.)e,. 1\ F,vJ 

=[((F,v, ny0 , e,)e,+(ny0 ·e,.)e,. 1\ F,v)®.AJ e,]cpe 

Eventually, relations (10) are expressed in matrical form by 

(lOd) 

(cp,u, e,, F,v) Dyo = [ { Dyo} ( (e, A F,v) [.A uJ)J { cp }e (12a) 

(<J»,u, e,., n,o) F,v = [ {F,v} ((e,. A Dyo) (.A uJ)] { cp }e (12b) 

(F,v 'Dyo)cl-,., A e,=(F,v·nyo) [ {bo;} ((e,. 1\ bOi}) [.A.,])] {cp }e (12c) 

(e,.·ci>, 11)((F,v, n,0 , e;.)e,+(ny0 ·e,.)e,. A F,v) 

(12d) 

It should be noted that, in (12d) for instance, as the given stress in the left-hand side is expressed in 
the basis b0 , the vector e,. between braces { } (column-matrix, see Appendix) must be expressed in 
the basis b0 , whereas the same e,. between angle brackets ( ) (row-matrix) must be expressed in 
the basis b. 

The terms containing «P. v are discretized in the same manner; they yield relations analogous to 
(12) where «P.v takes the place of <l»,u, and F,u of F,v· 

Thus, for each particular point y0 of the crack, we have discretized the integral equation using a 
tensor formalism, equations (10). This equation being discretized as a vectorial equation, and not 
as three separate scalar equations, this formalism allows us a compact programmation for 
numerical purposes. One has to solve an algebraic system in the form 

[A] {cf>}={B} 

where [A] is a full, non-symmetrical matrix, {4>} the unknown vector and {B} contains the 
components of the given stresses. In interacting or surface crack problems, { cf>} contains different 
vector densities corresponding respectively to different cracks or boundaries of the solid !?}. 

N.B.: From the dimensional point of view, the matrices appearing in equations (12) (terms 
between brackets [ ]) are expressed in the inverse of a length or are dimensionless according as 
Cartesian, polar or cylindrical co-ordinates are involved. 

NUMERICAL PARTS 

I. Embedded circular crack 

First, the program has been tested on the simple case of a circular crack centred at 0, with 
radius a, under a uniform pressure p, the analytical solution of which is well known:15 

8(1-v2
)· pa -------~ 

cp(p)= xE Jt-{p/a)2 ·e3 , p= IIOyll 

As for any plane crack imbedded in the infinite medium, the three modes are uncoupled. The stress 
intensity factor in the opening mode is given by 

K1=2p~ 
The natural choice of parameters for the penny-shaped crack is (u, v)=(p, 0). One should notice 

that this choice yields a co-ordinates transformation which is well suited to the crack geometry: 
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the crack edge is especially better shaped than with the usual grid pattern, as shown in Figure 4. 
Moreover, this choice of parameters facilitates the computation of the stress intensity factors 

which require to be taken as a limit when moving along a direction perpendicular to the crack edge. 
The given stress vector is expressed at each point Yo in a local basis b0 =(ep0 ; e80 ; e3 ), whereas the 
vector density 4> at a pointy in b=(ep; e0 ; e3 ); this situation is shown in Figure 5. 

Figure 6 represents a quarter of a mesh with 181 interior nodal points (7 nodes along the radius 
and 36 along the polar angle (J, each sector being equal to 1 0°). The numerical integration was 
performed with 2 x 2 Gaussian points. 

As expected, the numerical values of the radial and tangential displacement discontinuities q, P 

and ¢ 9 are zero; moreover, all the nodes of the same radius have identical ¢ 3 values. It is 
interesting to note that, in mixed modes problems, the formulation herein proposed permits us to 
obtain directly the radial and tangential components of cf» (l/Jp and c/>9 ) without additional 
calculations, because cf» is expressed in the local polar basis. Table I and Figure 7 give respectively 
the values of c/> 3 normalized by the theoretical maximum value (c/> 3max)theor=8(1-v2 )pa/nE, and 
its curve compared to Sneddon's solution. It should be noticed that one obtains in fact 

(a) 

I 
I 

I 

I 
I 

\ 
\ 

----- .. 

/ 

Figure 4. Circular crack: (a) use of polar co-ordinates (u. v) = (p. 0); (b) usual grid pattern. use of Cartesian co-ordinates 

-

Figure 5. Variation of the local basis between the points y and y0 on the crack 
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Figure 6. Circular crack: first mesh 

Table I. Circular crack. First mesh. c/> 3 values normalized by the 
theoretical maximum value 

0 
0·3 
0·6 
0·8 
13/15 
14/15 
I 

1 
0·95393 
0·8 
0·6 
0·49889 
0·35901 
0 

0·91244 
0·87363 
0·72500 
0·56512 
0·47032 
0·35041 
0 

E/(16n(l-v2 ))·c/>3 directly from the program, so that the Young's modulus E datum is not 
necessary. The relative error on </>3 is maximum at the crack centre and equals 8·75 per cent; that of 
the computed stress intensity factor K1 is 3·97 per cent. 

Figure 8 represents a finer mesh with 529 interior nodes (13 along the radius and 48 along the 
polar angel 8, each sector being equal to 7·5°). Use is always made of 2 x 2 Gaussian points. 
Table II and Figure 7 give the values of ¢ 3 normalized by the theoretical maximum ¢rvalue. The 
relative error on ¢ 3 at the centre is 2·97 per cent; that of the computed stress intensity factor K 1 is 
0· 25 per cent. 

2. Semi-elliptical crack in a cylindrical bar under combined loads 

Let us consider a cylindrical bar with radius R, containing a semi-elliptical crack with semi-axes 
a and b. The crack occurs perpendicularly in the lateral surface of the cylinder, along a line which 
will be referred to as the surface-line of the crack (Figure 9). Three types of loads will be applied 
uniquely on the crack, the external surface of the bar being left free: a uniform pressure, a linear 
pressure along the y 1-axis, and a shear distribution corresponding to the torsion of the bar 
(Figure 1 0). 

According to the discussion in Reference 9, the surface crack problem can be investigated by 
considering a two crack problem: the first crack is the studied one, the second is a cylinder­
shaped crack high enough to simulate a free bar. We introduce the notations: 
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Figure 7. Circular crack: </J3 normalized by the theoretical maximum value: analytical results; analytical results; 
- x - x - computed values with the first mesh; - 0-0- computed values with the second mesh 

Figure 8. Circular crack: second mesh 

.Sc,: the semi-elliptical crack, admitting the Cartesian parametrization: 

Fer: .6,cr3(yl, Y2)-+yEScr 

.Scyl: the cylinder-shaped crack, admitting the parametrization: 

Fcyl: Acyl= [0, 2n[x[ -h, h]3(0, z)-+ yEScyl 

. L: the surface-line, which is the intersection of Scyt and the closure of Scr 

.Sc,3 Y-+'Pcr(y)eiR3, Scyt3 y-+(i)cyt(Y)EIR3, 
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~~ , 

Table II. Circular crack. Second mesh. 4J3 values normalized by 
the theoretical maximum value 

0 1 
(}13 D-99151 
0·26 D-96561 
0· 38 0·92499 
0·49 0·87172 
0·59 0·80740 
0·67 0·74236 
0·74 0·67261 
o-8 o-6 
Q-85 D-52678 
(}9 (}43589 
D-95 (} 31225 
1 0 

--·--- ... 
' 

Q-97028 
(}96311 
0·93761 
0·89805 
0·84761 
0·78810 
0·72839 
0·66313 
(}59344 
(}52047 
(}42999 
(}31752 
0 

~-- ..2A. --+t 

Figure 9. Semi-elliptical surface crack in a cylindrical bar. L the surface-line of the crack 
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' ' ' 
' ' 

' ' 
' ', 

(a) (b) (c) 
-

Figure 10. Three loading types on the surface crack: (a) uniform pressure; (b) linear pressure; (c) shear distribution 
resulting from the torsion of the bar (amau •max: maximum stress values) 

respectively the unknown density functions over Scr and Scyl 

· cl-cr ='Per ° F cr' cl»cyl = 'Pcyl ° F cyl 

The edge of Scyt is the union of the upper and the lower crack edges of the cylinder, plus a 
vanishing, counterclockwise contour surrounding L. The set of equations of the problem can be 
written as follows: 

t(y0 , ny0 )=vpf (kernel containing q,cr)dudv 
.lcr 

+ f (kernel containing q,cyl )du dv 
Acyl 

(13a) 

t(y0 , ny0 )=0=J (kernel containing cl-cr)dudv 
Acr 

+ vp f (kernel containing «Pcy1)du dv 
Acyl 

(13b) 

lim 'Pcr(Y) = 0 (13c) 
Scr3Y--+Y 

lim 'Pcyt(Y) =0 (13d) 
Scyl3y-+y 

VyEL, lim 'Pcr(Y)+ lim 'Pcy1(y)- lim 'Pcyt(y)=O 
Scr3Y--+Y ~;f3y--+ji ~~~3y--+ji 

(13e) 

where the kernels in (l3a) and (13b), given by (4), are not made explicit because of their length; S~~f 
and S~~~ denote respectively the upper and lower part of the cylindrical crack, separated by the 
section containing Scr· The relation (13e) holds if we choose the normal to Scr upward with respect 
to the crack and the normal to Scyl outward with respect to the cylinder. With another choice of 
surfaces orientations, however, this relation still holds but the signs before each term may change. 
Furthermore, one can easily verify that, in various surface crack problems, one or more relations 
of type (13e) may be obtained. Relations of type (l3e) allow one to verify that, though every 
contour integral is different from zero, there always appears a set of thesewhich cancel one another. 
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For numerical purposes, a crack depth-radius ratio b/R=0·4 and a semi-axes ratio 
b/a= 5/1 ~0·714 are considered. The cylinder lateral surface is divided into 748 elements with 731 
interior nodes, while the semi-elliptical crack contains but 58 elements and 60 interior nodes 
(Figure 11). So large a node number on the free surface is due to the use of four-node elements with 
their sides along the parallel of the cylinder or along its axis. It should be wiser to use curved 
cylindrical elements (i.e. elements with distinct cylindrical nodal values) so as to realize a relatively 
refined mesh around the surface-line together with a coarse mesh far away, and to reduce notably 
the node number on the free surface. We have, however, not chosen such elements because of the 
difficulties caused to automatic mesh generations. In fact, the sole aim of this paper is to show the 
feasibility and the validity of the proposed approach. Anyway, the interesting feature is the little 
node number on the crack itself. 

Like the previous numerical example, use is made of four-node elements and the numerical 
quadrature is performed with 2 x 2 Gaussian points. Tables III, IV and V give the 4>rvalues, 
ie{l, 2, 3}, resulting from three loading types. From Tables III and IV, one can note that, under 
uniform or linear pressure loadings, the crack is seen to be in the opening mode. Table V shows on 
the contrary that, under torsion loadings, the crack deforms in a mixed mode II+ III. With the 
same maximum stress values (i.e. u=umax• see notation, Figure 10), ¢ 3-values due to uniform 
pressures are found to be greater than those due to linear pressure. 

It is important to note that one obtains Cartesian components of q, over the crack, and 
cylindrical components on the cylinder. Some interesting results can be deduced from the <Pi­
values, ie { p, e, 3}, over the free surface. In the opening mode for instance, the point belongs to the 
upper crack face and located at the centre of the ellipse has, besides a positive ¢ 3 , a negative ¢P. 
This means that it moves upward with respect to the crack and outward with respect to the 
cylinder, as to some extent predicted by physical considerations. 

Figures 12, 13 and 14 represent the crack in non-deformed and deformed states, where for a 
better representation deformations are emphasized by a multiplier equal to 5. 

It is rather attractive to represent the stress intensity factor variations along the crack edge, but 
in surface crack problems, the stress intensity factor definition is almost difficult to establish. 

0 
, ... ,, 

ljl; 

4; 44 

s~ H 

.2'; 

1t (.f . .; u. 

1 

Figure 11. Surface crack mesh: 58 elements, 60 interior nodes. The elements are shaped into the elliptic co-ordinates 
defined on the ellipse 
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Table III. Components of E/(16n(l-v2 ))·cPcr resulting from a uniform pressure: ¢ 1 =¢2 =0, ¢ 3 #:0; 
(v =0·3, b/R =0·4, bja = 5/7, b= 5, u= 1, the unit of a, b, R is [L], that of u is [F· L- 2 ], that of the above 

components is [F·L - 1]) 

E E E E 
Node 

16n(l-v2 ) ·¢3 Node 
16n(l-v2 ) ·¢3 Node 

16tt(l-v2 )·¢3 Node 
16n(l-v2 )·c/>3 

1 0·4658 2 0·4583 3 0·4583 4 0·4351 
5 0·4351 6 0·3955 7 0·3955 8 0·3445 
9 0·3540 10 0·3745 11 0·3857 12 0·3894 

13 0·3857 14 0·3745 15 Q-3540 16 0·3445 
17 0·2777 18 0·2838 19 0·2981 20 0·3110 
21 Q-3184 22 0·3211 23 Q-3184 24 0·3110 
25 (}2981 26 0·2838 27 Q-2777 28 0·2179 
29 0·2358 30 0·2503 31 Q-2620 32 0·2681 
33 0·2702 34 Q-2681 35 0·2620 36 0·2503 
37 0·2358 38 0·2179 39 Q-1554 40 0·1866 
41 0·2014 42 0·2110 43 (}2157 44 0·2173 
45 0·2157 46 0·2110 47 0·2014 48 O·i866 
49 0·1554 50 0·0876 51 0·1358 52 0·1444 
53 0·1489 54 0·1500 55 0·1511 56 0·1500 
57 0·1489 58 0·1444 59 0·1358 60 0·0876 

Table IV. Components of E/(16n(l-v2))·cl»cr resulting from a linear pressure with umax = 1: c/J1 =c/>2 =0, 
c/J3 #:0 

E E E E 
Node 

16n(1- v2 ). c/>3 Node 
16n(1-v2 ) ·c/>3 Node 

16tt(l-v2 ). c/>3 Node 
16n(l-v2 ) ·c/>3 

1 0·3994 2 0·3927 3 0·3927 4 0·3722 
5 0·3722 6 0·3371 7 0·3371 8 0·2921 
9 0·3018 10 0·3193 11 0·3287 12 0·3317 

13 0·3287 14 0·3193 15 0·3018 16 0·2921 
17 0·2341 18 0·2394 19 0·2500 20 0·2592 
21 0·2643 22 0·2661 23 0·2643 24 0·2592 
25 Q-2500 26 0·2394 27 0·2341 28 0·1829 
29 Q-1967 30 0·2061 31 0·2129 32 0·2163 
33 0·2175 34 Q-2163 35 Q-2129 36 Q-2061 
37 0·1967 38 Q-1829 39 0·1300 40 0·1537 
41 0·1623 42 0·1669 43 0·1688 44 Q-1695 
45 0·1688 46 Q-1669 47 Q-1623 48 Q-1537 
49 0·1300 50 0·0732 51 0·1099 52 Q-1134 
53 0·1139 54 0·1133 55 0·1135 56 0·1133 
57 Q-1139 58 Q-1134 59 Q-1099 60 Q-0732 
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Table V. Components of E/(16n(l- v2 ))·_,cr resulting from a torsion shear distribution with 
tmax=l:c/>3=0, l/J1, c/>2:-#:0 

Node 
E 

t6n(l-v2) ·c/>1 

E 
161t(l-v2) ·l/J2 Node 

E 

16n(l-v2 ) ·l/>1 

E 

16n(1 - v2 ) ·l/>2 

1 0·0000 -0·2913 2 0·0074 -0·2858 
3 -0·0074 -0·2858 4 0·0125 -0·2698 
5 -0·0125 -0·2698 6 0·0135 -0·2431 
7 -0·0135 -0·2431 8 0·0099 -0·2107 
9 0·0265 -Q-2554 10 0·0234 -0·2758 

11 0·0132 -Q-2871 12 0·()()()() -0·2907 
13 -0·0132 -0·2871 14 -D-0234 -0·2758 
15 -0·0265 -0·2554 16 -0·0099 -0·2107 
17 0·0044 -0·1761 18 0·0258 -0·2104 
19 0·0352 -0·2334 20 0·0302 -0·2456 
21 0·0165 -0·2510 22 0·0000 -0·2528 
23 -0·0165 -0·2510 24 -0·0302 -0·2456 
25 -0·0352 -0·2334 26 -0·0258 -0·2104 
27 -Q-0044 -0·1761 28 -0·0002 -0·1488 
29 0·0363 -0·1927 30 0·0413 -Q-2039 
31 0·0345 -0·2104 32 0·0185 -0·2120 
33 0·0000 -0·2126 34 -0·0185 -0·2120 
35 -0·0345 -0·2104 36 -0·0413 -Q-2039 
37 -0·0363 -D-1927 38 0·0002 -Q-1488 
39 0·0050 -0·1378 40 0·0320 -0·1548 
41 0·0394 -0·1640 42 0·0336 -0·1661 
43 0·0184 -0·1652 44 ()-()()()() -0·1648 
45 -0·0184 -Q-1652 46 -0·0336 -0·1661 
47 -0·0394 -0·1640 48 -0·0320 -0·1548 
49 -0·0050 -0·1378 50 0·0016 -0·0972 
51 0·0611 -0·1335 52 (}0580 -Q-1193 
53 Q-0455 -0·1103 54 0·0222 -0·1024 
55 0·0000 -0·1006 56 -0·0222 -0·1024 
57 -0·0455 -0·1103 58 -0·0580 -0·1193 
59 -D-0611 -0·1335 60 -D-0016 -0·0972 

Generally speaking, the elastic state varies from plane strain in the interior to plane stress at the 
free surface. In the following, we shall limit our consideration to the stress intensity factors at the 
deepest point of the crack. There exists at this point a plane strain state; in the case of v = 0·3, 
b/R=0·4, bja=5f7, the stress intensity factors are given by: 

for a uniform pressure, 

=0·820 

for linear pressure, K.J(amaxfo) = 1/((Jmaxfo) X 2nj2n X lim { E/(16n(l-v2))·c/J3/Jr} 
r-oo 

=0·595 
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(a) 

(b) 

Figure 12. Surface crack under a uniform pressure: c/J 1 =c/J2 =0, c/J3 #;0. Crack shapes before and after deformation: 
(a) front view; (b) spatial view 

(a) reF?/ 
(b) 

Figure 13. Surface crack under a linear pressure: c/J 1 = c/J2 =0, c/J3 #;0. The deformation shape is analogous to that due to a 
uniform pressure: (a) front view; (b) spatial view 

for a torsion shear distribution, 

= -0·298 

(As previously mentioned, E/(16n( I- v2 ))·cb;. i = 2 or 3, are obtained directly from the program). 

The stress intensity factors are normalized by u max fo or -rmax fo related to a slit crack with 
length 2b in the infinite medium, under a remote tensile or shear loading. 
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Figure 14. Surface crack under a torsion shear distribution: upper view 

In Reference 16, stress intensity factors are computed by means of the boundary integral 
equation method for semi-elliptical cracks in cylindrical bars of diameter equal to 12 mm, in 
tension or in bending. The crack geometry corresponding to that considered herein is bfa 
=2·4 mm/l36 mm=5/7, b/2R=2·4 mm/ 12 mm=0·2, for which the stress intensity factor can be 
obtained by interpolation: 

in tensile loading with a= 1000 MPa, K1 = 72·62 MPajffi --.K, /(a Jn:b)=0·836 

K, = 47·10 MPajffi --.KJ!(amaxfo)=0·569 in pure bending with a max= 953·4 M Pa, · 

One can find in Reference 1 7 a list of stress intensity factors for various crack and solid 
geometries. The so-called surface crack in solid cylinder is studied under tensile loading and pure 
bending (Figure 15). These actually are almond-shaped cracks which occur perpendicularly to the 
lateral surface of the cylinder. For lack of matter for comparisons, we consider, however, the crack 
of this type with b/R =0·4; at the deepest point of the crack, the computed values are expected to be 
close to the above ones. The stress intensity factor is then expressed in the additive form 1 7 

which yields in tensile loading: 

K, = [a· Fo +amu' F1 JJ'i{h 

F 0 = G[0·752 + 1·286/J + 0·37 Y3
] 

F 1 = G[0·923 + 0·199 Y4
] 

G = 0·92(2/n) ·1/cos fJ· [tan fJ/fJ] 1
1
2 

Y= 1-sin/3 

fJ = n:/2 · b/2R 

K.f(a Jib)= 0·800 

and in pure bending: ( K 1 /( (1 max Jib)= 0·606. 

Recently, in Reference 18, use is made of the finite element method to study semi-elliptical 
cracks in cylindrical bars under tensile loadings. When computing the stress intensity factor K 1, 

the assumption that a plane strain state holds in the neighbourhood of the crack is made in order 
to apply the virtual crack extension method. Charts for K1 at the centre of the crack are given for 
b/a=O·Ol, 0·2, 0·5, 1·0, 2·0 and for various bfR ratios. An extrapolation from these K1-charts then 

gives us approximately the interval containing the K1/((1J'i{h) ratio: for b/R =0·4, bfa= 5/7, with a 
uniform pressure (1, K.f((f J'i{h)e[0·93, 1·00]. 

The discrepancy between the above results is mainly due to the crack geometry differences; 
nevertheless, the values obtained are of the same order. For precise comparisons to be made, 
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·~ 

2R. 

Figure 15. Surface crack in a solid cylinder (figure from Reference 17) 
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investigations are being pursued to obtain more complete abacuses of stress intensity factors, 
reported for various crack configurations. 

CONCLUDING REMARKS 

Equation (4) has been discretized and written in a tensor form, equation (10). Whereas lengthy 
expressions should be expected if (4) had been dealt with as three separate scalar equations, this 
approach yields a concise form of the discretized equation and thus allows a compact way of 
programming. Moreover, a crack parametrization being chosen; this enables one to obtain 
directly the components ofthe displacement discontinuity vector at each point, as well as the stress 
intensity factors along the crack edge, in a local basis. Unlike the usual finite element method, no 
singular element is required near the crack edge. The method herein proposed can also easily be 
applied to non-symmetrical crack configuration problems for which the boundary integral 
equation method becomes inefficient. Moreover, since no a priori assumptions of a plain strain or 
plain stress are to be made, the integral equation method can be used to investigate the stress 
singularity in the neighbourhood of the crack. 

The example on the circular crack shows that one can obtain good results, using only four-node 
elements and 2 x 2 Gaussian points. The problem of the semi-elliptical crack in a cylindrical bar 
was also investigated with combined loadings. The numerical results obtained in opening mode 
were found to be in the range of different existing results for analogous crack geometries. The 
proposed method also allows one to obtain results for more complex loadings, in particular for 
torsion loading to which few works in the literature are devoted. 

APPENDIX 

Notation 

b=(b1; b2 ; b3 ) a local basis at a pointy in E3 

c,. the canonical basis of ~~~ 
f} the elastic body characterized by constants (E, v) 

of} the boundary of q) 

e=(e1; e2; e3 ) the fixed basis of E 3 

E3 the three-dimensional Euclidean space 
F a parametrization of S, defined on a domain A in IR2 : A3(u, v)-+ y = F(u, v)ES. In 

general, F,u may not be perpendicular to F.v 
I unit tensor 

ny normal to S at yeS 
S the crack surface 

as the crack edge 
t(y, n,) stress vector at yeS, with respect to normal.n, 

T Kupradze tensor 
y, y0 respectively an ordinary, a particular point of S 

pvJ., surface integral on S, defined in the principal value sense 
{a} column-matrix of components of a vector a in a basis. One may encounter b{ a} 

which emphasizes the basis bin question 
(a) row-matrix, = {a} T, transpose of {a} 
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[%] matrical representation of a linear transformation .AI from E3 into IRn, also 
Cn 

denoted more precisely by e [AI'] 

=(a " b)·c (a, b, c) 
a®b tensor product defined by Vc E IR3

, (a® b)c = a(b·c) 
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