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sms strictly inside the Mohr–Coulomb plastic limit condition have been
rials in the laboratory as well as in the field. The purpose of this paper is to
ramework of loss of sustainability is convenient to describe such mechanisms.

of both loading and response variables, which characterize the loading path
nsidered and its response path, are fundamental. Moreover, by investigating
g and response parameters, it is established that this framework also embeds

itutive uniqueness and loss of controllability. Therefore, a unified approach is
lighting the basic role played by the loading parameters, the vanishing of the
n to be a proper criterion to detect the occurrence of a bifurcation from a

namic regime leading to the collapse of the material.
1. Introduction

The failure of a given material is one of the basic issues that
engineers must consider when designing materials. The notion of
failure is very broad and encompasses a number of aspects related
to various failure modes. In geomechanics, for instance, it is well
known that different failure modes can occur before the plastic
limit condition for nonassociated geomaterials (see for instance
Lade et al., 1987; Vardoulakis and Sulem, 1995; Darve and Vardo-
ulakis, 2005), which can be ascertained by both experimental and
numerical investigations. This paper will not treat the different
failure modes that can be encountered but will instead focus on
a specific failure mode that corresponds to the collapse of the spec-
imen. When this failure mode is associated with no visible specific
localization pattern within the kinematical field, it is referred to as
a diffuse failure mode (Darve et al., 2004; Darve and Vardoulakis,
2005). It is worth noting that the theoretical framework developed
in this paper also encompasses localized failure modes. The occur-
rence of these failure modes also requires that the Rice criterion
(vanishing of the acoustic tensor’s determinant; Rudnicki and Rice,
1975) be met. Both diffuse and localized failure modes are known
to be antagonist, as experimental tests show that depending on the
density of the material, the loading conditions, the manner in
which the loading is applied, the unavoidable existence of defects,
etc., one of the two failure modes will prevail.
t).
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The loss of controllability approach (Nova, 1994) is often pre-
sented as a convenient framework for describing the occurrence
of diffuse failures. The notion of controllability was developed by
examining the conditions in which a prescribed loading program
involving specific loading parameters (also referred to as control
parameters) can be applied to a system, from a given mechanical
state after a given loading history. If the considered loading pro-
gram can be applied, then this program will be said to be control-
lable. Following the definition given by Nova (Nova, 1994), starting
from a given mechanical state, a loading program can be applied if
and only if at each step it produces a unique incremental response
to the incremental loading governed by the control parameters.
Finally, the controllability of a loading program means that the
incremental response exists and is unique, which has been investi-
gated in a number of studies (see for instance Vardoulakis et al.,
1978; Vardoulakis and Sulem, 1995; Petryk, 1993; Darve et al.,
1995; Bigoni and Hueckel, 1991; Bigoni, 2000; Chambon and Caill-
erie, 1999).

Nevertheless, the loss of controllability, or loss of uniqueness,
approach does not predict what happens from a physical point of
view when the uniqueness of the incremental response to an incre-
mental loading is lost. Uniqueness is first and foremost a mathe-
matical problem. On the other hand, the loss of sustainability
approach (Nicot et al., 2007; Nicot and Darve, 2007) was developed
to describe the collapse mechanism, starting from the physical evi-
dence that such a mechanism is related to a sudden increase in ki-
netic energy. When the sustainability of a mechanical state is lost,
if a certain infinitesimal perturbation is applied, there is a sudden,



dramatic increase in the kinetic energy. Thus, in the context of loss
of sustainability, loss of uniqueness receives its proper physical
meaning, by considering that the mathematical equations used in
the quasi-static regime are no longer valid, that is, there is a tran-
sition from a quasi-static problem to a dynamical one. This transi-
tion corresponds to a bifurcation mode; there is a discontinuous
change in the response of the system (from a quasi-static mode
to a dynamic mode), without any external change. The notion of
loss of sustainability is intimately related to this notion of
bifurcation.

For geomaterials including soft and hard soils, rocks, concrete,
etc., experimental tests have shown that in certain conditions, a sud-
den change in the response of the system can suddenly occur even
under continuous variations of the loading parameters. A famous
example is the liquefaction of loose sands under axisymmetric iso-
choric triaxial paths. This experiment shows that the curve giving
the changes in the deviatoric stress q (defined as the difference be-
tween the axial stress r1 and the lateral stress r3) against the mean
effective pressure p0 passes through a maximum. When this maxi-
mum is reached, if an infinitesimal axial load (regarded as an infini-
tesimal perturbation) is added, then a sudden failure occurs. The
specimen merely collapses. If the test is strain-controlled (by impos-
ing a constant axial strain rate), the test can be pursued beyond the
deviatoric peak: both deviatoric ðqÞ and hydrostatic ðp0Þ stresses de-
crease and tend to zero. This is the well-known liquefaction phe-
nomenon (Fig. 1). Clearly, such experimental evidence highlights
the existence of failure modes that cannot be described with the clas-
sical tools (failure as a plastic limit state) since the collapse is ob-
served well before the failure Mohr–Coulomb line is reached.

In this paper, examples of numerical simulations (based on a
discrete element method) will also be given, showing that sudden
collapses of a numerical granular specimen can occur depending
on the loading applied. These simulations demonstrate that, for
certain loading directions that will be specified below, a very small
perturbation is sufficient to collapse the specimen, corresponding
to a proper bifurcation mode from a quasi-static regime toward a
dynamic regime.

Loss of sustainability will be briefly reviewed to show how the
vanishing of the second-order work, through directional analysis,
provides a proper criterion to detect the occurrence of this type
of failure mode. Finally, it will be established that the loss of sus-
tainability framework encompasses the notions of loss of constitu-
tive uniqueness and loss of controllability, thus providing them
with a clear physical meaning, suggesting that a single framework
such as loss of sustainability could be relevant to materials
engineering.
Fig. 1. Typical undrained triaxial behavior of a loose sand. At the q-peak, following
the axial control parameters, the specimen can liquefy (strain control) or can give
rise to a sudden failure (stress control). After Darve et al. (2004).
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It must be emphasized that the framework presented in this pa-
per was developed in the general case of nonviscous (rate-indepen-
dent) materials. No particular constitutive model is considered to
infer the main results, therefore making them general.

Time and spatial derivatives of any variable w will be distin-
guished by denoting dw the time derivative of w (defined as the
product of the particulate derivative _w by the infinitesimal time
increment dt) with respect to a given frame, and by denoting dw
the spatial derivative of w. For any (one- or two-order) tensor
A; tA denotes the transpose tensor.

2. The collapse mechanism

2.1. The fundamental equation

The collapse of a granular material corresponds to a brutal
change in the microstructure of the specimen, associated with a
sharp decrease in the number of contacts between granules. The
material is no longer able to sustain any deviatoric loading. The
rapid relative displacements between grains directs a large num-
ber of opening contacts. The collapse mechanism is therefore
related to an abrupt increase in kinetic energy. As a consequence,
describing the collapse mechanism requires describing how the
kinetic energy of a given material system can increase.

For this purpose, a system made up of a volume Vo of a given
material, initially in a configuration Co (initial configuration) is
considered. After a loading history, the system is in a strained con-
figuration C and occupies a volume V, in equilibrium under a pre-
scribed external loading. The current boundary ðCÞ of the
material can be resolved into one part ðCrÞ controlled by static
parameters and a complementary part ðCeÞ controlled by kine-
matic parameters.~f Cr denotes the surface density of force applied
to ðCrÞ and ~uCe represents the displacement field imposed at each
point of ðCeÞ.

The instantaneous evolution of the system, in the equilibrium
configuration C at time t, is governed by the following energy con-
servation equation that includes dynamical effects:

dEcðtÞ ¼
Z

C
rijnjduidS�

Z
V
rij
@ðduiÞ
@xj

dV ð1Þ

where dEc represents the system’s current change in kinetic energy
related to the incremental displacement field d~u:r is the Cauchy
stress tensor, and ~n is the current normal to the boundary ðCÞ at
the point considered. Eq. (1) represents the Euler form of the energy
conservation, since all variables are given with respect to the cur-
rent evolving configuration. In this configuration, any material point
is described by the coordinate vector ~x. It is convenient to express
the integrals in Eq. (1) with respect to the initial configuration,
which yields:

dEcðtÞ ¼
Z

Co

PijNjduidSo �
Z

Vo

Pij
@ðduiÞ
@Xj

dVo ð2Þ

where P denotes the Piola–Kirchoff stress tensor of the first type,
and Co is the Vo boundary. P and ~N are, respectively, the trans-
formed quantities of r and ~n through the bijection # mapping the
material points from the reference configuration to the current con-
figuration: ~x ¼ #ð~XÞ. This bijective transformation is convenient so
as to obtain all integrals given with respect to a fixed domain, that
is Co and Vo. Thus, the time differentiation of Eq. (2) can be
performed in a straightforward manner, without referring to a Rey-
nolds transform. Taking into account Green’s formula, differentiat-
ing Eq. (2) gives (Nicot et al., 2007):

d2EcðtÞ ¼
Z

Co

dPijNjduidSo �
Z

Vo

dPij
@ðduiÞ
@Xj

dVo ð3Þ



Fig. 2. Cubic specimen and definition of the axes.
Following Hill’s definition (Hill, 1958), W2 ¼
R

Vo
dPij

@ðduiÞ
@Xj

dVo de-
notes the second-order work of the system, associated with the

incremental evolution dPij; d
@ui
@Xj

� �� �
. Both incremental quantities

d @ui
@Xj

� �
and dPij are related through the constitutive equation. More-

over, for the first integral of Eq. (3), at each point of the boundary
Co; df Co

i ¼ dPijNj. Thus, Eq. (3) also reads:

d2EcðtÞ ¼
Z

Cr

df Cr
i duidSo þ

Z
Ce

dfiduCe
i dSo �W2 ð4Þ

In addition, the two-order Taylor expansion of kinetic energy reads:

Ecðt þ DtÞ ¼ EcðtÞ þ Dt _EcðtÞ þ
ðDtÞ2

2
€EcðtÞ þ oðDtÞ3ð8DtÞ ð5Þ

Noting that EcðtÞ ¼
R

Vo
qok _~uk2dVo, where qo is the density of the

material in the initial configuration at point Mð~XÞ, since the system
is in an equilibrium state at time t, then EcðtÞ ¼ 0. Furthermore,
_EcðtÞ ¼

R
Vo

qo
_~u � €~udVo, and at time t; _EcðtÞ ¼ 0. Eq. (5) therefore reads:

d2EcðtÞ ¼
2Ecðt þ DtÞ
ðDtÞ2

dt2 þ oðDtÞdt2 ð6Þ

Thus, Eq. (6) establishes that the kinetic energy of the system at the
subsequent time t þ Dt is a second-order term. Ignoring third-order
terms and making Dt ! dt, then d2EcðtÞ ¼ 2Ecðt þ dtÞ; in combina-
tion with Eq. (4), it follows that:

2Ecðt þ dtÞ ¼
Z

Cr

df Cr
i duidSo þ

Z
Ce

dfiduCe
i dSo �W2 ð7Þ

Eq. (7) is the fundamental equation that relates the kinetic energy of
the system to the second-order work. It should be emphasized that
Eq. (7) holds true only when the system is in an equilibrium state at
time t. It becomes clear that the second-order work should play a
fundamental role with respect to the collapse mechanism of a mate-
rial system. However, to go further, the role of both boundary inte-
grals

R
Cr

df Cr
i duidSo and

R
Ce

dfiduCe
i dSo has to be specified. For this

purpose, it is convenient to consider the notion of the loss of
sustainability.

2.2. Loss of sustainability

Loss of sustainability is briefly reviewed here. Greater detail can
be found in (Nicot and Darve, 2007; Nicot et al., 2007). At time t,
the system is in an equilibrium configuration, under prescribed
control parameters acting on the boundary. First, the control
parameters are assumed to be given by the distributions of ~f Cr

and~uCe over the domains ðCrÞ and ðCeÞ. The analysis is specialized
by prescribing the control parameters to remain constant: df Cr

i ¼ 0
on ðCrÞ and duCe

i ¼ 0 on ðCeÞ. In that case, Eq. (7) simplifies to:

2Ecðt þ dtÞ ¼ �W2 ð8Þ

As a consequence, the kinetic energy of the system may increase
(from a zero value to a strictly positive value) if and only if an incre-

mental evolution ðdP; gradðd~uÞÞ exists, which is compatible with the
prescribed boundary conditions, and such that the second-order
work is strictly negative. An increase in kinetic energy also means
that the equilibrium state defined by both stress and strain states
cannot be sustained. A class of infinitesimal perturbations exists
such that, when applied at time t, the system reaches the mechan-

ical state defined by both stress Pþ dP and displacement ~uþ d~u
fields at the subsequent time t þ dt. This is related to a negative va-

lue of the second-order work, defined as the inner product of dP

and gradðd~uÞ. Thus, when both incremental fields dP and gradðd~uÞ
exist, related by the constitutive equation, compatible with the pre-
scribed boundary conditions and such that the second-order work is
3

strictly negative, the equilibrium state of the system ðP; gradð~uÞÞ is
said to be unsustainable.

The notion of loss of sustainability is therefore a theoretical
framework to describe the occurrence of the collapse of a material
system under constant control parameters. The next section con-
siders this theoretical framework in the particular case of a mate-
rial point.

3. The material point scale

The above theoretical framework is now considered on the
material point scale. Investigating this elementary scale can be
useful in, for example, standard homogeneous laboratory tests
and the interpretation of the derived experimental results, where
(cubic) specimens subjected on each wall to a prescribed force or
displacement directing both homogeneous stress and strain fields
can be studied.

3.1. Formulation in homogeneous conditions

Let us consider a cubic specimen (the area of each side is de-
noted S and the length of each side is denoted L) subjected to axi-
symmetric loading paths. Index ‘1’ refers to the axial direction
(major principal direction), whereas indices ‘2’ and ‘3’ refer to
the two lateral directions perpendicular to the axial direction
(Fig. 2). Restricting the analysis to axisymmetric conditions, we de-
note F1 (resp. u1) the force (resp. displacement) acting on the lower
(and upper) sides, and F3 (resp. u3) the force (resp. displacement)
acting on each lateral side. In what follows and for the sake of sim-
plicity, dðgradð~uÞÞ will be denoted by dE.

In these conditions, Eq. (7) is expressed as:

2Ecðt þ dtÞ ¼ dF1du1 þ 2dF3du3 �W2 ð9Þ

with W2 ¼
R

V ðdP1dE1 þ 2dP3dE3ÞdV . As far as both stress and strain
fields within the specimen can be regarded as homogeneous, the
second-order work reads W2 ¼ VðdP1dE1 þ 2dP3dE3Þ.

3.2. The directional analysis

How can one detect a loss of sustainability for a specimen in an
equilibrium mechanical state defined by ð~P;~EÞ? To answer this
question, it is necessary to check whether both incremental stress
tðdP1;

ffiffiffi
2
p

dP3Þ and strain tðdE1;
ffiffiffi
2
p

dE3Þ vectors exist, related
through the constitutive equation, such that W2 < 0. For this pur-
pose, the directional analysis (initially introduced by Gudehus
(1979) to build the so-called response-envelopes) is particularly



convenient. Incremental stress probes are imposed along all the
directions within the Rendulic plane (axisymmetric stress plane)
and with a fixed (small) norm (namely, 1 kPa), and the conjugate
incremental strain is computed through the constitutive equation.
Then the normalized second-order work is formed:

W2 ¼
dP1dE1 þ 2dP3dE3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dP2
1 þ 2dP2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE2

1 þ 2dE2
3

q ð10Þ

The normalized second-order work, which corresponds to the co-
sine of the angle h between both incremental strain and stress vec-
tors, is basically a directional quantity. It is therefore suitable to plot
the results on a polar diagram, where the normalized second-order
work is reported along each stress direction. Examples of such dia-
grams are given in Fig. 3. These diagrams were obtained from two
fundamentally different models: a phenomenological model (Dar-
ve’s octolinear model; Darve and Labanieh, 1982) on the left and
a micromechanically based model (Nicot’s microdirectional model;
Nicot and Darve, 2005) on the right. The same procedure was ap-
plied to both models. After an initial triaxial loading path in drained
axisymmetric conditions, a directional analysis was performed at
different values of the deviatoric stress ratio g ¼ q=p ðq ¼ P1 �P3

and p ¼ P1þ2P3
3 Þ. In both cases, it is observed that the second-order

work takes negative values within a cone of incremental stress
directions from a certain value of g. Of course, this critical value
of g is not exactly the same for the two models, but it is notable that
the negative values of the second-order work are encountered along
approximately the same incremental stress directions, within the
third quadrant ðdP1 < 0;

ffiffiffi
2
p

dP3 < 0Þ.
Let us assume that a given stress probe d~P exists such that

d~r � d~e < 0. The basic question that arises is to know whether the
system can reach the mechanical state ð~rþ d~r;~eþ d~eÞ without
any change in a given set of control parameters. Given the direc-
tional nature of the second-order work, the incremental stress
direction aP ¼ A tan dP1ffiffi

2
p

dP3
(or aP ¼ A tan dP1ffiffi

2
p

dP3
þ p if dP3 < 0Þ leads

to a strictly negative value of W2, whatever the norm of the stress
vector tðdP1;

ffiffiffi
2
p

dP3Þ. Setting R ¼ tan aP, the control parameter
C1 ¼ F1 �

ffiffiffi
2
p

RF3 is introduced. Since:

dF1du1 þ 2dF3du3 ¼ ðdF1 �
ffiffiffi
2
p

RdF3Þdu1 þ R du1 þ
ffiffiffi
2
p

R
du3

 ! ffiffiffi
2
p

dF3

ð11Þ

it is quite natural to define C2 ¼ u1 þ
ffiffi
2
p

R u3 as the second control
parameter. If the control parameters are imposed to remain con-
stant, then dF1du1 þ 2dF3du3 ¼ 0, and Eq. (9) yields:
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Fig. 3. Polar representation of the second-order work along incremental stress direction
different deviatoric ratios g ¼ 3ðP1 �P3Þ=ðP1 þ 2P3Þ (after Nicot and Darve (2006)).
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2Ecðt þ dtÞ ¼ �W2 ð12Þ

Let us assume that ð~Pþ d~P;~Eþ d~EÞ corresponds to an equilibrium
state. Then it follows that:

dFi ¼ SdPi

dui ¼ LdEi
with i ¼ 1;3 ð13Þ

Eq. (13) implies that:

dF1du1 þ 2dF3du3 ¼ SLðdP1dE1 þ 2dP3dE3Þ ¼ VW2 ð14Þ

Since the control parameters are imposed to remain constant,
dF1du1 þ 2dF3du3 ¼ 0, and Eq. (14) yields W2 ¼ 0. The condition
dC1 ¼ 0 implies that the incremental evolution ðdP1;

ffiffiffi
2
p

dP3Þ is
characterized by the stress direction dP1ffiffi

2
p

dP3
¼ dF1ffiffi

2
p

dF3
¼ R. Thus, this

incremental evolution is associated with a strictly negative value
of W2, which is in contradiction with W2 ¼ 0. As a consequence,

the subsequent state ð~Pþ d~P;~Eþ d~EÞ does not correspond to an
equilibrium state.

In conclusion, if the control parameters C1 and C2 are conve-
niently chosen and maintained constant, the system’s equilibrium
is upset. This change to off-equilibrium is associated with an in-
crease in kinetic energy, such that Ecðt þ dtÞ ¼ � 1

2 W2. This increase
in kinetic energy results in the specimen collapsing.

This investigation has pointed out the fundamental role played
by the vanishing of the second-order work in detecting the occur-
rence of a collapse mechanism. The vanishing of the second-order
work can be checked in a very straightforward manner with
(stress) directional analysis. In addition, the choice of the control
parameters was highlighted; this choice is directed by the knowl-
edge of the stress directions giving negative values in the second-
order work.

The purpose of the next section is to evaluate these theoretical
results based on discrete element simulations of particle
assemblies.

3.3. Discrete element simulations

The discrete element method (Cundall and Strack, 1979; Cun-
dall and Roger, 1992) is convenient to simulate the response of
an assembly of particles subjected to a given loading program.
The considerable progress in computation power, including the
high memory capacity calculation rate, makes this method a rele-
vant alternative to laboratory testing to investigate the mechanical
behavior of granular materials. The same numerical sample can be
loaded along a variety of loading programs, and the changes in
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s (octolinear model on the left side, micro-directional model on the right side) for



Fig. 4. Discrete element simulations. (a) Circular and (b) polar representations of the second-order work versus stress direction for different deviatoric stress ratios g ¼ q=p in
axisymmetric conditions. For the circular representation, the second-order work is negative inside the dashed circle (whose radius is rÞ and is positive outside
ðWcircular

2 ¼Wpolar
2 þ rÞ.

1 The weak phase, by opposition to the strong phase, corresponds to the set of
contacts transmitting normal forces lower than the mean normal force over the whole
assembly.
various internal parameters describing contact forces, relative dis-
placements, or packing can be easily tracked. In addition, as inertial
mechanisms are taken into account for each particle, the transition
from a quasi-static regime to a dynamic regime can be investi-
gated. The introduction of very simple, basic laws on the contact
scale is of course advantageous, since only three mechanical
parameters and a single numerical parameter are required.

The simulations presented in this paper were carried out with
the computational software SDEC (Magnier and Donzé, 1998). Fol-
lowing the molecular dynamic approach popularized for granular
media by Cundall (Cundall and Roger, 1992), each element is de-
scribed as an elastic body subjected to contact forces occurring
when two neighboring granules are in contact. The motion of each
particle is determined by solving the balance equations, which by
time integration yields the location of the particles. The procedure
adopted by this software relates the incremental normal and tan-
gential contact forces to the incremental normal and tangential
displacements through standard frictional elastic–plastic relations.
An outstanding point is that for a given assembly, defined by a gi-
ven fabric, only three mechanical parameters are required: both
normal kn and tangential kt elastic stiffness, together with the local
friction angle ug between contacting grains.

Numerical simulations were carried out with a granular sample
contained in a cubic box whose rigid lateral, lower, and upper
walls can move without tilting. A fixed frame fx1; x2; x3g whose
axes are perpendicular to the walls of the box is attached to the
physical space, as described in Fig. 1. The sample is composed of
a random assembly of approximately 10,000 spherical grains,
and the initial porosity was chosen equal to 0.38 (the sample
exhibits a dilatant behavior during a drained triaxial loading).
The particle diameter distribution ranges continuously from 2.0
to 9.5 mm. The mechanical parameters were fixed as follows:
kn=ds ¼ 356 MPa, where ds is the mean particle diameter, kt=kn ¼
0:42 and ug ¼ 35 deg.

For the simulations presented throughout this paper, nonvis-
cous damping is applied to a given particle by a damping coeffi-
cient j, consisting in reducing driving unbalanced external forces
and increasing unbalanced external forces opposed to particle mo-
tion (Cundall, 1987). j ranges between 0 and 1. When j ¼ 1, there
is no damping, whereas for j ¼ 0, particles can no longer move. In
the following simulations, j ¼ 0:95, corresponding to a very small
damping effect. It was shown that this coefficient value alters the
quantitative results only very slightly (with respect to a vanishing
value of j), for kinetic energy of the whole granular assembly low-
er than 0.01 J (corresponding to the range of kinetic energy shown
in Fig. 5). Moreover, the qualitative nature of the results was not
altered. From a mechanical state within the bifurcation domain,
the collapse of the specimen can be observed for any value of the
5

damping coefficient within the range considered: 0:8 < j < 1
(depending of course on the loading direction).

After an initial isotropic compression, a drained triaxial com-
pression test is simulated in axisymmetric conditions ðP2 ¼ P3 ¼
100 kPaÞ; then, at different loading states corresponding to
increasing values of the deviatoric ratio (g ¼ 0:0;g ¼ 0:74;g ¼
0:78 and g ¼ 0:82), a stress directional analysis is performed. A
stress increment D~P in all directions of the Rendulic plane
ð
ffiffiffi
2
p

DP3;DP1Þ with the same norm (1 kPa) is imposed and the
strain response D~E is computed.

As seen in Fig. 4a, stress loading directions exist for g ¼ 0:82
that lead to negative values of the second-order work. The great
similarity in the general shape of the polar diagrams depicted in
Fig. 4b with those given in Fig. 3 should be noted. Even though
three fundamentally different constitutive approaches have been
considered, the same shape of polar diagrams of the second-order
work is observed, and the second-order work is negative within a
cone located in the same region of the third stress quadrant
ðDP1 < 0;

ffiffiffi
2
p

DP3 < 0Þ (Sibille et al., 2007).
In the following, the loading state corresponding to g ¼ 0:82 is

considered. As seen in Fig. 4a, the second-order work is negative
for the stress directions such that 223 deg< aP <245 deg, or, as
R ¼ tan aP, such that 0:933 < R < 2:14. As specified in the previous

section, the control parameters C1 ¼ F1 �
ffiffiffi
2
p

RF3 and C2 ¼ u1þ
ffiffi
2
p

R u3

are chosen and imposed to remain constant. Different values of the
R-parameter are considered, inside or outside the range [0.933,
2.14]: R1 ¼ 0:839;R2 ¼ 1:19;R3 ¼ 1:43;R4 ¼ 1:73 and R5 ¼ 2:75.
Starting from the same equilibrium state ðg ¼ 0:82Þ for each value
of R, an infinitesimal perturbation is applied. This infinitesimal per-
turbation corresponds to an input of kinetic energy (namely,
10�5 J) applied to any particle belonging to the weak phase.1 This
input of kinetic energy is small with respect to the magnitude of
kinetic energy ð10�4 JÞ developed by the sample during fully
stress-controlled probes. Then the condition dC1 ¼ 0 imposes that

dP1ffiffi
2
p

dP3
¼ dF1ffiffi

2
p

dF3
¼ R. Thus, the instantaneous evolution of the system

is such that W2 < 0 or W2 > 0, depending on the value of R. Both
conditions dC1 ¼ 0 and dC2 ¼ 0 ensure that dF1du1 þ 2dF3du3 ¼ 0,
and thus that Ecðt þ dtÞ ¼ � 1

2 W2. An increase in the kinetic energy
of the specimen is therefore expected for the R-values correspond-
ing to W2 < 0. Fig. 5 reveals that for the values R2 ¼ 1:19 and
R3 ¼ 1:43 (strictly inside the range corresponding to negative val-
ues of second-order work), an abrupt increase in kinetic energy
develops, until the specimen entirely collapses by an exponential



Fig. 6. Exponential growing of strains for the values of the R-parameter associated
with a negative second-order work.

Fig. 5. Discrete simulations of loss of sustainability. A burst in kinetic energy is
observed for the values of the R-parameter associated with a negative second-order
work.
increase in strains (Fig. 6). When the value R4 ¼ 1:73 is considered
(corresponding to a direction inside the range, close to the upper
limit of the cone), the increase in kinetic energy is very low, and
the specimen recovers an equilibrium state.2 Nevertheless, the
sample was close to collapse, with a strong decrease in both axial
and lateral stresses. Finally, when values R1 ¼ 0:839 and R5 ¼ 2:75
(strictly outside the range) are considered, the initial increase in ki-
netic energy is very small and the initial stress–strain state is only
slightly perturbed. No visible pattern of collapse is observed.

As a conclusion, the results derived from the numerical simula-
tions are perfectly in line with the theoretical framework (of the
loss of sustainability) developed in the previous sections. When
the control parameters C1 ¼ F1 �

ffiffiffi
2
p

RF3 and C2 ¼ u1 þ
ffiffi
2
p

R u3 are
chosen with a R-value corresponding to an incremental stress load-
ing direction associated with a negative value of the second-order
work, then the application of a very small perturbation under these
control parameters maintained constant implies a dramatic in-
crease in kinetic energy, leading to the collapse of the specimen
by exponentially increasing strains. On the other hand, when the
control parameters are associated with a strictly positive value of
the second-order work, the specimen is able to recover an equilib-
rium state after the application of a perturbation. These results
confirm the relevance of the theoretical notion of loss of sustain-
2 Since inertial terms are taken into account, the perfectly static equilibrium state
(if it exists) is reached only asymptotically. Thus, when diffuse failure did not occur,
the simulations were stopped at a quasi-static equilibrium close to the static
equilibrium (if it exists) with respect to the kinetic energy.
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ability to describe collapse mechanisms of a granular material. In
the next section, this theoretical framework is presented by adopt-
ing an algebraic point of view, making it possible to recover the no-
tions of loss of constitutive uniqueness (Bigoni and Hueckel, 1991;
Darve et al., 2004) or loss of controllability (Nova, 1994), and final-
ly to propose a possible unified approach.

3.4. Constitutive uniqueness, controllability and sustainability

In this section, two-dimensional conditions are considered, so
that the calculations do not become overly complex. The results
can be extended to three-dimensional conditions.

3.4.1. Mathematical investigations on loading and response
parameters

The mechanical response of a granular specimen (regarded as a
material point) under a given incremental loading can also be ana-
lyzed through a relation between the control parameters that de-
fine the loading and the response parameters. The control
parameters consist of a set of linear combinations of the external
forces or displacements applied to the boundary of the specimen.
Loading is controlled at the boundary of the specimen. Likewise,
for simple materials in Noll’s sense (see for instance Noll, 1972),
the response of the specimen is characterized by parameters mea-
sured on its boundary. In axisymmetry or, broadly speaking, in
two-dimensional conditions, two control parameters, C1 and C2,
and two response parameters, R1 and R2, are necessary. Parameters
Ci and Ri must be conjugate, that is Ci is intensive, Ri is extensive
(or conversely), and their product scales to an energy. Namely, if
the control parameters are C1 ¼ k1F1 þ k2F2 and C2 ¼ k3u1 þ k4u2,
the response parameters can be chosen, respectively, as
R1 ¼ l1u1 þ l2u2 and R2 ¼ l3F1 þ l4F2. It must be emphasized
that the same variable cannot be used both as a control and a re-
sponse parameter. Thus, both parameters C1 and R2, as polynomial
functions of F1 and F2, must be independent, which requires that:

k1l4–k2l3 ð15aÞ

The same holds true for parameters C2 and R1, which gives:

k3l2–k4l1 ð15bÞ

An additional standard constraint is now considered (Nova, 1994).
This constraint states that:

dC1dR1 þ dC2dR2 ¼ dF1du1 þ dF2du2 ð16Þ

For example, the undrained biaxial test is controlled by imposing a
constant deviatoric stress rate under a constant volume. Thus the
control parameters are C1 ¼ F1 � F2 and C2 ¼ u1 þ u2, and the re-
sponse parameters can be conveniently chosen as R1 ¼ u1 and
R2 ¼ F2, ensuring that dC1dR1 þ dC2dR2 ¼ dF1du1 þ dF2du2.

So as to investigate the consequences of Eq. (16), the hybrid
case where C1 is a linear combination of F1 and F2, and C2 is a linear
combination of u1 and u2, is considered. It is useful to express both
control and response parameters in the following form:

C1 ¼ v1ðcos aFF1 þ sinaF F2Þ and C2 ¼ v2ðcos auu1 þ sinauu2Þ
R1 ¼ q1ðcos buu1 þ sin buu2Þ and R2 ¼ q2ðcos bFF1 þ sin bF F2Þ

where v1;v2;q1 and q2 are positive. Under a matricial formalism,
we have:

C1

R2

� �
¼ TF F1

F2

� �
with TF ¼

v1 cos aF v1 sin aF

q2 cos bF q2 sin bF

� �
ð17Þ

and

R1

C2

� �
¼ Tu u1

u2

� �
with Tu ¼

q1 cos bu q1 sin bu

v2 cos au v2 sin au

� �
ð18Þ



As dC1dR1 þ dC2dR2 ¼
dC1

dR2

� �
� dR1

dC2

� �
¼ TF dF1

dF2

� �� �
� Tu du1

du2

� �� �
,

and recalling that for any matrix A and vectors ~a and
~b; ðA~aÞ �~b ¼ tA : ð~at~bÞ, then it follows that:

dC1dR1 þ dC2dR2 ¼ tTF :
dF1

dF2

� �
t Tu du1

du2

� �� �
ð19Þ

which gives:

dC1dR1 þ dC2dR2 ¼ tTF :
dF1

dF2

� �
du1 du2½ �

� �
tTu ð20Þ

Recalling that for any two-order tensors A; B and C;A : ðBCÞ ¼
ðACtÞ : B ¼ ðBtAÞ : C, Eq. (20) can be rewritten as:

dC1dR1 þ dC2dR2 ¼ tTF Tu
� �

:
dF1

dF2

� �
du1 du2½ �

� �
ð21Þ

Condition (16) imposes that tTFTu ¼ I2, where I2 denotes the iden-

tity matrix. Thus, both matrices tTF and Tu are commuting, and

equation TutTF ¼ I2, after transposition, gives:

TF tTu ¼ I2 ð22Þ

The algebraic form of Eq. (22) is:

v1 cos aF v1 sinaF

q2 cos bF q2 sin bF

� � q1 cos bu v2 cos au

q1 sin bu v2 sin au

� �
¼

1 0
0 1

� �
ð23Þ

which gives:

v1q1 cosðbu � aFÞ v1v2 cosðau � aFÞ
q1q2 cosðbu � bFÞ v2q2 cosðau � bFÞ

� �
¼

1 0
0 1

� �
ð24Þ

Then:

au � aF ¼
p
2
ðpÞ and bu � bF ¼

p
2
ðpÞ ð25Þ

and:

v1q1 cosðbu � aFÞ ¼ v2q2 cosðau � bFÞ ¼ 1 ð26Þ

Eq. (25) give ðbu � aFÞ þ ðau � bFÞ ¼ ðpÞ, and by combination with
Eq. (26), it can be obtained that jv1q1j ¼ jv2q2j. The positiveness
of v1;v2;q1, and q2 finally yields that:

v1q1 ¼ v2q2 and ðbu � aFÞ ¼ �ðau � bFÞ ð27Þ

It can be shown that necessarilyðbu � aFÞ ¼ �ðau � bFÞ, and thus
ðau � aFÞ ¼ �ðbu � bFÞ. In conclusion, two cases are possible:
au � aF ¼ p

2 and bF � bu ¼ p
2; or aF � au ¼ p

2 and bu � bF ¼ p
2. The geo-

metrical interpretation of this result is given in Fig. 7, where
au � aF ¼ p

2 and bF � bu ¼ p
2 are illustrated. Both vectors ~C1 and ~C2,
Fig. 7. Orthogonality of both control vectors ~C
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on the one hand, and both vectors ~R1 and ~R2, on the other hand,
are orthogonal in a frame ðF1; F2Þ or ðu1;u2Þ. This is therefore a nor-
mality condition.

However, it is worth noting that there is a priori no reason for
having aF ¼ buð~C1==~R1Þ and au ¼ bFð~C2==~R2Þ.

3.4.2. An attempt at a unified framework
Let us consider a granular specimen in an equilibrium state de-

fined by ð~P1;~E1Þ, after a given loading history. The stress state is
assumed to be strictly inside the plastic limit surface. The condi-
tions required for the specimen to reach a novel equilibrium state
defined by ð~P2;~E2Þ, after the application of an incremental loading
defined by dC1 and dC2 are examined. In other words, we investi-
gate in which conditions a regular relation exists between both
incremental control ðdC1; dC2Þ and response ðdR1; dR2Þ parameters,
which ensures the existence of a unique response ðdR1; dR2Þ to
the loading ðdC1; dC2Þ. By doing so, following Nova’s line, we query
the controllability of the loading program with the control param-
eters C1 and C2.

As previously, the hybrid case where C1 (resp. R2) is a linear
combination of F1 and F2, and C2 (resp. R1) is a linear combination
of u1 and u2, is considered. As reported in Nicot et al. (2007), since
the stress state considered is strictly inside the plastic limit surface,
if only force combinations are considered for the control parame-
ters, a unique displacement response always exists. Thus, both
control and response parameters are expressed as C1 ¼ k1F1þ
k2F2;C2 ¼ k3u1 þ k4u2;R1 ¼ l1u1 þ l2u2 and R2 ¼ l3F1 þ l4F2. As-
suming the existence of an equilibrium state makes it possible to
write Fj

i ¼ SPj
i and uj

i ¼ LEj
i, with i ¼ 1;2 denoting the spatial direc-

tion and j ¼ 1;2 referring to the equilibrium state. Thus:

1
S

dC1 ¼ k1 P2
1 �P1

1

	 

þ k2 P2

2 �P1
2

	 

¼ k1dP1 þ k2dP2 ð28aÞ

1
L

dC2 ¼ k3 E2
1 � E1

1

� �
þ k4 E2

2 � E1
2

� �
¼ k3dE1 þ k4dE2 ð28bÞ

1
L

dR1 ¼ l1 E2
1 � E1

1

� �
þ l2 E2

2 � E1
2

� �
¼ l1dE1 þ l2dE2 ð29aÞ

1
S

dR2 ¼ l3 P2
1 �P1

1

	 

þ l4 P2

2 �P1
2

	 

¼ l3dP1 þ l4dP2 ð29bÞ

C1;C2;R1 and R2 are defined as linear combinations of P1;P2; E1

and E2, with the given set of parameters fk1; k2; k3; k4;l1;

l2;l3;l4g. The transition from an equilibrium state to another
equilibrium state is governed by the homogeneous constitutive
relation:

dP1

dP2

� �
¼

K11 K12

K21 K22

� �
dE1

dE2

� �
ð30Þ
1 and ~C2, and response vectors ~R1 and ~R2.



where K ¼ K11 K12

K21 K22

� �
denotes the tangent stiffness matrix. In the

sequel, the material considered is assumed to be nonassociated, and

K is therefore nonsymmetric. In addition, as the stress state is

strictly inside the plastic limit surface, detðKÞ > 0. Taking conditions

(15) into account, both matrices TF ¼ k1 k2

l3 l4

� �
and Tu ¼ l1 l2

k3 k4

� �
are nonsingular. Eq. (30) is therefore equivalent to the following
equation:

k1 k2

l3 l4

� �
dP1

dP2

� �
¼

k1 k2

l3 l4

� �
K11 K12

K21 K22

� � l1 l2

k3 k4

� ��1 l1 l2

k3 k4

� �
dE1

dE2

� �
ð31Þ

which yields:

dC1

dR2

� �
¼ H

dR1

dC2

� �
ð32Þ

with H ¼ S
L

k1 k2

l3 l4

� �
K11 K12

K21 K22

� �
l1 l2
k3 k4

� ��1

Assuming the normality condition, Eq. (22) holds. Thus:

H ¼ S
L

TF KtTF ð33Þ

It follows that:

H � tH ¼ S
L

TFðK � tKÞtTF ð34Þ

Since TF is invertible, K � tK–0 yields that H � tH–0, indicating that
H is also nonsymmetric.

The existence of a response ðdR1; dR2Þ to the loading controlled
by ðdC1; dC2Þ imposes that a nonsingular tensor M exists, such that:

dR1

dR2

� �
¼ M

dC1

dC2

� �
ð35Þ

Eq. (35) is equivalent to Eq. (30) if and only if H11–0. If this condi-
tion is fulfilled, then:

M ¼
1

H11
� H12

H11

H21
H11

H11H22�H12H21
H11

" #
ð36Þ

When H11–0, the system can be controlled by the parameters C1

and C2. If an incremental loading defined by ðdC1; dC2Þ is imposed,
a unique incremental response ðdR1; dR2Þ exists. On the other hand,
when H11 ¼ 0, a unique incremental response ðdR1; dR2Þ to any
incremental loading ðdC1; dC2Þ can no longer be found. The system
cannot reach an equilibrium state under the prescribed boundary
conditions. The controllability of the loading program with the
parameters C1 and C2 is lost.

As H ¼ S
L TF KtTF , it follows that:

L
S

H11 ¼ K11k
2
1 þ ðK12 þ K21Þk1k1 þ K22k

2
2

¼ K11k
2
4 � ðK12 þ K21Þk3k4 þ K22k

2
3 ð37Þ

Noting that Ks ¼ K11
K12þK21

2
K12þK21

2 K22

" #
, it follows that:

L
S

H11 ¼ ðk1; k2ÞKs k1

k2

� �
¼ ðk4;�k3ÞKs k4

�k3

� �
ð38Þ

As a consequence, H11 is a quadratic form associated with the ma-
trix Ks. The existence of vectors ðk1; k2Þ–ð0;0Þ, or ðk4; k3Þ–ð0;0Þ,
such that H11 ¼ 0 requires that at least one eigen value of Ks be
nil. Thus, when the normality condition is assumed, the vanishing
of the determinant of Ks plays a fundamental role in the existence
8

of a noncontrollable loading program. Moreover, it must be noted
that H11 depends only on terms ki (associated with control param-
eters) and not on terms li (associated with response parameters).
Eq. (38) gives the terms ki leading to the vanishing of H11. For these
values of ki;H11 ¼ 0 whatever the choice of response parameters.

Now, let us consider a directional analysis carried out from the
equilibrium state defined by ð~P1;~E1Þ. A stress loading ðdP1; dP2Þ is
applied, and the strain response ðdE1; dE2Þ is obtained. Then, the
second-order work W2 ¼ dP1dE1 þ dP2dE2 can be formed. Thus:

W2 ¼ dPidEi ¼ KijdEidEj ð39Þ

As the skew part Ka of K satisfies the relation Ka
ijdEidEj ¼ 0 for any

vectors d~E, Eq. (39) yields:

W2 ¼ ðdE1; dE2ÞKs dE1

dE2

� �
ð40Þ

Thus, the expressions of both the term L
S H11 and the second-order

work W2 are formally identical. By denoting f the bilinear applica-

tion defined as f ðx; yÞ ¼ ðx; yÞKs x
y

� �
, it follows that:

L
S

H11 ¼ f ðk1; k2Þ ¼ f ðk4;�k3Þ and W2 ¼ f ðdE1; dE2Þ ð41Þ

Moreover, recalling that K is nonsymmetric, the Bromwhich theo-
rem (Willam and Iordache, 2001) states that detðKsÞ < detðKÞ,
which allows the vanishing of detðKsÞ strictly before the vanishing
of detðKÞ. Thus, the bilinear form f can be degenerated
ðdetðKsÞ < 0Þ strictly inside the plastic surface. Since detðKÞ > 0;K
is regular. The existence of a non-zero vector d~E such that W2 < 0
thereby ensures the existence of a non-zero stress loading d~P lead-
ing to W2 < 0. As shown in Section 2, this proves the unsustainable
character of the equilibrium state considered.

Eq. (41) establish that the vanishing of term H11 is basically re-
lated to the vanishing of the second-order work. From Eq. (41), it
becomes clear that the notions of loss of controllability and loss
of sustainability are closely related. Starting from a given equilib-
rium state, a noncontrollable loading program exists if and only
if this equilibrium state is unsustainable.

Moreover, if detðKsÞ < 0, solving the equation f ðx; yÞ ¼ 0 pro-
vides the values of the ratios k1=k2 and k4=k3 corresponding to a
noncontrollable program:

k1=k2 ¼
�ðK12 þ K21Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK12 þ K21Þ2 � 4K11K22

q
2K11

ð42Þ

and:

k4=k3 ¼
K12 þ K21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK12 þ K21Þ2 � 4K11K22

q
2K11

ð43Þ

The loading program (with dC1 and dC2 being constant), defined
from the parameters:

C1 ¼ c1

�ðK12 þ K21Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK12 þ K21Þ2 � 4K11K22

q
2K11

P1 þP2

0
@

1
A and

C2 ¼ c2 E1 þ
K12 þ K21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK12 þ K21Þ2 � 4K11K22

q
2K11

E2

0
@

1
A

where c1 and c2 are two any constants, is uncontrollable.
In addition, if these parameters C1 and C2 are maintained con-

stant (dC1 ¼ 0 and dC2 ¼ 0), then the application of an infinitesimal
perturbation will direct the collapse of the specimen: there is loss
of sustainability. It must be noted that imposing dC1 ¼ da and
dC2 ¼ db where da and db are any two infinitesimal values, corre-



sponds to a special infinitesimal perturbation of the stationary con-
dition dC1 ¼ 0 and dC2 ¼ 0. Thus, the specimen will collapse. Fol-
lowing Nova’s line, this is a loss of controllability; following
Nicot and Darve’s line, this is a loss of sustainability. Hence, these
two notions are related to the same physics: imposing a noncon-
trollable program leads to the specimen collapsing; imposing a cer-
tain infinitesimal perturbation on a material in an unsustainable
state, under constant parameters, also leads to the material col-
lapsing. Furthermore, when a loading program is not controllable,
at the point of the loading path where the control is lost, the
mechanical state is also unsustainable. However, the main differ-
ence between these two notions is that the controllability empha-
sizes the notion of a loading program (i.e., a certain path within the
mixed strain–stress space), whereas the notion of sustainability
applies to a mechanical state (i.e., a certain point within the stress
space).

Let us come back to the classical view of failure. In the context
of the classical approach, the failure corresponds to the perfect
plasticity regime, characterized by undefined strains under con-
stant stresses: d~P ¼~0 with kd~Ek–0. The perfect plasticity condi-
tion is thus given by:

detðKÞ ¼ 0 ð44Þ

and the flow rule by:

Kd~E ¼~0 ð45Þ

Eq. (44) corresponds to the characteristic equation of matrix K for
the first nil eigen value and Eq. (45) gives the related eigen vector.

In this paper, these notions are generalized by invoking the no-
tions of both control and response parameters. Starting from Eq.
(35), the occurrence of failure can also be described as undefined
response parameters under constant control parameters. Given
that Eq. (35) can also be written as:

dC1

dC2

� �
¼ N

dR1

dR2

� �
ð46Þ

with N ¼ 1
H22

H11H22 � H12H21 H12

�H21 1

� �
, it follows that the general-

ized failure condition is expressed as detðNÞ ¼ 0, that is, H11 ¼ 0.
We recognize the criterion (the so-called bifurcation criterion) asso-
ciated with the notion of loss of controllability and loss of sustain-

ability. The flow rule is thus given by N dR1

dR2

� �
¼ 0

0

� �
, which yields:

dR2 � H21dR1 ¼ 0 ð47Þ

Eq. (47) corresponds to a generalized flow rule (the so-called failure
rule) in the sense that both strain and stress variables are involved
(Darve et al., 2004).

In conclusion, assuming the normality condition, the relation
between the notions of loss of controllability and loss of sustain-
ability was clarified. These notions correspond to a failure, in a gen-
eralized sense: the condition dC2 ¼ dC1 ¼ 0 is prescribed as a
generalized limit state in the ðC1; C2Þ plane, the incremental re-
sponse d~R remains undefined, but the direction of d~R is determined
by the failure rule. In fact, the problem is no longer quasi-static.
There is a bifurcation from a quasi-static regime to a dynamic re-
gime, associated with a creation of kinetic energy, as ascertained
by the existence of negative values of the second-order work.
Hence, the domain of unsustainable strain–stress states (incre-
mental stress (or strain) directions exist such that the second-order
work is negative) is denoted the bifurcation domain. When the
normality condition is assumed, the equation of the bifurcation do-
main is detðKsÞ 6 0. The main interest of the notion of loss of sus-
tainability is that it has a clear physical meaning: this notion
describes the collapse mechanism of a system, associated with a
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burst in kinetic energy. Henceforth, this makes it possible to an-
swer the question: what happens from a physical point of view
when a loss of constitutive uniqueness or a loss of controllability
is detected for a particular choice of control parameters? When
any loading program defined from those control parameters is im-
posed, there is a brutal creation of kinetic energy (with an expo-
nential increase in strains), leading to the collapse of the specimen.

3.4.3. Orientation of unstable stress directions
Throughout this section, it is assumed that both terms K11 and

K22 are positive. In the previous section, it was established that
W2 ¼ K22ðdE2Þ2 þ ðK12 þ K21ÞdE1dE2 þ K11ðdE1Þ2. This is a quadratic
form that can vanish if and only if the discriminant d is positive. Gi-
ven that:

d ¼ ðK12 þ K21Þ2 � 4K11K22 ¼ �detðKsÞ ð48Þ

as long as Ks is strictly positive (all the eigen values are strictly po-
sitive), W2 has the same sign as K11 and K22, that is H11 is strictly
positive. When detðKsÞ < 0, a cone gathering incremental strain
directions corresponding to negative values of W2 exists. This cone
is delimited by the following two directions, corresponding to
W2 ¼ 0:

dE1=dE2 ¼
� K12þK21

2

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðKsÞ

q
K11

ð49Þ

Noting that �detðKsÞ ¼ K12þK21
2

	 
2 � K11K22 6
K12þK21

2

	 
2
, it follows

that both values of dE1=dE2 given in Eq. (49) are negative. These
incremental strain directions therefore belong to the second or
the fourth quadrant of the incremental strain space. Given that

W2 ¼ d~P � d~E, condition W2 ¼ 0 imposes that both incremental
strain and stress vectors are orthogonal. Consequently, the related
incremental stress direction belongs to the first or the third quad-
rant of the incremental stress space. This is in line with most results
reported in the literature using a variety of constitutive models. It is
worth noting that after a compression loading, the first vanishing
direction is always observed within the third quadrant; a vanishing
direction may also appear within the first quadrant (this is the case,
for instance, with the INL model; Darve et al., 2004), but this occurs
only once a vanishing cone has first opened within the third
quadrant.

Furthermore, after a first biaxial loading path in two-dimen-
sional compression, it is clear that the rigidity along the axial direc-
tion (‘1’) is much greater than the rigidity along the lateral

direction (‘2’): K11 > K22. The first stress direction dP1
dP2

� �
o

leading

to the vanishing of the second-order work is obtained when

detðKsÞ ¼ 0. Then, Eq. (44) gives dE1
dE2

� �
o
¼ �

ffiffiffiffiffiffi
K22
K11

q
, and thus

dP1
dP2

� �
o
¼

ffiffiffiffiffiffi
K11
K22

q
. Setting tan ar ¼ dP1

dP2

� �
o
, since this first direction be-

longs to the third quadrant, it follows that aP 2 ½225; 270� (deg). In
axisymmetric three-dimensional conditions, since dr1 ¼ K11de1þ
2K12de2 and dr2 ¼ K21de1 þ ðK22 þ K23Þde2, we have tan aP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

K11
K22þK23

q
. Assuming, for example, that K23 ¼ K22, then

aP 2 ½215; 270� (deg). This is in line with most results found in
the literature (see for instance Nicot and Darve, 2006). In particu-
lar, the range found from discrete element simulations in Section
3.3 was [223; 245] (deg), which matches the theoretical predicted
interval quite well [215; 270] (deg).

4. Concluding remarks

This paper investigates the mechanism of collapse within a
material specimen strictly inside the plastic limit surface. It can



be described as a burst in kinetic energy, from an equilibrium state,
under constant control parameters. This definition has made it
possible to develop the theoretical framework of loss of sustain-
ability, in which the second-order work plays a fundamental role.
As this quantity is basically directional, a directional analysis can
be performed to check whether an incremental stress direction ex-
ists that corresponds to a negative value of the second-order work.
If such directions exist, it is possible to build two control parame-
ters, such that the incremental evolution corresponding to a nega-
tive value of the second-order work is associated with two
constant control parameters. For practical purposes, if such control
parameters are considered and maintained constant, the applica-
tion of an infinitesimal perturbation is sufficient to induce a dra-
matic collapse of the whole specimen. These theoretical
considerations were very clearly demonstrated from discrete ele-
ment simulations performed with granular assemblies of spherical
particles. It is worth noting that this framework was developed
without any assumption regarding the constitutive behavior of
the material, except the rate-independent character, providing a
general scope to this framework.

Interestingly, this approach was investigated by considering the
nature of the relation between both incremental control and re-
sponse parameters. In other words, given an incremental control
vector, does a unique incremental response vector exist? This rela-
tion was found to be unique as soon as the second-order work,
which is a quadratic form, was no longer elliptic: at least one
eigenvalue is negative or nil. In fact, the determinant of the matrix
relating both incremental control and response parameters and the
second-order work were found to be associated with the same ma-
trix, i.e., the symmetric part of the tangent stiffness matrix. Thus,
the relation between both the notions of loss of controllability
and of loss of sustainability was derived, and the determinant of
the symmetric part of the tangent stiffness matrix was shown to
play a fundamental role in the occurrence of a loss of sustainability
(or controllability).

Finally, the notions of loss of controllability or of loss of sustain-
ability can also be regarded as a generalization of the classical per-
fect plastic failure condition (undefined strains under constant
stress): the response parameters remain undefined under constant
mixed control parameters. The plastic failure criterion is general-
ized into a bifurcation criterion and the flow rule into a mixed fail-
ure rule. The subsequent loss of uniqueness is related to the
transition (bifurcation) from a quasi-static regime to a dynamical
regime leading to the collapse of the specimen.
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