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Bending and buckling of inflatable beams: Some new

theoretical results

A. Le van, C. Wielgosz

Faculty of Sciences of Nantes, GeM Institute of Research in Civil and Mechanical Engineering,

2, rue de la Houssinière, BP 92208, Nantes 44322 cedex 3, France

The non linear and linearized equations are derived for the in plane stretching and bending of

thin walled cylindrical beams made of a membrane and inflated by an internal pressure. The

Timoshenko beam model combined with the finite rotation kinematics enables one to correctly

account for the shear effect and all the non linear terms in the governing equations. The linearization

is carried out around a pre stressed reference configuration which has to be defined as opposed to the

so called natural state. Two examples are then investigated: the bending and the buckling of a

cantilever beam. Their analytical solutions show that the inflation has the effect of increasing the

material properties in the beam solution. This solution is compared with the three dimensional finite

element analysis, as well as the so called wrinkling pressure for the bent beam and the crushing force

for the buckled beam. New theoretical and numerical results on the buckling of inflatable beams are

displayed.
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1. Introduction

There are only a few papers dealing with theoretical studies on inflatable beams and it

seems that this research subject has been neglected in the last years. The first paper by

Comer and Levy [1] was published about 40-years-ago and its aim was to prove that
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inflatable beams can be considered as usual Euler Bernoulli beams. At the same time,

Fichter [2] published a very interesting paper in which deflection of inflatable beams is

obtained by means of the principle of the total potential energy minimum. By taking into

account large displacements and following forces, Fichter has successfully included the

internal pressure in the equilibrium equations for inflatable beams subjected to bending

and compressive loads. Main et al. [3] realized experiments on cantilever inflatable beams

and made use of Comer and Levy’s theory. The pressure range considered in their

experiments was not significant enough to reveal the influence of the inflation pressure,

and their conclusion was that the usual Euler Bernoulli beam theory introduced by Comer

and Levy can be applied. However, as shown in [4,5], a usual beam theory cannot be used

to estimate the deflection of inflatable beams, because the inflation pressure does not

appear in the expression for the deflection.

In two recent papers, dealing with the mechanics of inflatable beams, one of the authors

has shown that the pressure effects should be involved in the final deflection, thus

reinforces Fichter’s solution. Deflections of flat panels [4] and tubes [5] have been

obtained under the following assumptions: the equilibrium equations should be written in

the deformed configuration in order to take into account the follower loads; Timoshenko’s

theory should be used to describe the kinematics of the beam (see Fig. 5 in [4] and Fig. 2 in

[5]). Beam analytical and finite element solutions [6] were obtained to give the sought

deflection. In every case, comparisons between theoretical solutions and experimental

results for simply supported inflated beams with various boundary conditions have shown

a very good agreement.

In the present work, a new formulation for inflatable beams is proposed in order to

improve Fichter’s theory. The non-linear equations for the in-plane stretching and bending

of an inflated beam are derived from the Lagrangian form of the virtual work principle.

One additional assumption compared with Fichter’s ones is introduced: the finite rotation

kinematics, which is shown to enable one to correctly account for all the non-linear terms

in the governing equations. Subsequently, the whole equation set is linearized around a

pre-stressed reference configuration which has to be defined as opposed to the so-called

natural state. Two examples are then investigated: the bending and the buckling of a

cantilever beam. Their analytical solutions show that the inflation has the effect of

‘increasing the material properties.’ The numerical results are compared with the

membrane finite element ones obtained within the three-dimensional framework.

Eventually, discussion of the validity of the solutions exhibits the notions of the wrinkling

pressure for the bent beam and the crushing force for the buckled beam. To the authors’

knowledge, the results on the buckling of inflatable beams are novel.
2. Governing equations

Consider an inflatable beam made of a cylindrical membrane undergoing axial stretch

and bending in the xy-plane (Fig. 1) under the combined action of an internal pressure and

other external dead loads. In the reference (or initial) configuration, the length of the beam

is l0, the cross-section area S0, the second moment of area I0, and all the centroids G0 of the

cross-sections lie on the x-axis.
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Fig. 1. The inflated beam model.
In order to derive the governing equations for the inflatable beam, use will be made of

the principle of virtual work in the three-dimensional Lagrangian form

c virtual displacement field V�;

ð
U0

PT : grad V� dU0 C

ð
U0

f0$V� dU0

C

ð
vU0

V�$P$N dS0 0 ð1Þ

where U0 is the region occupied by the body in the reference configuration, vU0 its

boundary, P the first Piola Kirchhoff stress tensor, f0 the body force per unit reference

volume and N the unit outward normal in the reference configuration.
2.1. Displacement and strain fields

Let us denote by U(X) (U(X), V(X), 0), the displacement of the centroid of a current

cross-section at abscissa X (all the components are related to the base (x,y,z)). We assume

that during the deformation the cross-section remains plane, but not perpendicular to the

bent axis of the beam (Timoshenko beam model). Then, by denoting q(X) the finite

rotation of the cross-section, the displacement of any material point P0(X,Y,Z) is given by:

UðP0Þ

U

V

0

C

cos q 1 sin q 0

sin q cos q 1 0

0 0 0

2
64

3
75

0

Y

Z

8><
>:

9>=
>;

U Y sin q

V Yð1 cos qÞ

0

�������

�������
(2)

One readily deduces the components of the Green strain tensor from (2):

EXX U;x Y cos qq;x C
1

2
½U2

;x CV2
;x CY2q2

;x 2YU;x cos qq;x

2YV;x sin qq;x�

EXY

1

2
½V;x cos q ð1 CU;xÞsin q� EYY 0

(3)

The axial strain EXX involves linear and quadratic terms in Y, whereas the shear

component EXY does not depend on Y and is constant over the cross-section.
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2.2. Virtual displacement field

Let us denote by V*(X) (U*(X),V*(X),0), the virtual displacement of the centroid of a

current cross-section. The following expression is chosen for the virtual displacement of a

current material point P0

V�ðP0Þ V� CU� !GP (4)

where U*(X) (0,0,q*(X)) is the virtual rotation. Note that Relation (4) involves the final

vector GP, not the initial vector G0P0, as in the real velocity field in mechanics of rigid

bodies. Since vector GP in turn can be expressed in terms of Lagrangian variables by using

the rotation operation: GP ( Y sin q,Y cos q,Z), it comes from (4):

V�ðP0Þ

�����
U� Y cos qq�

V� Y sin qq�

0

(5)

Thus, the virtual displacement field is completely defined by three scalar functions

U*(X), V*(X) and q*(X).
2.3. Stresses

The matrix of the second Piola Kirchhoff (symmetric) stress tensor S in the base

(x,y,z) is assumed to take the following form:

½S�

SXX SXY 0

SXY 0 0

0 0 0

2
64

3
75 (6)

The material is assumed to be hyperelastic isotropic, obeying the Saint Venant

Kirchhoff constitutive law, characterized by the Young modulus E, the Poisson ratio n and

the initial (or residual) stresses S0
XX , S0

XY induced by the preliminary inflation of the beam:

SXX S0
XX CE$EXX SXY S0

XY C2G$EXY G
E

2ð1 CnÞ

� �
(7)

In the sequel, it is convenient to introduce the following generalized stresses

N

ð
S0

SXX dS0 T

ð
S0

SXY dS0 M

ð
S0

YSXX dS0 (8)

which represent the (material) axial force, the shear force and the bending moment acting

on the reference cross-section S0. By assuming that the cross-section is symmetrical with

respect to the G0z-axis so that
Ð

S0
Y dS0 0 and

Ð
S0

Y3 dS0 0, one gets the expressions
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for the generalized stresses in terms of the displacements from (3), (7) and (8):

N N0 CES0 U;X C
1

2
U2

;X C
1

2
V2
;X C

I0

2S0

q2
;X

� �

T T0 CGS0ðV;X cos q ð1 CU;XÞsin qÞ

M M0 CEI0ðð1 CU;XÞcos q CV ;X
;X ;Xsin qÞq;X

(9)

In the above, N0, T0 and M0 are the resultants of the initial stresses on the cross-section.

As is seen later, very often simplifying assumptions on S0
XX , S0

XY lead to T0 M0 0.

Furthermore, in practice the coefficient GS0 in (9) is replaced by kGS0, where the so-called

correction shear coefficient k is determined from the shape of the cross-section. The value

usually found in the literature (see, e.g. Ref. [7]) for circular thin tubes is k 0.5.
2.4. Virtual stress work

From the relation between the first and second Piola Kirchhoff stresses P FS (F is

the deformation gradient) and the definitions (8), we obtain the expression for the internal

virtual work:

ð
U0

PT : grad V� dU0

ðI0

0
½ðNð1 CU;xÞCM cos qq;x T sin qÞ�U�

;X C ½ðNV;x CM sin qq;x

CT cos qÞ�V�
;X C ½Mð ð1 CU;xÞsin qq;x CV;x cos qq;xÞ Tðð1

CU;xÞcos q CV;x sin qÞ�q�

C Mðð1 CU;xÞcos q CV;x sin qÞC

ð
S0

Y2S;XX dS0q;x

2
64

3
75q�;x dX (10)

The integral
Ð

S0
Y2S;XX dS0 in (10) can be recast as follows, assuming that the initial

stress S0
XX takes the following form general enough in practical purposes: S0

XX a0C
b0Y Cg0Y2 and that S0

XY does not depend on Y. Hence, from (3a) and (7a) SXX is of the

form SXX aCbY CgY2, where g g0C ð1=2ÞEq2
;x. Substituting this into definition (8)

gives

N

ð
S0

SXX dS0 aS0 CgI0 M

ð
S0

ySXX dS0 bI0 (11)
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which entails

SXX

N

S0

gI0

S0

M

I0

Y CgY2

and thenð
S0

Y2S;XX dS0

NI0

S0

Cg

ð
S0

Y4dS0

I2
0

S0

0
B@

1
CA NI0

S0

C
1

2
KEq2

;x CKg0 (12)

where

K

ð
S0

Y4 dS0

I2
0

S0

is a quantity depending on the initial geometry of the cross-section, like S0 and I0. This

quantity is involved in the non-linear equations of the problem; however, it will be seen

that it disappears in the linearized theory.

2.5. External virtual work due to dead loads

The Lagrangian expression for the external virtual work due to dead loads is:

W�
ext

ð
U0

f0ðP0Þ$V�ðP0Þ dU0 C

ð
vU0

V�ðP0Þ$PðP0Þ$NðP0Þ dS0 (13)

Since the handling of dead load work is standard, it will not be detailed here. Let us just

give its final Eulerian expression in the case of the beam:

W�
ext

ðl

0
ðpxU� CpyV� Cmq�Þdx CXð0ÞU�ð0ÞCYð0ÞV�ð0ÞCGð0Þq�ð0Þ

CXðIÞU�ðIÞCYðIÞV�ðIÞCGðIÞq�ðIÞ (14)

In the above, l is the current length, (px, py) are the in-plane components of the dead

load per unit length, m the moment per unit length, (X($), Y($)) designates the components

of the resultant force at end sections x 0 or l, G the resultant moment. All these loads are

applied in the current configuration. It should be mentioned that expression (14) is

obtained since vector GP is involved in the virtual displacement (4) instead of G0P0.

2.6. External virtual work due to the internal pressure

Before external dead loads are applied, the beam is inflated by an internal pressure p$n

(where n is the outward unit normal in the current configuration) which gives the beam its

bearing capacity.

The contribution of the internal pressure will be determined under the assumption that the

reference volume U0 is a circular cylinder of radius R0. This assumption, combined with the

Timoshenko kinematics (2), implies that any cross-section remains a circular disk of radius R0
6



during the deformation. This means that the change in shape (ovalization or warping) of the

cross-section is not taken into account, as is the case of all usual beam models.

The virtual work of the pressure is computed by adding the works on the cylindrical

surface and on both ends.

2.6.1. Integral over the cylindrical surface

Let us represent the reference cylindrical surface by curvilinear coordinates (x1,x2)

(R04, X), where 4 is the polar angle between the normal n at the point x with the y-axis.

According to the displacement field (2), the current element surface is:

n dS
vx

vx1

vx

vx2

dx1dx2�����
cos 4ðV;X R0 cos 4 sin qq;XÞ

cos 4ð1 CU;X R0 cos 4 cos qq;XÞ

sin 4ðsin qV;X R0 cos 4q;X Ccosqð1 CU;XÞÞ

dx1dx2 (15)

The virtual displacement field (5) can be recast as:

V�ðP0Þ

�����
U� R0 cos 4 cos qq�

V� R0 cos 4 sin qq�

0

(16)

From relations (15) and (16), one obtains the contribution of the pressure over the

cylindrical surface:ð
Cylindrical surface

V�ðP0Þ$n dS

pR2
0

ðl

0
½U� sin qq;X V� cos qq;X Cq�ðcos qV;X sin qð1 CU;XÞÞ�dX (17)

The underlined terms stem from the finite rotation adopted in expression (2) for the

displacement field.

2.6.2. Integrals over the ends

These integrals are computed in the similar way as in the case of dead loads. For

instance, from relation (4) and the equality pn dS s$n dS on the end x l (s is the

Cauchy stress), we get:ð
End xZI

V�ðP0Þ$pn dS

ð
End xZI

sðPÞ$nðPÞ dS C

ð
End xZI

GP!sðPÞ$nðPÞ dS$U� RV� CGU� (18)
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Clearly, the torque G due to the pressure is zero on the ends. Moreover, by virtue of the

assumption that the reference volume U0 is a circular cylinder of radius R0, the resultant

force is R ppR2
0n. Hence:ð

End xZl

V�ðP0Þ$pn dS ppR2
0ðU

� cos q CV� sin qÞ (19)

2.6.3. Virtual work of the pressure

W�
pressure P

ðI0

0
½U� sin qq;X V� cos qq;X Cq�ðcos qV;X sin qð1 CU;XÞÞ�dX

CP½U� cos q CV� sin q�
l0
0 ð20Þ
2.7. Equilibrium equations and boundary conditions

Integrating by parts the principle of virtual work (1) and using (10), (12), (14) and (20),

lead to the following equilibrium equations for the inflated beam

ðNð1CU;XÞÞ;X ðMcosqq;XÞ;X CðT sinqÞ;X Psinqq;X

pX

ðNV;XÞ;X ðM sinqq;XÞ;X ðT cosqÞ;X CPcosqq;X

pY

ðMð1CU;XÞÞ;X cosq ðMV;XÞ;X sinqCðð1CU;XÞcosqCV;X sinqÞT

NI0

S0

C
1

2
EKq2

;X CKg0

� �
q;X

� �
;X

PðcosqV;X sinqð1CU;XÞÞ m

(21)

together with the boundary conditions:

Nð0Þð1CU;Xð0ÞÞCMð0Þcosqð0Þq;Xð0Þ Tð0Þsinqð0Þ Pcosqð0Þ Xð0Þ (22a)

NðI0Þð1CU;XðI0ÞÞCMðl0ÞcosqðI0Þq;XðI0ÞCTðI0ÞsinqðI0Þ PcosqðI0Þ XðI0Þ

(22b)

Nð0ÞV;Xð0ÞCMð0Þsinqð0Þq;Xð0ÞCTð0Þcosqð0Þ Psinqð0Þ Yð0Þ (22c)

NðI0ÞV;XðI0ÞCMðl0ÞsinqðI0Þq;XðI0ÞCTðI0ÞcosqðI0Þ PsinqðI0Þ YðI0Þ (22d)

Mð0Þð1CU;Xð0ÞÞcosqð0ÞCMð0Þsinqð0ÞV;Xð0Þ

C
Nð0ÞI0

S0

C
1

2
EKq2

;Xð0ÞCKg0

� �
q;Xð0Þ Gð0Þ (22e)
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MðI0Þð1CU;XðI0ÞÞcosqðI0ÞCMðI0ÞsinqðI0ÞV;XðI0Þ

C
NðI0ÞI0

S0

C
1

2
EKq2

;XðI0ÞCKg0

� �
q;XðI0Þ GðI0Þ (22f)

It remains to substitute relations (9) for (N,M,T) in Eq. (21) to obtain a set of three non-

linear equations with three unknowns (U,V,q). Relations (21) (22f) are similar to those

obtained by Fichter [2], the additional terms are due to the fact that here the displacement

field (2) involves finite rotation.
3. Linearized equations

In this work, we shall confine ourselves to small deformations so as to deal with

linearized equations which are simpler to solve. The linearization of the equations will be

performed about the reference configuration which is in a pre-stressed state. For instance,

in the case of bending, the pre-stress is due to the preliminary inflation of the beam; in the

case of buckling, the pre-stress also includes the compressive load.

The linearization process is based on usual hypotheses on the magnitudes of the

displacements and the rotation:

(i) V/l0 and q are infinitesimal quantities of order 1,

(ii) U/l0 is infinitesimal of order 2.

Furthermore, the following assumptions are made on the initial stresses:

(i) The initial axial stress S0
XX is constant over the cross-section. Thus, M0 g0 0.

(ii) The initial shear stress S0
XY is zero. Thus, T0 0.

Taking these assumptions into account, one arrives at the linearized expressions for the

constitutive laws (9)

N N0 T kGS0ðV;x qÞ M EI0q;X (23)

From (21), the linearized equilibrium equations are:

N0
;X pX

ðN0 CkGS0ÞV;X2 C ðP CkGS0Þq;X pY

E C
N0

S0

� �
I0q;X2 C ðP CkGS0ÞðV;X qÞ m

(24)

The linearized boundary conditions are derived from (22a) (22f):

N0ð0Þ P Xð0Þ (25a)

N0ðl0Þ P Xðl0Þ (25b)
9



ðN0ð0ÞCkGS0ÞV;Xð0Þ ðP CkGS0Þqð0Þ Yð0Þ (25c)

ðN0ðl0ÞCkGS0ÞV;Xðl0Þ ðP CkGS0Þqðl0Þ Yðl0Þ (25d)

E C
N0ð0Þ

S0

� �
I0q;Xð0Þ Gð0Þ (25e)

E C
N0ðI0Þ

S0

� �
I0q;XðI0Þ GðI0Þ (25f)

The linearized Eqs. (24) (25f) are quite similar to those obtained by Fichter [2]. Yet

there are two slight differences: (i) the linearization process, based on a well-defined

reference configuration, definitely shows that the obtained equations form a set of

linearized equations in terms of displacements U, V and rotation q; (ii) the pressure is

equally involved in the equilibrium equations and boundary conditions, so that it modifies

both the Young modulus and the shear modulus. This modification will be more explicit in

the bending and buckling examples considered in the next sections.

In addition, it should be mentioned that all the reference dimensions (e.g. length l0,

cross-section area S0 and second moment of area I0) are themselves functions of the

pressure p. Computing their values corresponding to a given pressure may be difficult, but

this is an independent subject which actually is common to every problem with a pre-

stressed reference configuration.
3.1. Solution scheme

Eq. (24) and the boundary conditions (25a) and (25b), related to the axial displacement

U, are decoupled from the rest and can easily be integrated. Let us describe how to solve

Eq. (24) and the boundary conditions (25c) (25f), related to the deflection V and the

rotation q.

Eq. (24) can be used to eliminate V,X as

V;X

ðP CkGS0Þ

ðN0 CkGS0Þ
q

C

ðN0 CkGS0Þ
(26)

where C
Ð

pY dX denotes a primitive of the load pY. Inserting (26) into (24) provides a

differential equation of second order in q:

E C
N0

S0

� �
I0q;X2 C

ðP CkGS0Þ

ðN0 CkGS0Þ
ðP N0Þq m CC

ðP CkGS0Þ

ðN0 CkGS0Þ
(27)

The above equation is similar to that obtained in [5]. Integrating it leads to three

constants of integration, whereas integrating (26) leads to one additional constant. These

four constants are determined by means of the boundary conditions (25c) (25f).
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4. Bending of an inflatable beam

In this section, we consider, as the first example, the linearized problem of an inflated

cantilever beam under bending. The beam is made of a cylindrical membrane, its reference

length is l0, its reference radius R0 and its reference thickness h0. The beam is built-in at

end X 0, subjected to an internal pressure p and a transverse force Fy at end X l0.
4.1. Deflection and rotation

From the equilibrium Eq. (24) and the boundary conditions (25a) and (25b), one readily

gets the initial axial force N0(X) P. Hence, Eqs. (26) and (27) become:

V;X q
C

P CkGS0

ðHere; C is a constant of integrationÞ (28)

E C
P

S0

� �
I0q;X2 C (29)

Taking into account the boundary conditions (25c) (25f)

Vð0Þ qð0Þ q;Xðl0Þ 0 (30)

ðP CkGS0ÞðV;Xðl0Þ qðl0ÞÞ F (31)

one obtains the deflection and the rotation along the beam:

VðxÞ
F

ðE CP=S0ÞI0

I0x2

2

x3

6

� �
C

Fx

P CkGS0

(32)

qðxÞ
F

ðE CP=S0ÞI0

I0x
x2

2

� �
(33)

The solution is linear with respect to force F, yet non-linear with respect to the pressure.

First, the pressure appears in the denominators of the right-hand sides of (32) and (33).

Second, the reference dimensions l0, S0, and I0 themselves depend on the pressure;

however, further numerical results show that this dependence may not be too strong.

If the internal pressure is zero, these relations give the well-known results for the

Timoshenko beam model. However, contrary to a classical beam, here the inflatable beam

is made of a membrane, so the pressure cannot be equal to zero for the beam not to

collapse. This fact will be discussed below in connection with the validity of the solution.

The influence of the internal pressure on the beam response is clearly shown in the

previous relations: the inflation amounts to strengthen the Young modulus and the shear

modulus. In particular, when p tends to infinity, so do the equivalent material properties

and the deflection and the rotation are identically zero.

In a recent paper [5], a solution for the bending problem was obtained by using the force

formulation. The Taylor expansion of the deflection expression therein with respect to
11



the resultant pressure P shows that the first non-zero term in P is a quadratic term:

VðxÞ
F

EI0

1
P2

ðkGS0Þ
2

� �
I0x2

2

x3

6

� �
C

Fx

kGS0

(34)

On the other hand, the Taylor expansion of relation (32) shows that the first non-zero

terms in P are linear:

VðxÞ
F

EI0

1
P

ES0

� �
I0x2

2

x3

6

� �
C

Fx

kGS0

1
P

kGS0

� �
(35)

Relations (34) and (35) show that whichever of the formulations is used to estimate the

deflection, one obtains the same leading terms which come from the beam and yarn

compliances. Not surprisingly, the additional terms are different due to the very

differences between the force and displacement formulations.

Eventually, it should be mentioned that the deflection of inflated panels obtained in [4]

is identical to (32), provided the Young modulus E in [4] is replaced by ECP/S0. Also,

studies in progress show that the finite element derived in [6] for inflatable panels is

identical to that for inflatable beams, when the same substitution is carried out.

4.2. Limit of validity of the solution

Of course, one has to check a posteriori that the deflection and the rotation given by (32)

and (33) satisfy the small deformation hypothesis required by the linearization process.

Yet there is another condition for the solution to hold: as mentioned above, since the

inflatable beam is made of a membrane, the internal pressure must be high enough. More

precisely, the solution is valid if the principal stresses at any point in the beam are non-

negative. One can check that this amounts to saying that the axial stress SXX at the point

(X 0,Y R0,Z 0) is non-negative:

SXX S0
XX

M

I0

Y
pR0

2h0

FI0

pR3
0h0

R0 R0 4 F%
pR3

0p

2I0

(36)

Recall that the reference length l0 and radius R0 are (increasing) functions of the

pressure p. Inequality (36) shows that given a force F, the internal pressure must be high

enough for the bending solution to be meaningful. There exists a lower bound for the

pressure, referred to as the wrinkling pressure of the beam, below which a wrinkle appears

first at the point (X 0,Y R0,Z 0) and the bending solution is no longer valid.

4.3. Comparison with 3D membrane finite element results

In order to assess the proposed theory, the numerical values of the deflection (32) will

be compared to three-dimensional membrane finite element results. The membrane

computations are carried out using a general purpose non-linear finite element program,

based on the total Lagrangian formulation. The beam is modelled as a three-dimensional

membrane structure; the membrane elements have zero bending stiffness and satisfy the

usual plane stress condition. The three-dimensional constitutive law is the Saint-Venant
12



Kirchhoff one, characterized by the Young modulus E and Poisson ratio n, or equivalently,

by the Lamé constants (l, m).

Discretizing the virtual power principle by the finite element technique leads to a non-

linear equilibrium equation in terms of the displacement field, which is solved using the

Newton iterative scheme. The total tangent stiffness matrix is the sum of (i) the stiffness

due to the internal forces and (ii) the stiffness due to the pressure. As the matter is standard,

let us just make a brief reminder for the internal forces. By denoting NNE the node number

of an element, the element stiffness matrix due to the internal force writes

ci; j2½1; 3NNE�;Ke
ij

ð
element

Na;aNb;b dpqSba Cxp;gxq;d

vSag

vEbd

� �
h0 dS0 (37)

where x denotes the current position of a particle belonging to the reference middle surface

S0 of the membrane; Na, a2[1, NNE], are the shape functions used to define the geometry

as well as the displacement in each element (isoparametric element). All the derivations

are performed with respect to curvilinear coordinates defining the membrane element.

Here, integers a,b2[1, NNE] and p,q2{1,2,3} are related to indices i and j by i 3(a

1)Cp, j 3(b 1)Cq. Implicit summation is carried out over a,b,g,d, 2{1,2}.

Taking into account the plane stress condition S33 0, one readily gets the expression

for the tangent modulus

vSab

vEdg

mðGagGbd CGadGbgÞC
2lm

2m Cl
GabGgd (38)

where Gab the contravariant components of the metric tensor defined on the reference

middle surface.

Also, the path-following and branch switching techniques are included in the numerical

scheme, in order to deal with possible limit and bifurcation points, as seen in the buckling

case below. For membrane structures, an artificial initial stress has to be added in the first

increment. It is, however, removed in the next increments.

It should be emphasized that in the 3D membrane finite element solution, the loading is

applied in two successive stages: first, the beam is inflated to a given pressure p, and then a

force F is applied. At the very beginning of the first stage, the internal pressure is zero and

the beam is in a natural (or stress free) state. On the other hand, the reference

configuration, which corresponds to the beginning of the second stage (before the force F

is applied), is in a pre-stressed state. To clearly distinguish between the two states, we use

index : to denote the quantities in the natural state, as opposed to the usual index o for

quantities related to the reference configuration. Thus, l:, R: and h: designate the

natural length, radius and thickness, respectively; while l0, R0 and h0 the reference

dimensions, which vary as functions of the pressure.
4.4. Numerical results

The numerical computations are performed with three values of natural radius R:,

three values of natural length l: and four values of pressure p, while other quantities
13



Table 1

Data set for numerical computations

Natural thickness, h: (m) 125!10K6

Young modulus, E (N/m2) 2.5!109

Poisson ratio, n 0.3

Correction shear coefficient, k 0.5

Natural radius, R: (m) 0.04 0.06 0.08

Natural length, l: (m) 0.65 0.90 1.15

Pressure, p (N/m2) 0.5!105 105 1.5!105 2!105
(the natural thickness h:, Young modulus E, Poisson ratio n and correction shear factor k)

remain fixed, as shown in Table 1.

As mentioned above, the correction shear coefficient k, introduced after expression (9)

for the shear force T, is taken equal to the usual value for circular thin tubes, i.e. k 0.5.

As the problem is linear with respect to force F, we take F 1N in all the numerical

computations. Fig. 2 shows a typical mesh used in 3D membrane finite element

computations, containing 2401 nodes and 768 eight-node quadrilaterals and six-node

triangles. The reference length l0, radius R0 and thickness h0 are computed as functions of

the internal pressure by using the well-known elastic small strain analytical solution for

thin tubes. For instance, the expression for the reference thickness is:

h0 h:

3n

E

pR:

2
(39)

With the chosen natural radii and pressures, it is found that the reference thickness is

virtually identical to the natural thickness, to within 2% at most. In the case of more

complex geometries, one should use a membrane finite element solution for obtaining the

reference length l0 and radius R0, and an appropriate estimate for the reference thickness h0.

Table 2 and Fig. 3 give the maximum deflection in the cantilever given by (32) as a

function of the length of the beam and the internal pressure, in comparison with the

deflection obtained by 3D membrane finite elements. Given one fixed natural radius R:,

one natural length l:, there are in Table 2 four reference lengths l0, depending on whether

pressure p is 0.5!105, 105, 1.5!105 or 2!105pa, respectively.
Fig. 2. A typical mesh used in 3D membrane finite element computations.

14



Table 2

Maximum deflection in the cantilever given by the inflated beam theory, compared with the 3D finite element

results. All deflections are obtained with force FZ1N.

Natural

length,

l: (m)

Pressure

(N/m2)

Reference

length,

l0 (m)

Reference

radius,

R0 (m)

Reference

thickness,

h0 (m)

Deflection (m)

By the inflat-

able beam

theory

By the mem-

brane finite

element

Diff-

eren-

ce

(%)

Case 1. Natural radius R: Z0:04 m

0.65 5.0!104 6.508!10K1 4.022!10K2
1.246!10K4 1.481!10K3 1.487!10K3 K0.4

1.0!105 6.517

!10K1!10K01
4.044!
10K2!10K02

1.243!10K4 1.462!10K3 1.461!10K3 0.1

1.5!105 6.525!10K1 4.065!10K2
1.239!10K4 1.443!10K3 1.436!10K3 0.5

2.0!105 6.533!10K1 4.087!10K2
1.236!10K4 1.425!10K3 1.413!10K3 0.9

0.9 5.0!104 9.012!10K1 4.022!10K2
1.246!10K4 3.877!10K3 3.886!10K3 K0.2

1.0!105 9.023!10K1 4.044!10K2
1.243!10K4 3.828!10K3 3.820!10K3 0.2

1.5!105 9.035!10K1 4.065!10K2
1.239!10K4 3.779!10K3 3.757!10K3 0.6

2.0!105 9.046!10K1 4.087!10K2
1.236!10K4 3.731!10K3 3.696!10K3 1.0

1.15 5.0!104 1.151 4.022!10K2
1.246!10K4 8.041!10K3 8.054!10K3 K0.2

1.0!105 1.153 4.044!10K2
1.243!10K4 7.939!10K3 7.920!10K3 0.2

1.5!105 1.154 4.065!10K2
1.239!10K4 7.838!10K3 7.791!10K3 0.6

2.0!105 1.156 4.087!10K2
1.236!10K4 7.740!10K3 7.665!10K3 1.0

Case 2 Natural radius R: Z0:06 m

0.65 5.0!104 6.512!10K1 6.049!10K2
1.245!10K4 4.514!10K4 4.554!10K4 K0.9

1.0!105 6.525!10K1 6.098!10K2
1.239!10K4 4.427!10K4 4.426!10K4 0.0

1.5!105 6.537!10K1 6.147!10K2
1.234!10K4 4.342!10K4 4.313!10K4 0.7

2.0!105 6.550!10K1 6.196!10K2
1.228!10K4 4.259!10K4 4.207!10K4 1.2

0.9 5.0!104 9.017!10K1 6.049!10K2
1.245!10K4 1.163!10K3 1.166!10K3 K0.3

1.0!105 9.035!10K1 6.098!10K2
1.239!10K4 1.141!10K3 1.136!10K3 0.4

1.5!105 9.052!10K1 6.147!10K2
1.234!10K4 1.119!10K3 1.108!10K3 1.0

2.0!105 9.069!10K1 6.196!10K2
1.228!10K4 1.098!10K3 1.081!10K3 1.5

1.15 5.0!104 1.152 6.049!10K2
1.245!10K4 2.395!10K3 2.396!10K3 K0.1

1.0!105 1.154 6.098!10K2
1.239!10K4 2.349!10K3 2.336!10K3 0.6

1.5!105 1.157 6.147!10K2
1.234!10K4 2.305!10K3 2.279!10K3 1.1

2.0!105 1.159 6.196!10K2
1.228!10K4 2.261!10K3 2.225!10K3 1.6

Case 3. Natural radius R: Z0:08 m

0.65 5.0!104 6.517!10K1 8.087!10K2
1.243!10K4 1.983!10K4 2.016!10K4 K1.7

1.0!105 6.533!10K1 8.174!10K2
1.236!10K4 1.931!10K4 1.939!10K4 K0.4

1.5!105 6.550!10K1 8.261!10K2
1.228!10K4 1.881!10K4 1.873!10K4 0.5

2.0!105 6.567!10K1 8.348!10K2
1.221!10K4 1.833!10K4 1.811!10K4 1.2

0.9 5.0!104 9.023!10K1 8.087!10K2
1.243!10K4 5.000!10K4 5.021!10K4 K0.4

1.0!105 9.046!10K1 8.174!10K2
1.236!10K4 4.872!10K4 4.847!10K4 0.5

1.5!105 9.069!10K1 8.261!10K2
1.228!10K4 4.749!10K4 4.688!10K4 1.3

2.0!105 9.092!10K1 8.348!10K2
1.221!10K4 4.629!10K4 4.540!10K4 2.0

1.15 5.0!104 1.153 8.087!10K2
1.243!10K4 1.020!10K3 1.020!10K3 0.0

1.0!105 1.156 8.174!10K2
1.236!10K4 9.940!10K4 9.861!10K4 0.8

1.5!105 1.159 8.261!10K2
1.228!10K4 9.690!10K4 9.545!10K4 1.5

2.0!105 1.162 8.348!10K2
1.221!10K4 9.448!10K4 9.247!10K4 2.2
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As shown in Table 2, the values for the deflection obtained by the inflatable beam

theory are in good agreement with that obtained with the membrane finite element. Over

the whole range of the computation, the differences are lower than 2.2%.

As expected, the maximum deflection v increases along with the tube length, and it

decreases as the internal pressure increases. With R: 0:08 m, for instance, v is

multiplied by about five from l: 0:65 to 1.15 m. With R: 0:08 m and l: 1:15 m, v

decreases by about 9% when the pressure varies from 0.5!105 to 2!105.

Relation (36) is a rather intricate non-linear inequality with the wrinkling pressure p as

unknown. A satisfactory approximation can be obtained by making in this inequality

l0 zl: and R0 zR:, which leads to the following simple bound where the right-hand side

is known:

pR
2Fl:

pR3
:

(40)

The wrinkling pressure given by (40) is shown in Table 3, it is also represented in Fig. 3

in dashed lines. For each natural radius R:, one finds three wrinkling pressures

corresponding to three natural length l:.

Eventually, note that the pressure plays a crucial role in the theory: if the term P were

discarded in relation (32), the discrepancy between the beam theory and the membrane

finite element computation should reach 5.4%.

Concerning the role of the correction coefficient k, other numerical computations

show that if k is given very large values so as to cancel the shear effect and

switch from the Timoshenko to the Euler Bernoulli model then the maximum

difference between the beam theory and the 3D membrane finite element

computation reaches 12%.
5. Buckling of an inflatable beam

Consider now the same cantilever beam as in the previous section, and replace the

bending force with an axial compressive force. As in the case of a classical beam,

experiments show that, given an internal pressure, for low values of the compressive force

F there exists a unique solution corresponding to a uniaxial stress state where the beam

remains straight. On the other hand, when force F reaches some critical values, non-trivial

solutions are possible, which correspond to a bent position of the beam. Let us compute

such critical values by means of the linearized equilibrium Eq. (24).
5.1. Buckling force

Here, the equilibrium Eq. (24) and the boundary condition (25a) and (25b) directly

yield the initial axial force N0(X) P F. Hence, Eqs. (26) (27) become:

V;X

P CkGS0

P F CkGS0

q
C

P F CkGS0

ðC is a constant of integrationÞ (41)
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Fig. 3. Maximum deflection in the cantilever. (†) Inflatable beam theory, ( ) membrane finite element, ( $ $ )

wrinkling pressure.
E C
P F

S0

� �
I0q;X2 C

ðP CkGS0ÞF

P F CkGS0

q
P CkGS0

P F CkGS0

C (42)

The boundary conditions (25c) (25f) write:

Vð0Þ qð0Þ q;Xðl0Þ 0 (43)

ðP F CkGS0ÞV;Xðl0Þ ðP CkGS0Þqðl0ÞÞ 0 (44)

Relation (44) gives C 0, whence the differential equation governing the rotation q

about the z-axis

q;xx CU2q 0 (45)

where

U2 FðP CkGS0Þ

ðE C ðP FÞ=SÞI0ðP F CkGS0Þ
(46)
17



Table 3

Wrinkling pressure (N/m2) given by relation (36)

Natural radius R: (m) Natural length l: (m)

0.65 0.90 1.15

0.04 6466 8952 11,439

0.06 1916 2653 3389

0.08 808 1119 1430
It can be checked in usual numerical applications that quantity U2 is positive indeed.

The boundary conditions on the rotation (43) entail the following relations similar to those

obtained in the classical Timoshenko beam theory:

q B sin UX and V
P CkGS0

P F CkGS0

B

U
ð1 cos UXÞ;

Ul0 ð2n 1Þp=2

(47)

Coefficient B remains undetermined and n is an integer, which is taken equal to 1 in the

sequel since we are concerned with the fundamental buckling mode only. From relation

(46), the critical force Fc is obtained as the smallest root of the quadratic equation:

F2 U2I0

S0

F½U2ðE CP=SÞI0 C ðP CkGS0Þð1 CU
2I0=S0Þ�

CU2ðECP=SÞI0ðP CkGS0Þ 0 (48)

For usual numerical values, it is found that Eq. (48) gives one finite root to be

adopted and one virtually infinite to be discarded. Clearly, as the inflation pressure

increases both the Young modulus and the shear modulus, it also raises the buckling

force.
5.2. Limit of validity of the solution

Like the bending case, the buckling force given by (48) is meaningful only if the

internal pressure is high enough. Before buckling takes place, the principal axes of stress at

every point are directed along the cylindrical base vectors, so that the validity condition of

the solution writes

S0
XX O04N0 P FO04F!P p$pR2

0 (49)

where the reference radius R0 itself is a function increasing with the pressure p. Inequality

(49) shows that given an internal pressure, the Fc value obtained from (48) must not be too

high for the buckling solution to be meaningful. If the compressive force is greater than the

upper bound specified by (49), the inflated beam collapses by crushing rather than by

bending buckling. Thus, the bound given by (49) will be referred to as the crushing force

of the inflated beam.
18



5.3. Remark

If the term F2U2I0/S0 in relation (48) is assumed a priori to be negligible, the following

expression gives a good approximation for the critical force:

Fc z
ðE CP=S0ÞI0U2

1 CU2 I0

S0
CU2 ðECP=S0ÞI0

PCkGS0

(50)

By making P 0 in the previous relation, one finds the well-known expression

for the critical force of a classical beam, excepted the term U2I0/S0 in the

denominator of (50). However, the pressure cannot vanish in the inflated beam

according to the existence of the crushing force mentioned in (49). Now, by making

the pressure grow to infinity, relation (50) provides an infinite buckling force, as

expected.

Although the approximation (50) gives Fc values close to those given by (48) for usual

numerical data, it will not be used in the following. Rather, the buckling force will be

computed by means of the complete Relation (48).
5.4. Numerical results

The numerical computation is carried out with the same data as in Table 1 for

the bending case. Table 4 and Fig. 4 give the buckling force Fc as a function of

the length of the beam and the internal pressure, compared with the membrane

finite element solution. As in Table 2, the dimensions (l0,R0,h0) defining the

reference configuration of the beam must be taken as those when the beam is

pressurized.

According to the discussion on the validity of the solution, any critical force

given by the inflated beam theory and greater than the resultant of the pressure on

the ends P ppR2
0 must be rejected. In Table 4, these unacceptable values are

marked out with a cross. As for the membrane finite element computation, it does

correctly detect the crushing forces as bifurcation points. However, it then fails to

determine the bifurcation mode, which would mean that the beam is indeed in

ultimate collapse.

As shown in Table 4, the values for the buckling force obtained by the beam theory

are in good agreement with that obtained with the membrane finite element. Over the

whole range of the computation, the differences are less than 1%. The pressure-

crushing force curves given by relation (49) are shown in Fig. 4 in dashed lines. Since

reference radius R0 varies little with the pressure (see Table 4), these curves are almost

straight lines. If the critical force Fc is found lower than these curves, then the beam

buckles at this value. If not, the beam is crushed down before bending buckling occurs.

As said above, the membrane finite element computation is able to correctly detect the

crushing forces, and yields pressure-critical force curves stemming from the crushing

curves, as expected. However, for the sake of clarity, these portions of curves are not

represented in Fig. 4.
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Table 4

Critical loads Fc of a cantilever inflated tube

Natural

length,

l: (m)

Pressure

(N/m2)

Reference

length, l0 (m)

Reference

radius, R0 (m)

Reference

thickness, h0

(m)

Critical force (N) Diff-

eren-

ce

(%)

By the inflat-

able beam

theory

By the mem-

brane finite

element

Case 1. Natural radius R: Z0:04 m

0.65 5.0!104 6.508!10K1 4.022!10K2 1.246!10K4 ! 2.538!10C2 !

1.0!105 6.517!10K1 4.044!10K2 1.243!10K4 3.669!10C2 3.661!10C2 0.2

1.5!105 6.525!10K1 4.065!10K2 1.239!10K4 3.720!10C2 3.714!10C2 0.2

2.0!105 6.533!10K1 4.087!10K2 1.236!10K4 3.773!10C2 3.772!10C2 0.0

0.9 5.0!104 9.012!10K1 4.022!10K2 1.246!10K4 1.912!10C2 1.911!10C2 0.1

1.0!105 9.023!10K1 4.044!10K2 1.243!10K4 1.939!10C2 1.937!10C2 0.1

1.5!105 9.035!10K1 4.065!10K2 1.239!10K4 1.967!10C2 1.968!10C2 0.1

2.0!105 9.046!10K1 4.087!10K2 1.236!10K4 1.994!10C2 2.001!10C2 0.3

1.15 5.0!104 1.151 4.022!10K2 1.246!10K4 1.178!10C2 1.177!10C2 0.1

1.0!105 1.153 4.044!10K2 1.243!10K4 1.195!10C2 1.195!10C2 0.0

1.5!105 1.154 4.065!10K2 1.239!10K4 1.211!10C2 1.215!10C2 0.3

2.0!105 1.156 4.087!10K2 1.236!10K4 1.228!10C2 1.239!10C2 0.9

Case 2. Natural radius R: Z0:06 m

0.65 5.0!104 6.512!10K1 6.049!10K2 1.245!10K4 ! 5.692!10C2 !

1.0!105 6.525!10K1 6.098!10K2 1.239!10K4 ! 1.141!10C3 !

1.5!105 6.537!10K1 6.147!10K2 1.234!10K4 1.240!10C3 1.238!10C3 0.1

2.0!105 6.550!10K1 6.196!10K2 1.228!10K4 1.266!10C3 1.267!10C3 0.1

0.9 5.0!104 9.017!10K1 6.049!10K2 1.245!10K4 ! 5.694!10C2 !

1.0!105 9.035!10K1 6.098!10K2 1.239!10K4 6.518!10C2 6.502!10C2 0.2

1.5!105 9.052!10K1 6.147!10K2 1.234!10K4 6.656!10C2 6.655!10C2 0.0

2.0!105 9.069!10K1 6.196!10K2 1.228!10K4 6.797!10C2 6.834!10C2 0.5

1.15 5.0!104 1.152 6.049!10K2 1.245!10K4 3.959!10C2 3.952!10C2 0.2

1.0!105 1.154 6.098!10K2 1.239!10K4 4.043!10C2 4.039!10C2 0.1

1.5!105 1.157 6.147!10K2 1.234!10K4 4.128!10C2 4.142!10C2 0.3

2.0!105 1.159 6.196!10K2 1.228!10K4 4.215!10C2 4.252!10C2 0.9

Case 3. Natural radius R: Z0:08 m

0.65 5.00!104 6.517!10K1 8.087!10K2 1.243!10K4 ! 1.011!10C3 !

1.00!105 6.533!10K1 8.174!10K2 1.236!10K4 ! 2.025!10C3 !

1.50!105 6.550!10K1 8.261!10K2 1.228!10K4 2.870!10C3 2.886!10C3 0.6

2.00!105 6.567!10K1 8.348!10K2 1.221!10K4 2.951!10C3 2.954!10C3 0.1

0.9 5.00!104 9.023!10K1 8.087!10K2 1.243!10K4 ! 1.011!10C3 !

1.00!105 9.046!10K1 8.174!10K2 1.236!10K4 1.529!10C3 1.525!10C3 0.2

1.50!105 9.069!10K1 8.261!10K2 1.228!10K4 1.572!10C3 1.571!10C3 0.0

2.00!105 9.092!10K1 8.348!10K2 1.221!10K4 1.616!10C3 1.625!10C3 0.5

1.15 5.00!104 1.153 8.087!10K2 1.243!10K4 9.304!10C2 9.312!10C2 0.1

1.00!105 1.156 8.174!10K2 1.236!10K4 9.569!10C2 9.553!10C2 0.2

1.50!105 1.159 8.261!10K2 1.228!10K4 9.840!10C2 9.869!10C2 0.3

2.00!105 1.162 8.348!10K2 1.221!10K4 1.012!10C3 1.021!10C3 1.0
The buckling force Fc decreases as the tube length increases, and it increases along with

the internal pressure. With R: 0:08 m, for instance, Fc is divided by about three from

l: 0:65 to 1.15 m. With R: 0:08 m and l: 1:15 m, Fc rises by about 10% when the

pressure varies from 0.5!105 to 2!105N/m2. Other computations, which are not
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Fig. 4. Critical loads of a cantilever. (†) inflatable beam theory, ( ) membrane finite element, ( $ $ ) crushing

force.
presented here, show that the influence of the pressure on the buckling force is stronger if a

material with lower Young modulus is chosen. Nevertheless, the strains can then be so

large that a fully non-linear computation is required.

If the pressure were not taken into account, the discrepancy between the beam theory

and the membrane finite element computation should reach 4.1%. Furthermore, if the

correction coefficient k is given very large values (one then reduces to then Euler

Bernoulli model), then the discrepancy reaches 13.4%.
6. Conclusions

The non-linear equations have been derived for the in-plane stretching and bending

of an inflated Timoshenko beam undergoing finite rotations. The corresponding

linearized equations have been obtained and then analytically solved for the bending
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and the buckling cases. New theoretical and numerical results on the buckling of

inflatable beams are displayed. The following facts have been emphasized.

(i) It is crucial to distinguish between the so-called natural configuration where the

internal pressure is zero and the pre-stressed reference configuration around

which the linearization is performed. The dimensions defining the reference

configuration of the beam depend on the prescribed internal pressure.

(ii) The analytical solutions have clearly shown the beneficial effects of the internal

pressure on the bearing capacity of the beam: the inflation amounts to increasing

the material properties.

(iii) The analytical solution for the bent beam only holds if the pressure is greater

the so-called wrinkling pressure. Similarly, the solution for the buckled beam is

valid only if the compressive force is less than the so-called crushing force.

The numerical computations have been performed on nine beam geometries (three

values of natural radius by three values of natural length) and four values of the internal

pressure. The maximum deflections or the buckling forces have been found to be in good

agreement with the membrane finite element values obtained within the three-dimensional

framework.

Further investigations are in progress in order to obtain analytical solutions in dynamics

and derive finite elements for solving complex geometries and loadings of inflated beams.
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