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AVALANCHE STATISTICS OF INTERFACE CRACK PROPAGATION IN

FIBER BUNDLE MODEL: CHARACTERIZATION OF COHESIVE CRACK

By Arnaud Delaplace,1 Stéphane Roux,2 and Gilles Pijaudier-Cabot3

ABSTRACT: This paper considers a model of crack propagation taking place at the interface between a rigid
support and an elastic plate. The interface is modeled using a fiber bundle model (i.e., describing a damage
behavior using a discrete set of elastic brittle elements having a random strength). This paper studies the fluc-
tuations of the force required to propagate the crack along the interface. The statistics of avalanches, defined as
a series of elements that are broken simultaneously under a load that decreases with the crack advance, are
studied numerically and analytically. Local fiber breakage kinetics is related to a correlation length, which sets
the size of a fracture process zone.
INTRODUCTION

Damage in quasi-brittle materials such as concrete is due to
the accumulation of microscopic crack nucleation, propaga-
tion, and most importantly, arrest. Arrest of microcracks is an
essential feature to produce progressive damage; otherwise, a
brittle behavior would result. To allow for microcrack arrest,
it is therefore important to deal with material heterogeneities.
In spite of the importance of this factor, most damage ap-
proaches in continuum mechanics treat the solid as homoge-
neous and little attention is paid to the detailed material mi-
crostructure producing the progressive damage behavior. Only
the mean effects of the microcrack nucleation, propagation,
and arrest are considered. The effects that are neglected (i.e.,
the intrinsic heterogeneity of the solid) may, however, play a
role, and this study illustrates some of these effects in terms
of the fluctuations of the macroscopic response due to the ex-
istence of an underlying heterogeneity.

An experimental example illustrates this discussion. Fig. 1
shows the measured force-displacement relation for a four-
point bending test performed with a steel-fiber reinforced–
concrete specimen. Different curves corresponding to different
samples of nominally identical material and geometry are
shown. One observes a rather large variability of the response.
This noise is not an artifact of the measurement device but
really reflects the material behavior. It renders difficult the
identification of a constitutive behavior law from such a test.
Moreover, considering one single curve, one observes a noisy
response consisting in abrupt drops of the force at fixed strain.
Elucidating the statistical feature of such a ‘‘noise’’ is one of
the objectives of this work.

Another effect that may result from this heterogeneity is the
size effect (i.e., size dependence of the macroscopic strength),
a crucial property when scaling of structural response has to
be performed. However, in the particular model considered
hereafter, such a size effect does not exist.

This paper will mainly focus on the fluctuations of the mac-
roscopic response, in a geometry such that a usual macro-
scopic modeling will produce a steady response. This partic-
ular choice will allow one to study the fluctuations directly
and to emphasize the effective noise, which would be obtained
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FIG. 1. Response of Four-Point Bending Test on Fiber-Reinforced
Concrete (50-cm-long Specimens with 8-cm Square Section; Points Rep-
resent Force Peak for Three Curves; Curves Show Variability of Response
for Nominally Identical Specimens and Local Fluctuations of Force Dis-
placement Curves

experimentally, in the form of ‘‘avalanches’’ (i.e., a series of
microcrack events that are produced quasi-simultaneously un-
der constant conditions of loading to be specified more pre-
cisely below). The notion of avalanches is here borrowed from
a large body of works in statistical physics where this notion
was proven to be useful in the analysis of various critical sys-
tems (Hemmer and Hansen 1992; Paczuski et al. 1995; De-
laplace et al. 1999a). Those avalanches depend not only on
the total statistical distribution of critical loading but, more
importantly, on time (or displacement) correlations.

There are few models that can address such questions with-
out having to rely heavily on numerical simulations. Among
these, one of the most intensively studied is the fiber bundle
model introduced by Daniels (1945). It consists of a series of
elastic brittle ‘‘fibers’’ loaded in parallel between two rigid
bars. The advantage of this simple model is that almost all of
its properties can be solved for analytically. Moreover, it has
been extended to account for a wide variety of more complex
phenomena, such as time-dependent failure. The fact that the
fibers are loaded through two rigid parallel bars implies that
all fibers are subjected to the same displacement; thus, the load
is always equally shared by all the surviving fibers. This is
called the global load sharing rule. The opposite limit of a
very compliant interface has been introduced by Harlow and
Phoenix (1991) and gives rise to a very different behavior
where the system behaves as macroscopically brittle. An in-
termediate case, taking into account a coupling of the fibers
to a semi-infinite elastic medium, has more recently been stud-
ied by Delaplace et al. (1999a). This last case gives rise to a



homogeneous damage up to a localization point where the
most unstable case has a wavelength equal to the system size,
provided the elastic block is not too compliant. A major con-
clusion from this study was that, at the inception of interface
cracking, there is no such thing as a finite size fracture process
zone. If a process zone of finite size has to be expected, it
must develop after the inception of cracking, in the propaga-
tion regime that is of concern in this paper.

Studying the original Daniels’ model, Hemmer and Hansen
(1992) have worked out analytically the statistics of ava-
lanches for this system. This is one of the few works that really
extracted information about the fluctuation of the force-dis-
placement characteristics for this system. The same results can
immediately be transferred to the case of a more realistic load
transfer mechanism, such as the case of an elastic block. The
statistics of avalanches has also been extended to the local load
sharing rule (limit of extremely compliant coupling) in Kloster
et al. (1997). The aim of the present study is to extend the
study of these avalanches to a system derived from the fiber
bundle model, where fibers are connected to a deformable me-
dia and where the geometry is suited to an inhomogeneous,
but steady, state of loading. The geometry mimics the propa-
gation of a crack front at the interface between a rigid interface
and a deformable plate (or rather, a beam in two dimensions).
It can be looked at as a schematic model for mode I crack
propagation in a quasi-brittle material (the rigid side of the
interface representing an axis of symmetry). The purpose of
introducing a nonlinear interface is to concentrate cracking
onto a specific region, a line in the present approach, the same
as in a cohesive crack model.

In the context of a steady-state crack propagation, this prob-
lem has been studied with different approaches, motivated by
an experimental study of the roughness of crack fronts by
Schmittbuhl and Måløy (1997) and Delaplace et al. (1999b).
Discrete fuse networks have been studied by Zapperi et al.
(2000) to mimic this situation, considering the steady-state re-
gime. The problem of nucleation of such interfacial cracks
using a variety of load sharing rules has also been developed.
However these studies were focused on either the global av-
erage behavior or the morphology of the crack front. The focus
here will be different in the sense that one concentrates on the
characterization of the fluctuations of the force-displacement
curve.

This paper is organized as follows. First, the model is de-
fined and a mean-field version of it is introduced in which the
profile of imposed displacement along the interface is fixed.
The statistical distribution of the loading is obtained simply in
this limit and is shown to converge to a Gaussian as the size
of the ‘‘process zone,’’ as compared to the microstructural size,
diverges. Then, ‘‘avalanches’’ are introduced and their statis-
tics studied numerically and analytically in the framework of
the simplified model. Finally, the numerical study of the com-
plete model is reported, in which the displacement at the in-
terface results from beam deformation. The results are shown
to be similar to those obtained for the simplified model.
2

ZIP MODEL

General Case of Elastic Coupling

First recall the definition of the Daniels’ model (1945). A
collection of elastic brittle fibers are loaded in parallel between
two rigid bars. Each fiber has a perfectly brittle behavior with
the same stiffness k. However, the strength of the fibers are
random uncorrelated variables. The loading is an imposed dis-
placement, and the response is the global force-displacement
curve.

In the model, the fibers are connected to a semi-infinite 1D
beam on one side and a rigid substratum on the opposite side.
One could also consider another elastic beam instead of the
rigid part (even having a different stiffness) without any
change in the formulation of the problem. A normal displace-
ment is imposed at one point of the elastic beam, which may
move along the interface, as if a wedge was pushed in a double
cantilever geometry. Fig. 2 illustrates the model. In the nota-
tion, the position of fiber i is xi and its extensional displace-
ment is denoted by yi. The spacing between fibers is set to 1
(i.e., xi11 2 xi = 1), thus defining a fixed microstructural size.
The maximum extension a fiber can stand before breaking yc

is chosen randomly, as mentioned above. This distribution is
uniform in the interval [0:1] in the analytical part of this study,
whereas other distributions could also be considered in the
simulations. A fiber that is strained up to its critical extension
is broken instantaneously. The normal displacement imposed
on the beam is such that all fibers under this extension are
broken with a probability of 1.

The interface consists basically in three parts. Under the
wedge, all fibers are broken. This constitutes the crack by it-
self. Ahead there is a ‘‘process’’ zone where a finite fraction
of fibers are broken. Finally, moving away from the crack tip,
broken fibers become more scarce and their influence can be
neglected. There is no clear-cut separation in the last two
regions; however, the probability of fiber rupture ahead of the
crack tip decays exponentially and thus can be used to define
the extension of the process zone. The terminology for the
fracture process zone is borrowed from Hillerborg et al.
(1976), who studied fracture in concrete with the help of a
cohesive crack model. They assumed that the fracture process
zone was a region of intense damage with the material, al-
though aggregates bridge the crack and allow for stress trans-
fer across the crack.

Imposed Displacement Profile

A simplified model where the displacement profile along the
upper beam is imposed will be implemented in the analytical
study. The interface opening has an exponential shape, which
captures some of the features of a beam deflection (as will be
seen later). For any abscissa x, the profile y is given by

(U(t) 2 x
y(x) = exp (1)S Dj
FIG. 2. Schematic Representation of ‘‘Zip’’ Model (Point Where Displacement Is Imposed May Move Along x-Axis)



where the length scale j is considered as a fixed parameter;
and U = time-dependent horizontal displacement of the edge.

The major advantage of this simplifying assumption is that
it allows derivations of closed-form expressions for the load-
ing while it is not too far away from the exact beam deflection.

SIMPLIFIED ANALYTICAL MODEL

Mean Behavior and Fluctuations

The total force exerted on the wedge is simply the sum of
all fiber contributions

F = f (U ) (2)iO
i

where each individual force fi is

f (U ) = ky(x , U ), if y(x , U ) < y (x) (3a)i i i c

f (U ) = 0, if y(x , U ) > y (x) (3b)i 1 c

In the case of a uniform distribution in the interval [0:1] of
the breaking extension of individual fibers, one may compute
the average force in fiber i

U 2 i U 2 i
^ f (U )& = k 1 2 exp exp (4)i F S DG S Dj j

for the ith fiber at a location such that i $ U (the fiber spacing
is set to 1) and ^ fi& = 0 otherwise. Hence, the mean total force
is

^ F(U )& = k exp(d(U )/j) exp(2i/j) 2 k exp(2d(U )/j)O
i

ka
? exp(22i/j) = [exp(d(U )/j)(1 1 a)O 21 2 ai

2 exp(2d(U )/j)a] (5)

where d(U) = U 2 int(U ) (i.e., the noninteger part of U); and
a [ exp(21/j). Fig. 3 shows the resulting force as a function
of U. One observes a small amplitude component due to the
discrete nature of the fiber distribution. However, the ampli-
tude of the latter modulation is very small and typically it is
negligible when compared to the fluctuation of the force, when
the loading length scale is large enough.

For integer valued displacement d(U) = 0, and for large j,
the mean force takes its minimum value and can be approxi-
mated by the following expression [from (5)]

j 1
^F& ' k 1 2 (6)S D22 6j

The maximum force is obtained for displacement such that

d^F(U )&
= 0

dd(U)

and leads to

exp(1/j) 1 1 1 1
d(U ) = j log ' 1 (7)S D2 2 8j

Substituting the last expression in (5) results in the peak mean
force

j 1
max^F(U )& ' k 1 1 (8)S D22 12j

and thus relative peak-to-valley difference vanishes as 1/(4j2)
for large j. Therefore in the following, one may disregard this
systematic variation and only consider the case of integer dis-
placement U.

The variation of the total force can also be obtained in a
3

FIG. 3. Evolution of Mean Total Force (Bold Curve) Scaled by j and
Shifted by 21/2 as Function of Displacement U (j Has Been Set to 10,
k to 1; Long Dashed Lines Are Boundary of ^F &-Values That Are Ob-
tained from Eqs. (6) and (8); Thin Curve Represents Evolution of Mean
Force for j = 20 and Shows How Fast Variation with j Decreases)

similar way, thanks to the fact that the threshold forces for
different fibers are uncorrelated. The variance of the total force
is simply the sum of the variances of the fi, and thus using

2 2 2 2 2 2 3^ f & 2 ^ f & = k y [(1 2 y) 2 (1 2 y) ] = k y [1 2 y] (9)i i

one obtains for the total force variance s2(F )
`

2 2 2 2s (F ) [ ^F & 2 ^F& = k exp(3d(U )/j) exp(23i/j)F O
i=1

`

2 exp(4d(U )/j) exp(24i/j)O G
i=1 (10)

hence
3 4a a2 2s (F ) = k exp(3d(U )/j) 2 exp(4d(U )/j)F G3 41 2 a 1 2 a

(11)

Considering only integer value U
3a2 2s (F ) = k F G2 3 4 5(1 2 a)(1 1 2a 1 3a 1 3a 1 2a 1 a )

(12)

In the limit of a large j, the above expression reduces to
2jk 12s (F ) ' 1 2 (13)S D212 j

Therefore the relative standard deviation of the total force will
approach s(F )/^F& → for j >> 1.1/ 3jÏ

The entire distribution of the total force can be obtained
analytically in the context of this simplified model. In the limit
of a large length j, one can simply observe that F is given by
a sum of statistically independent random variables and the
law of large numbers applies. Consequently, F will have a
Gaussian distribution. Thus the above computed average and
variance are sufficient to specify entirely the distribution.
Keeping only the leading terms, one can write

26 3(2F 2 kj)Ï
p(F ) = exp 2 (14)S D22k jpjkÏ

Correlations

The above section gave some information concerning the
total force distribution. To characterize the evolution of the



signal F(U), one needs to work out the correlations in this
function. More precisely, knowing the force F(U ), the question
is, What can be inferred for F(U 1 DU)?

One can get some insight into this question by computing
the expectation value of dF(DU) = F(U 1 DU) 2 F(U ). The
force difference can again be written as a sum of independent
statistical variables

dF = df (15)jO
j

where j extends over the unbroken fibers after the crack tip U.
The random variables dfj assumes the following values:

df = k(y (U 1 DU) 2 y (U)), with probability (1 2 y (U 1 DU))j j j j

(16a)

df = 2ky (U ), with probability (y (U 1 DU ) 2 y (U )) (16b)j j j j

df = 0, with probability y (U ) (16c)j j

where the last condition has been written so that the sum can
extend over all fibers for j > U 1 DU. One has to consider
also the fibers in the range U < j < U 1 DU, which are broken
with probability 1, but were surviving under the displacement
U with probability 1 2 yj(U). At the steady-state value of the
force, ^dF& = 0 by definition. The expectation value of ^dF 2&
can thus be obtained by summing up the variances of the dfj

2 2^dF & = (1 2 exp(2DU/j))s (F ) (17)

Thus the squared force difference increases first linearly with
DU and saturates to a constant value equal to twice the vari-
ance of the force. The interpretation of this property is straight-
forward: the total force is the sum of the order of j uncorre-
lated random variables. Thus over this length scale, F(u)
behaves as a random walk. However, for larger distances, the
fluctuations of F become uncorrelated.

As a consequence of this observation, note that the typical
variation of the force over a short displacement DU scales as

Consequently, the fluctuating part of the signal be-DU.Ï
comes nondifferentiable when the microstructural size goes to
0, keeping j fixed (note that this construction implies a redef-
inition of the physical scale because one chose here to measure
distances in terms of the microscopic distance, the fiber sep-
aration distance). It is important to stress that such a conclu-
sion has already been shown for the fiber bundle model in the
case where a global load sharing rule was used and thus for a
homogeneous macroscopic loading.

If the limit of a bundle with an infinite number of fibers is
expected to represent a continuum response, the fact that the
constitutive response is not differentiable is a striking depar-
ture from traditional assumptions. In fact, it means that when
this continuum limit is considered, a smoothing of the consti-
tutive response is performed at the same time so that the re-
sponse becomes differentiable. It follows that upon taking this
limit, the information contained in the fluctuations of the re-
sponse for large-size systems is lost. As will be seen in the
next section, this information enlightens the crack propagation
regime and yields a parallel between the fiber bundle model
and cohesive crack models in the context of this study.

Avalanches

There exists various definitions of avalanches. The first one
is the most natural, consisting of fixing a level of force and
computing the distance DU over which the crack can propa-
gate. The avalanches are characterized by their statistical dis-
tribution, p1(DU, F).

To give a global characterization of the signal without con-
sidering a specific value of the force, one may consider the
above avalanches for any crack length U such that a fiber
4

FIG. 4. Avalanche Distribution for Zip Model with Constant Beam
Shape (Active Area Size j Are 100 (V), 1,000 (3), and 10,000 (x);
Dashed Line Is Guideline with Slope of 21.5; Continuous Lines Are
Guideline with Slope of 22.05)

would break and then average over all breaking events. These
avalanches are the ‘‘forward’’ avalanches. A similar construc-
tion can be performed for avalanches ending at each fiber
breaking event. They correspond to a similar construction as
the previous ones after reversing the arrow of time. They are
called ‘‘backward’’ avalanches. In some cases such as invasive
percolation, these two statistics have very different properties.
Fig. 4 shows the computed forward avalanche distribution for
the present model where a fixed displacement profile is set.
Three values of j have been used. The first one is j = 100
(V) with 108 broken fibers, the second one is j = 1,000 (3)
with 2.107 broken fibers, and the third one is j = 10,000 (x)
with 5.106 broke fibers.

The main observation is that the distribution exhibits two
distinct behaviors according to the value of the avalanche size
D with respect to a crossover value D*. The first regime, D <
D*, is a power law p1(D) } with an exponent2t1D

t = 1.50 6 0.05 (18)1

The second regime, D > D*, is also a power law but with a
different exponent t2

t = 2.05 6 0.10 (19)2

Fits to both of these power laws are plotted in Fig. 4. Finally,
the crossover scale D* scales as j: the graph used the scaled
variables D/j and scaled distribution to show that thet1j p (D)1

three curves collapse onto a single master curve. This data
collapse shows that, indeed, the crossover scale D* is propor-
tional to j.

One can easily understand the value of the two exponents.
The first one corresponds to a regime where the force versus
crack length U displays correlations similar to a random walk.
The forward avalanche, in this case, can be interpreted as the
time required for a random walk to return to the origin. This
well-known statistical problem is indeed a power law of ex-
ponent 3/2 in agreement with the first regime. Note that this
behavior is exactly the one that has been established for the
global load sharing fiber bundle with rigid boundaries (Hem-
mer and Hansen 1992; Hansen and Hemmer 1994), using also
a mapping onto a random walk problem.

For large avalanches, D > D*, the forces are uncorrelated.
One thus may resort to this simple case to work out the av-
alanche statistics: let h(t) be a random uncorrelated noise,
with a distribution p(h) and cumulative distribution P(h) =



FIG. 5. Force Signal (Thin Line), When Followed with Loading De-
vice Having Finite Stiffness K, Gives Access to Bold Curve Envelope,
Where Decreasing Parts Have Slope 2K

*h p(x) dx. Starting at a given value of h = h0, the probability
that an avalanche is >D is Q(D, h0) = P(h0)

D because the dif-
ferent h values are uncorrelated. The cumulative distribution
P1 of forward avalanches is obtained from the integration of
the above Q distribution over all starting points of distribution
p(h), hence

1
1D DP (D) = P(h ) p(h ) dh = u du = (20)1 0 0 0E E D0

where one has used D >> 1. The avalanche distribution p1 is
obtained from the derivative of the cumulative distribution and
leads to the power law p1(D) = D22 for all distributions p(h).
In this problem, the large avalanches correspond to this case
and, indeed, one observes an exponent t2 = 2.

One sees in this particular example that a simple statistical
analysis performed on the force signal allows one to extract
the correlation length j } D* without knowing it beforehand.
This correlation length defines the size of the fracture process
zone.

There is another definition of avalanches that might be eas-
ier to handle in experimental studies. In the above construc-
tion, one needs to know the entire signal F(U ). This requires
an infinitely stiff mechanical testing device. In contrast, if a
finite stiffness K is used, the test would not be able to follow
the characteristic of the system unconditionally. After a local
maximum (U0, F0), U would jump directly to a new position
U1 such that F(U ) < F0 2 K(U 2 U0), for U0 < U < U1, and
F(U1) > F0 2 K(U1 2 U0). Such a construction defines biased
avalanches characterized by the value of the stiffness K. Fig.
5 illustrates these avalanches.

Fig. 6 shows the statistical distribution pb(D, K) obtained for
different values of the stiffness K. The distribution has been
scaled by whereas the avalanche size has been scaled by2t1K ,
K 2. The avalanches are power-law distributed up to Dc with
an exponent t3 ' 1.5. One has seen above that the fluctuating
part of the force signal had a self-affine character with a typical
variation over a scale DU proportional to dF = ADU1/2. Thus,
at small scales, the fluctuations dominate whereas at a large
avalanche size, the bias takes over the fluctuations. Thus there
is a characteristic scale for the largest avalanche size, such that
KDc = A(Dc)1/2; hence

c 22D } K (21)

For smaller sizes, the bias can be neglected; hence, the biased
statistics are again similar to a first return time distribution for
a random walk. Hence a power law of exponent 3/2 is ex-
5

FIG. 7. Statistical Distribution of Biased Avalanches20.5t2K p (D)b

Scaled by Characteristic Size K 0.5D (Correlation Length Is j = 1, and K
= 100, 1021, 1022, and 1023; Small Size Avalanches Deviate from Data
Collapse Because They Involve Correlations; However, for D > j, All
Data Points Fall on Unique Curve, Which Is Signature of Uncorrelated
Signal; Power Law of Exponent 22 Is Shown as Continuous Line)

FIG. 6. Statistical Distribution of Biased Avalanches Scaled22t1K p (D)b

by Characteristic Size K 2D (Correlation Length Is j = 500, and K Varies
from 0.08 to 0.14 by Steps of 0.02; Power Law of Exponent 23/2 Is
Shown as Dashed Line)

pected consistently with the numerical results. This regime is,
however, valid only for the case where K 22 << j. Otherwise,
above j, avalanches cannot be distributed in a similar way
because the force signal becomes uncorrelated. Solving for the
case of an uncorrelated signal with a Gaussian distribution,
one finds that the avalanches are uniformly distributed up to
a maximum scale depending on K as Dc } K21/2. Fig. 7 illus-
trates this scaling behavior for a small value of j.

Finally, the distribution of backward avalanches has been
checked. One finds the same distribution as for forward ava-
lanches, with the same two power laws. Superposition of for-
ward and backward avalanche distributions is shown in Fig.
8. This result may appear as natural; however, in other models
(Paczuski et al. 1995) (e.g., invasive percolation), a very dif-
ferent behavior is obtained for the two definitions. In this case
though, the random walk analogy as well as the case of un-
correlated noise signal both support such a symmetrical be-
havior.



FIG. 8. Comparison of Forward (V) and Backward (3) Avalanches
(Computations Have Been Done with j = 100)

MODEL WITH DEFORMABLE BEAM

Mean Deflection of Beam

One now comes back to the complete model where the
beam is not assumed to have a constant displacement profile.
Rather one wishes to compute here the average shape of the
deformed beam. Introducing E and I, the young modulus and
transverse geometrical inertia of the beam, respectively, one
can write, in the spirit of a continuum modeling (i.e., for length
scales much larger than the fiber separation), an equation for
the mean deflection of the beam y(x)

4d y(x)
EI = 2ky(x)(1 2 Y(x)) (22)4dx

where

Y(x) = max (y(x9)) (23)
x $ x9

This equation holds for a uniform distribution of critical fiber
extension between 0 and 1, and for y < 1, whereas d 4y/dx4 =
0 for larger y. The boundary conditions are y(`) = dy(`)/dx =
0, y(0) = 1 (imposed displacement), and d 2y(0)/dx2 = 0 (no
torque being applied at the loading point). The reason one has
to distinguish between y and Y is that the deflection is not a
monotonous function of x. Because damage is irreversible, one
has to compute the maximum damage having been met by the
corresponding section of fibers.

One does not know the analytical solution to this problem;
however, one can see that the quadratic nonlinear term be-
comes important at a large distance from the origin. Thus the
asymptotic shape will have the following expression:

2x/jy(x) = Ae cos(x/j 1 f) (24)

where
1/4

EI
j = 2 (25)Ï S Dk

The oscillatory component is the one that makes the deflection
nonmonotonous and thus requires the distinction between y
and Y. Omitting this oscillatory component and the nonlinear-
ity, one retrieves the exponential decay that was imposed in
the simplified version of the model. A numerical integration
based on a relaxation method has been done, and the results
are shown in Fig. 9.
FIG. 10. Avalanche Distribution for Zip Model with Beam Deforma-
tion (Two Beam Stiffnesses Are Considered; Dashed Line Is Guideline
with Slope of 21.5; Continuous Lines Are Guidelines with Slope of
22.1)

FIG. 9. Plot of Mean Deflection y(x) as Function of Distance x to Im-
posed Displacement (Dotted Line Is Mean Deflection for Undamaged
Interface [Y(x) = 0]; Variables are k = 1, j = 0.5)

Avalanches

The problem requires a much longer computation time com-
pared to the simplified model because of the larger number of
degrees of freedom. For numerical convenience, only the pro-
cess zone is dealt with, thus neglecting the presence of a few
broken fibers ahead of this region. However, this zone is taken
into account in the computation by introducing a boundary
condition at the end of the process zone that represents an
infinite beam connected to the substratum through intact fibers.
This involves two relations between the derivatives of order
0–3 of the deflection function y(x). The length of the domain
considered numerically is set equal to j.

Fig. 10 shows forward avalanche distributions for two stiff-
nesses ratios and hence two values of j. In both cases the
previous results are recovered (i.e., two power laws with ex-
ponents t1 = 1.50 6 0.05 and t2 = 2.1 6 0.15). One checks
the reliability of the measure by plotting and evaluating the
mean shape of the beam during crack propagation. The results
are very close to the simplified model. Hence, the fluctuation
analysis from the force-displacement response, an accessible
experimental information, provides information on the exis-
tence of a well-defined length scale related to the fracture pro-
cess zone in the interface.
6



CONCLUSIONS

The microstructure of heterogeneous materials plays a cru-
cial role in the rupture process. This paper introduces a model
of a 1D crack propagation that includes randomness. Fluctu-
ations that are encountered on the force-displacement response
are studied through an avalanche distribution analysis. Two
cases are considered. First, a simplified model with a pre-
scribed displacement opening profile is considered along the
interface and it could be solved analytically. Second, a more
complete model, where the coupling is done between a flexible
beam and the fiber bundle, is considered. The latter was stud-
ied only through numerical simulations. Analytical predictions
are supported by the numerical result of the simplified model.
The main conclusions are

• Although the response shows large fluctuations, an anal-
ysis of the avalanche distributions provides information
on a redistribution length that scales the fracture process
zone.

• In the limit of an interface of an infinite size, the analyt-
ical model yields a response that is nondifferentiable. It
cannot be compared with the smooth response expected
in the context of a continuous interface. Therefore, the
fluctuations contain important information on the interface
fracture process, which is lost in a continuum approach.

• Two regimes are found on the avalanche distributions.
The first one is a power law with an exponent 1.5, which
can be mapped onto a random walk. It concerns ava-
lanches whose sizes are smaller than the fracture process
zone. The second one is also a power law with an expo-
nent 2, which corresponds to an uncorrelated noise. It
governs large avalanche sizes.

• A ‘‘biased avalanche’’ has been introduced, which takes
into account a finite stiffness of the loading device or of
the system itself. Similar to the previous definition of av-
alanches, it exhibits two different regimes depending on
the stiffness and on the size of avalanches.

• The crossover avalanche size between the two regimes
gives natural access to the extent of the fracture process
zone. This information may prove to be a precious ex-
perimental tool to provide access to this a priori unknown
scale.
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