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Assessment of ROC curves for inspection of random fields

F. Schoefs, A. Clément, A. Nouy

Research Institute in Civil Engineering and Mechanics (GeM), Nantes Atlantic University, Ecole Centrale Nantes, UMR CNRS 6183, 2 rue de la Houssiniére,

B.P. 92208, 44322 Nantes Cedex 3, France

Inspection by non-destructive testing (NDT) techniques of existing structures is not perfect and it has
become a common practice to model their reliability in terms of probability of detection (PoD), probabil-
ity of false alarms (PFA) and receiver operating characteristic (ROC) curves. These results are generally the
main inputs needed by owners of structures in order to achieve inspection, maintenance and repair plans
(IMR). The assessment of PoD and PFA is even deduced from intercalibration of NDT tools or from the
modelling of the noise and the signal. In this last case when the noise and the signal depend on the loca-
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tion on the structure PoD and PFA are spatially dependent. This paper presents how to define PoD and PFA
when damage and detection are stochastic fields or spatially dependent. Corrosion of coastal structures in
harbours is considered for illustration and ROC curves are deduced. Identification of probability density
functions on polynomial chaos is shown to be more suitable than predefined probability distribution

functions (pdf) in view of fitting noise and signal plus noise distributions.

1. Introduction

The actual challenge of the maintenance of a set of structures
(harbours, bridges, etc.) needs to find the optimum balance be-
tween the increasing number of deteriorating structures and the
limited funds available for their upkeep [1-7]. The demolition
and replacement of large engineering structures results in high
economic and environmental costs, further increasing the need
for efficient management plans to maintain these structures [8-
10]. Reassessment of existing structures needs to up-date materi-
als properties. In a lot of cases, on site inspection are needed and
in some cases visual inspection is not sufficient. For example non-
destructive-techniques (NDT) tools are required for the inspection
of coastal and marine structures where marine growth acts as a
mask or underwater zone gives harsh condition of visual inspec-
tion. In these fields, the cost of inspection can be prohibitive and
an accurate description of the performance on-site of NDT tools
must be provided. During the last decade, the concepts of proba-
bility of detection (PoD), probability of false alarm (PFA) [11],
probability of indication [12-14] have been proved to be suitable
when performing risk-based-inspection [15-18] or management
of networks [19]. They allow introducing the cost/benefit of
NDT tools in a complete risk analysis. The paper focuses on their
modelling in the case of inspection on structures. The probability

of detection is closely linked to the level of the detection thresh-
old and the size of the defect. When this size of defect is ran-
domly spatially distributed, then, the probability of detection is
spatially dependent. Knowing the distribution of the noise on
measurements due to the decision-chain “physical measure-
ment-decision on defect measurement-transfer of information”
[20], the harsh environment of inspection and the complexity of
the protocol (link diver-operator), the probability of false alarm
can be defined. Then for a set of defects and given NDT tool
and operator, couples (PoD;PFA) called receiver-operating-charac-
teristics (ROC) can be assessed. Mainly in the case of very harsh
conditions of inspection or of several diver experiences, ROC
curves that link the probability of detection and the probability
of false alarm are plotted. First we review in this paper the basic
definitions of PoD, PFA and ROC. The way to introduce these con-
cepts as decision aid tools is focused on. Then these definitions
are extrapolated in the case of spatially dependent deterioration
stochastic processes. Finally to illustrate these concepts, the paper
focuses on generalized corrosion on steel-piles in coastal area.
First, more than 1000 measurements of residual steel thickness
are analyzed. They have been obtained from an ultrasonic NDT-
tool on a quay in order to analyze the probability distribution
function that gives the best fit of defect distribution.

Moreover, a particular protocol during inspection allows defin-
ing and assessing the noise on measurements and discussing its
spatial dependency. Two models of noise are suggested: the first
one consists in considering one independent random variable by



level of inspection and the second one consists in gathering data by
area which leads to get one independent random variable by zone
(tidal zone and underwater zone).

2. Probabilistic modelling of inspection results based on
detection theory

2.1. Theoretical background and basic concepts for PoD and PFA

The most common concept which characterizes inspection tool
performance is the probability of detection (PoD). Let a4 be the
minimal defect size, under which it is assumed that no detection
is done. Parameter a is called detection threshold in the following.
Thus, the probability of detection is defined as:

PoD =P(d > ag) (1)

where d is the measured defect size. The detection threshold agisa
deterministic parameter or a random variable. In the case where a4
is deterministic, this definition implies that PoD is a monotonic
decreasing function of a,. Detection theory gives the theoretical
background for defining PFA, once given probability density func-
tions figna and froise, respectively of (signal+noise) and noise. Noise
depends on environmental conditions, human interference and the
nature of what is being measured. Then PoD and PFA have the fol-
lowing expressions (2) and (3):

+

PoD = [ fgna(d)dd 2)

aq

+00
PFA = fnoise(rl)drl (3)
aq
Fig. 1 illustrates the probability density function and computa-
tion of PFA and PoD for a given detection threshold in the case
where (signal+noise) and noise are normally distributed.

2.2. Building of receiver operating characteristic curve

For a given detection threshold the couple (PFA, PoD) allows
defining N.D.T performance; this is the receiver operating charac-
teristic (abbreviated R.0.C.). This couple can be considered as coor-
dinates of a point in the plane (PFA, PoD). If we consider that a4
takes values in the range | — oo; +oof, this point belongs to a curve
called R.O.C curve. It is a parametric curve with parameter aq in
Egs. (2) and (3). RO.C. curve plotted on Fig. 2 is computed with
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Fig. 1. Illustration of PoD and PFA (signal and noise normally distributed).
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Fig. 2. Receiver operating characteristic curve.

the pdf presented on Fig. 1 corresponding to normal distributions.
From a theoretical point of view, this is a curve corresponding to a
monotonically increasing function, always lying above diagonal
(PFA = PoD), and whose first derivative is closely linked to the sen-
sitivity to the receiver [21,22]. The diagonal line running from low-
er left to upper right (curve “PFA=PoD”) is the line of no
“performance”, since in that case the inspection result is the same,
no matter what the observation is [13].

Looking for the best detection performances, the probability of
detection should always take larger values than the probability of
false alarm (low noise sensitivity). We have then: PoD > PFA.
When reading ROC curves, one must keep in mind that the proba-
bility of false alarm depends on the noise and detection threshold
only. It does not depend on defect size except if the noise depends
on defect size itself. The operator adjusts the device for example to
detect smaller defects when the current adjustment does not give
any signal. Probability of detection is a function of the detection
threshold, the defect size, and the noise. Thus, for a given detection
threshold, the probability of false alarm is a constant, but the prob-
ability of detection is an increasing function of the defect size. ROC
curve is a fundamental characteristic of the NDT tool performance
for a given defect size. Perfect tool is represented by a ROC curve
reduced to a single point whose coordinates are: (PFA, PoD)=
[0,1]. The distance between this “best performance point” and
the ROC curve is a measure of the NDT ability [11]. Different theo-
retical ROC curves, corresponding each one to different signal/
noise ratio of NDT tool are presented in [13].

When assessing a ROC curve, the challenge is then to get dis-
crete values for PFA and PoD in given conditions [23,24] or to mod-
el the (signal+noise) and noise distributions on-site. We follow
here the second approach. Note that the PFA is named PFI (Proba-
bility of False Indication) too. The definition of discrete values for
PFI is generally expressed as a percentage of false indication on
the inspected length [11,25]. Finally, as the number of samples is
limited, authors provide generally confidence bounds: 90% POD
for example [23,26].

3. Modelling of inspection results for stochastic deterioration
models

3.1. Spatial dependency of PoD and PFA

In some cases, the performance of NDT tools depends on the
location of the point to be inspected on the structure. As illustration,
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Fig. 3. Inspections on hot-spots on Y-joint (left) and T-joint (right).
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Fig. 4. PoD curves inspection of welded joints by 3 societies A, B and C.

let us consider the inspection of welded joints of offshore platforms
with some techniques such as MPI (Magnetic Particle Inspection);
the probability of detection of a given crack at the hot-spot of a
Y-joint (inside the circle on Fig. 3 left) is lower than the probability
of detection of the same crack at the hot-spot of a T-joint (inside the
circle on Fig. 3 right). It has been observed during ICON project
(InterCalibration of Offshore Ndt) [23,27,28]. When the number of
samples is fair some PoD couldn’t be monotonic decreasing func-
tions due to statistical bias. Fig. 4 illustrates this case with the plot
of three PoD evolutions with crack size obtained after inspections of
the same samples by three inspection societies A, B and C during the
ICON project. Inspectors from societies B and C encountered some
difficulties with defects of length 100 mm because they were on
Y-joints. When locations of defects are on welded joints, the corre-
sponding PoD and PFA should be changed according to the access,
the luminosity and the wave shaking for instance. When defects
are continuous fields on the structure, PoD and PFA should be in-
dexed by the coordinates x of an inspected point. Here, we consider
that the defect is produced by a deterioration mechanism indexed
by space x and time t and can be modelled with a space-time sto-
chastic process d(x,t,0), where 0 denote the elementary event of
an abstract probability space.

3.2. Definitions of PoD and PFA for stochastic deterioration model

After inspection with a NDT tool, the measurement of defect
d(x,t,0) is d(x,t,0), the 'signal+noise’ stochastic field. Then the
noise 1(x,t,0) is defined from the knowledge of these two stochas-
tic processes by (4).

n(x,t,0) = d(x,t,0) — d(x,t,0) (4)

From Egs. (2) and (3), PoD and PFA are thus functions indexed
by x and t like ROC curves. The process d at a given time ¢ being as-
sessed from inspection, the characterization of NDT tools by these
curves requires the knowledge of one of the other stochastic pro-
cesses in Eq. (4): d or 5. Two situations can be considered:

(1) The noise is known because it does not depend on the loca-
tion of the NDT tool on the structure or because it is known
on given areas on the structure. It is generally time invariant
and zero mean.

(2) The real size is known because it has been measured before
on-site inspections as in ICON project [27] or because an
assumption is made.

In both situations the definition of continuous spatial functions
needs the complete characterization of the stochastic processes by
their marginal distribution and spatial covariance. Practically, al-
most all NDT tools give data on specific locations and marginal dis-
tributions are thus obtained. Moreover, the distance between
measurements is generally larger than the distance of correlation
and additional assumptions on the structure of correlation for
the stochastic processes are needed. Finally note that the knowl-
edge of ageing laws for d allows defining the time dependence of
ROC curves. For example for corrosion processes, several models
are available [29-31].

3.3. Statistical approach in the case of repetitive tests with known bias

Starting from results of a specific NDT testing, we suppose that
we get n, repetitive NDT measurements for particular positions x;
on the structure and given times t;,. We denote these measure-
ments by {d}}{", and consider them as n. outcomes of d(x;,t;,0).
We consider that an outcome d;; of the real size d(x;,t;,0) is as-
sessed as follow from these n, repetitive NDT measurements that
cover the whole set of noise sources and with bias b:

1 {=~50
dii = 21: dj = b (5)
If b is a variable (space and time independent) it can be evalu-
ated from a specific NDT testing. If not, expert judgement and
inspection process analysis can provide values or bounds for it.
Then we deduce n, outcomes n](’} of noise #(x;, t;, 0) as follows:

il =df —dy with ie{1,...n} (6)

Of course, a NDT testing on a given structure gives only one out-
come of the real size d and n, outcomes of noise #. In practice, some
assumptions on stochastic processes (stationarity, ergodicity, cor-
relation length inferior to the distance between measurements) al-
low considering measurements at different locations and/or
different times as independent outcomes of a random variable.
Thus the characterization of marginal distributions of initial sto-
chastic processes can be assessed from the unique available out-
come. This will be illustrated in the following sections.

4. Practical assessment in the case of corrosion of coastal
structures in steel

4.1. Structures considered and inspection protocol

We consider here d as the space-time stochastic corrosion
process of piles or sheet-piles in coastal regions. The French Center
for Maritime and Fluvial Technical Studies (CETMEF) is part of
the French ministry of building. It is devoted to the diffusion of
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Fig. 5. Location of the three NDT meaurements on a joint.

knowledge, to provide technical and research studies as well as
engineering and expert’s reports. The CETMEF has edited a protocol
for inspection of coastal steel structures through ultrasonic NDT
tools. It consists in making ultrasonic measurements of the steel
thickness at different levels. The corrosion products are removed
by grinding. By using this technique and considering the harsh con-
ditions for marine inspections, the noise on measurements at a gi-
ven point on the structure cannot be neglected. Thus three
inspections are performed on a given point: the three measure-
ments are distributed on a circle, with diameter of about 5 cm, every
120° as shown on Fig. 5. With these measurements and the initial
thickness of the pile that has been reported on the design plans, it
is possible to determine the measured loss of thickness d mainly
due to corrosion and thus the loss of thickness d from Eq. (5).

4.2. Presentation of the studied structure and data analysis

The benchmark structure is a wharf located near St. Nazaire
city, France (see Fig. 6). Nantes-St Nazaire harbour is the fourth
biggest harbour in France. This wharf belongs to the category of
on-piles wharves. Building steps and other technical information
on these structures can be found in [32]. It is located in the estuary
of river Loire near between Nantes and Saint Nazaire towns. It is
the second station of a container wharf with 4 stations. Being in
the marine environment, the steel piles are susceptible to corro-
sion and hence the assessment of the structural health of such a
structure is considered to be of great practical importance. In fact
steel piles play two major roles: the first one is a mechanical func-
tion and the second one a protection of reinforced concrete inside
against corrosion. The corrosion of these piles is generally uniform
corrosion and only this kind of damage is studied in this paper.
Eighteen piles have been inspected. At a given height on a pile,
the corrosion can be distributed non-uniformly around the pile.
It is due to currents, wind and vortex shedding which modify the
distribution of dissolved oxygen and nutrients around the pile.
Thus the protocol should be completed to assess if this phenome-

Fig. 6. Steel piles with corrosion.
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Fig. 7. Cardinal points around the pile at a given height.

non occurs or not. To this aim four areas (cardinal points) are se-
lected around the pile at a given level (see Fig. 7). The vector of
spatial indexes x of stochastic processes is the pile number, the
vertical abscissa z (reference level: mean sea level) oriented up-
wards and the cardinal position (North, West, South, East).

For this benchmark structure, no correlation was found be-
tween different cardinal positions around the pile for the loss of
thickness. Moreover, no correlation was found between the differ-
ent piles at a given height z. Under usual hypotheses on stochastic
processes (see Section 3.3), we can then consider the available data
(for d, d and ) at different cardinal points and for different piles as
independent outcomes of stochastic processes indexed by z and
having the same probabilistic characterization as marginal sto-
chastic processes. With an abuse of notation, we denote by
d(z,0), d(z,0) and #(z, 6) the respective stochastic fields “measured
defect”, “real defect” and “noise”. As three measurements are made
on each location of four generatrix and 18 piles (72 generatrix in
total) at the same height z, 216 outcomes are available for
a(zj, 0) and 7(z;,0) and 72 outcomes are available for d(z;, 0). Here
the structure is inspected at six heights: z; =+2m and
z, = +1 m for tidal zone, z3 = +0.5m, z; =0m, zs = —0.5 m and
zs = —1 m for underwater zone.

4.3. Loss of thickness and noise modeling from assumption on the exact
value

We denote the available outcomes for d(zj, 0) and 5(z;, 0) by d]@”o
and #", with (i,k) € {1...n,} x {1...n,}. We denote the out-
comes of d(z,0) by d;k), with ke {1...n,}. Here n,=3 and
n, = 72. Following Section 3.3, outcomes of d and # are deduced
from outcomes of d as follows:

-l n,

d = 2 d' —b, forke{l...n} (7)
g =d™ —d, for (i,k)e{1...n;} x {1...mp} (8)

From expert judgement (interview of diver and corrosion spe-
cialist), the protocol doesn’t introduce a systematic bias on the
measurement, i.e b = 0. The corresponding discrete model of the
noise (defined at each height) is called model 1.

4.3.1. Loss of thickness and noise modelling considering a priori
classical distributions

In order to fit the loss of thickness d and the noise 7 at a given
height z;, we use three a priori classical distributions: a Normal dis-
tribution, a Generalized Extreme Values distribution (GEV) and a
Student distribution. Their probability density functions are given
in Table 1. We focus on two heights: z; = +2m and zs = -1 m
which, respectively belong to tidal and underwater zones. Figs. 8
and 9 show the fittings with these theoretical probability density
functions (pdf) and Tables 2 and 3 give the corresponding param-
eters for each one. By using the minimum of the (-log(likelihood))



Table 1
Probability density functions for normal, generalized extreme values and student
distributions.

Fitting pdf Parameters
Normal —tep? N
F) = et -
GEV f(x) = g Te(HEH (] 4 it y=1-4 wo.k
(st ko2 — (5
Student flx) = w‘(,_;l_g%) {H(‘,“ ! } ’ ,0,v
6 . . .
I noise n R
[Jioss of thickness d
50 8 | Normal for d H
GEV ford
—— Student for d
4r - - -Normal for n i
- = GEV for n
Student for n
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w

1 2 3
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Fig. 8. Noise and loss of thickness fitting with several predefined pdf; z; = +2 m.
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Fig. 9. Noise and loss of thickness fitting with several predefined pdf; zg = —1 m.

Table 2
Parameters of loss of thickness and noise with classical distributions at z; = +2 m.
Fitting Parameters

Loss of thickness Noise
Normal u=098;0 =049 u=2810"%0=014
GEV U=0790 =046k =-014  u=-53910"2;0=0.16;k = —0.22
Student  p=094;0 =0.33;v=3.12 U=-6310%06=65102;v=174

Table 3
Parameters of loss of thickness and noise with classical distributions at zs = —1 m.
Fitting Parameters
Loss of thickness Noise

Normal n=101,0=093 ,u:—l.9]0’4;6:0.17
GEV u=0.66;0=0.61;k=0.02 u=-68410%0 =017k =-0.17
Student 1=0.83;0=037;v=195 U=9.5710"%0=0.13;v = 445
Table 4
MLE for several fitting of loss of thickness and noise at z; = +2 m and zs = —1 m.
Fitting Z;=+2m Zg=—1m

Loss of thickness Noise Loss of thickness Noise
Normal 154 -112 289 -76
GEV 152 -100 232 -73
Student 139 —149 209 -82

estimate (MLE), we see in Table 4 that the Student distribution
gives the best fit for both loss of thickness and noise.

4.3.2. Assessment of ROC points and curves with classical fitting

The size of samples being large, Egs. (2) and (3) provide the fol-
lowing rather good approximation of PoD and PFA at each in-
spected height:

PoD(zj)zw, with A(z) = {(i,k) € #;d™ > as}  (9)
p T
PrAcs) ~ LT with Big) = (k) < s > 0} (10)

where Card(-) indicates the cardinal of a particular set and where
4 ={1...n;} x{1...n,}. Considering model 1, these points have
been calculated by fixing detection threshold at arbitrary values
with a step of 0.05 mm. By linking these points by segments of line,
we obtain ROC curves without any fitting: they are denoted by
experimental ROC curves in the following. Considering the classical
distributions presented in the previous section, we can build the
corresponding ROC curves for each selected pdf and compare them
to experimental ROC curves coming directly from the experimental
data. Considering model 1 for noise, ROC points and curves are plot-
ted on Figs. 10 and 11 for heights z; = +2 m and zg = —1 m. In order
to simply quantify the performance of a non-destructive-technique,
we can get, from the ROC curve, the distance between the curve and
the best performance point with coordinate [0, 1] as suggested in
[11]: this distance ¢ characterizes the optimal efficiency of the
NDT tool under specific conditions (detection threshold, conditions
of inspection, etc.). Table 5 indicates those distances ¢ and the cor-
responding optimal detection threshold a,. According to these fig-
ures and table, two remarks are relevant:

o First, we notice that inspections performed at z; = +2 m lead to
a shorter distance ¢ than inspections performed at level
zs = —1 m: actually, we observe that all inspections performed
in the tidal zone are more effective than inspections performed
in underwater zone. The diver being the same, the noise is
mainly governed by the area to be inspected: in tidal or splash
zone, the conditions are good when in underwater zone they
are harsh.

e Secondly, about the fitting using predefined distributions laws,
it is clear that they don’t lead to the best representation espe-
cially at z¢ = —1 m. Thus, this way of modelling the loss of thick-
ness and noise does not represent well the real performance of
the NDT tool and tends to underestimate its efficiency.
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Table 5
Distances § and corresponding detection threshold a; for ROC curves coming from
classical fittings at level z; = +2m and zs = —1 m.

ROC curves z1=+2m Zzg=—1m

3 aq J aq
Experimental 0.054 0.25 0.105 0.25
Normal 0.079 0.26 0.211 0.25
GEV 0.081 0.29 0.169 0.25
Student 0.072 0.25 0.141 0.25

From this second remark, the question is: is it possible to get a
better fitting of loss of thickness measurements and corresponding
noise? Here, we will use the decomposition on polynomial chaos
and show that it is a useful tool for this work.

4.3.3. Assessment of ROC curves from decomposition of loss of
thickness and noise on polynomial chaos

The method of identification on PC decomposition and the cor-
responding algorithm is available in [34,35]. It lies on the estimate

of maximum likelihood [31]. Let X(0) be a second order random
variable to be identified from N samples, denoted by {X*}},. An
expansion of this random variable on the hermite polynomial
chaos writes:

X(0) = Zhi(‘f(e))xi (11)

P
=0

where ¢ is a standard gaussian random variable, h; is the normalized
Hermite polynomial of degree i and p is the order of the polynomial
chaos expansion. The aim of the identification procedure is to find
the coefficients X; of the decomposition. We here assume that mean
and standard deviation are rather well estimated from samples. Due
to orthonormality properties of Hermite polynomials, it gives the
following constraints on the coefficients: denoting by (t,,, and Gey,
the mean and standard deviation obtained from samples, mean
1y and standard deviation oy of X(0) are rather well estimated from
ey, aNd Gy, and constraint the decomposition to satisfy the follow-
ing conditions on the coefficients:
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Fig. 13. Noise and of loss of thickness fitting with polynomial chaos for several
orders p; z; = +2 m.

4 I noise n R
350 [Jloss of thickness d
-------- PC order 1 forq
3l --- PCordeerorg |
PC order 3 ford
——PC order 1 forn
257 PC order 2 forn I
i PC order 3 forn

density of probability
S

-

noise and loss of thickness [mm]

Fig. 14. Noise and of loss of thickness fitting with polynomial chaos for several
orders p;zg = —1 m.

N
k
L@) = [[px(x“;a) (16)
k=1
Table 6
MLE for several PC fitting of loss of thickness and noise at z; = +2 m and zs = —1 m.
Fitting Z1=+2m Zg=—-1m
Loss of thickness Noise Loss of thickness Noise
PC order 1 154 -98 326 -76
PC order 2 150 -109 256 -76
PC order 3 132 —155 202 -85
Table 7

Distances ¢ and corresponding detection threshold a, for ROC curves coming from PC
fittings at level z; = +2 m and zs = -1 m.

ROC curves Z1=+2m Zg=—1m

o aq J aq
Experimental 0.054 0.25 0.105 0.25
PC order 1 0.079 0.26 0.22 0.23
PC order 2 0.072 0.26 0.22 0.23
PC order 3 0.052 0.26 0.102 0.25
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Maximum likelihood estimation is a popular statistical method
used for fitting a mathematical model to a database. Here, it is used
to fit a pdf. The aim is then to find a that maximizes L(a). The iden-
tification problem then writes: find a such that

—log(L(a)) = argmin, . pr (—log(L(a)))

(17)
ala=1

This is an optimization on the unit hypersphere of R”. In prac-
tice, we adopt the following characterization of the hypersphere:

a1 = cos(¢y)

n-1
a; = cos(¢y) E sin(¢;) for ie{2,....p—1} (18)
p-1

ap = [ sin(¢;)
i=1
with ¢, ; € [0,27] and Vi e {1,...p — 1}, ¢; € [0, 7]. The optimiza-
tion problem is then reformulated as an unconstrained optimization
problem on RP~!, It is solved by a two step procedure:

(1) a coarse localization of a minimum is found through a basic
random search algorithm;

(2) starting from this point, the Nelder-Mead Simplex Method is
used [36].

3.5 I —
Il noise
—PC order 2
PC order 3]
Normal
=z
3
[
o)
[
o
G
2
@
c
[}
©
.y ool
-1.5 -1 -0.5 0 0.5 1 1.5

noise [mm]

1ol sample 1 fitting ||
- 3 - - - sample 2 fitting
ﬁ “““ sample 3 fitting
1l ' . Py reference fitting ||
|
1
£ |
S 08¢ { 1
2 {1\
o i
& T
5 06 i |
= A
2 HE
S 04t FE 1
i \
] A}
i 5
02r II \ ]
¥ \
0 L ,_w“:’ L ;‘ e L - L
2 1 0 1 2 3 4 5 6 7
noise [mm]

Fig. 20. Loss of thickness modelling using model 2 as random noise generator;
Z;=+2m.

This problem has generally several local minima (see Fig 12),
and it is convenient to repeat this two-step procedure in order to
find the global solution (for instance, 10 times for a PC of degree
p =2, and 100 times for a PC of degree p = 3).

For our application, this identification on polynomial chaos is
performed separately on the measured loss of thickness d and
the noise # at each height. Figs. 13 and 14 present the fitting results
with the method of identification on PC decomposition for order
p € {1,2,3}, respectively at z; and z. Table 6 indicates the MLE
for loss of thickness and noise: clearly, with a PC order p = 3 we
get better fittings than with classical distributions. (Table 7)

At a given height, the aim is to get the ROC curves, i.e. PoD and
PFA, using polynomial chaos decomposition of loss of thickness d
and noise #. Denoting by {d;i}", and {n;i}7_, the coefficients of
the PC decomposition of d(z;, 0) and #(z;, 0), we obtain the follow-
ing approximation of PoD and PFA:

p_ . oo
PoD = Zdﬂ/ hi(u)p.(u)du (19)
i=0 a4
p 00
PFA =Y "1, / hy(u)p, (u)du (20)
i=0 A
6 T T
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Fig. 19. Histogram of noise and fittings in tidal zone (left) and underwater zone (right).
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where p, is the measure of probability associated to the standard
gaussian random variable ¢. Practically, integrals in Egs. (19) and
(20) are computed through Monte-Carlo simulations using 10° sam-
ples. These quantities are independent of the study: they can be
pre-processed once for all and used for each application. As shown
in Figs. 15 and 16, the ROC curves coming from polynomial chaos
identification with p = 3 lead to a good estimation of § according
to experimental ROC curves.

Fig. 17 presents all experimental ROC curves at the 6 levels and
the corresponding ROC curves with identification of loss of thick-
ness and noise with PC decomposition. Two families of curves ap-
pear. The first one is close to the best ROC point with coordinates
[0, 1] and the second one is composed of less effective inspection.
Note that this second family, in the colored area, gathers all the
inspections performed in the underwater zone for which inspec-
tion conditions are harsh.

4.4. Use of another noise modelling

In this section, we present another model for the noise # called
model 2. The building of sample of noise (see Eq. (6)) allows plot-
ting the scatter diagram of Fig. 18: it is clearly shown that there is
no correlation between the noise and the real size of loss of thick-
ness [33]. Thus we suppose that the noise is mainly governed by
the inspected area (tidal or underwater zones). Then, we consider
that the noise is a piecewise homogeneous stochastic field depend-
ing on the location in the tidal or underwater zone. We also con-
sider that samples at different heights in a given zone are
different independent outcomes of a random variable allowing
characterizing the marginal distribution of noise in this zone. Dis-
tributions of noise in tidal and underwater zones are presented on
Fig. 19. A total of 432 measurements were taken in the tidal zone
and 864 in the underwater zone. We note that decompositions
on a polynomial chaos with order p = 3 lead to best fittings for
the two areas. Considering the real defect size at height
z; = +2m and using the previous decomposition on the polyno-
mial chaos with order p = 3 of the noise for tidal zone, we generate
three random samples of loss of thickness. Fig. 20 shows the iden-
tifications on the polynomial chaos of these three samples and
compare them to the initial identification of the the real loss of
thickness at z; = +2m. We observe that these new fittings are very
close to the initial one: this is showing that model 2 seems accept-

able for generating random noise. Finally, Fig. 21 presents ROC
curves coming from identifications of these random samples and
noise model 2: except for sample 2, we observe that each new
ROC curves is very close to the initial one: the reference ROC curve
leads to 6 = 0.052 while ROC curves coming from the random sam-
ples, respectively give §; = 0.052, 6, = 0.060 and 63 = 0.053. As the
experimental ROC curves gives ., = 0.054, these results seem
good with a maximum error inferior to 10%. For ROC curve calcu-
lated with sample 2 the gap is coming from the identification:
we have noticed that the distribution’s tails were different from
the others. This leads to ask if the criteria based on the estimate
of maximum likelihood for the identification is a good choice for
well fitting the distribution’s tails.

5. Conclusion

Concepts of PoD, PFA and ROC curves coming from detection
theory are very useful tools in order to quantify the quality of
non-destructive-techniques. Classically used for inspection of
cracks of offshore structures, they can also be applied to corrosion
problem in the case of inspection of ships or corroded marine and
coastal structures. ROC curves can be easily built in the discrete
case but their use in a RBI analysis involves getting them with a
continuous formulation of loss of thickness and noise. In this paper
fittings of loss of thickness and noise with predefined probability
density functions have been performed but we have observed that
classical distributions don’t lead to correct fitting of data. It is
shown that the method of identification based on polynomial
chaos leads to better results for order of chaos p = 3 and allows
to obtain rather precise ROC curves according to experimental
ROC points. This decomposition is also tractable for Stochastic Fi-
nite Element Method [37]. Moreover, two models of noise have
been proposed in this paper which have both lead to good results
according to experimental ROC curves. Thus, using these noise
models would be possible to carry out a RBI analysis.
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