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Arbitrary discontinuities in �nite elements

T. Belytschko∗;†;‡, N. Mo�es§, S. Usui¶ and C. Parimi‖

Department of Mechanical Engineering; Northwestern University; 2145 Sheridan Road;

Evanston; IL 60208; U.S.A.

SUMMARY

A technique for modelling arbitrary discontinuities in �nite elements is presented. Both discontinuities
in the function and its derivatives are considered. Methods for intersecting and branching discontinuities
are given. In all cases, the discontinuous approximation is constructed in terms of a signed distance
functions, so level sets can be used to update the position of the discontinuities. A standard displacement
Galerkin method is used for developing the discrete equations. Examples of the following applications
are given: crack growth, a journal bearing, a non-bonded circular inclusion and a jointed rock mass.

KEY WORDS: �nite elements; fracture; fasteners; jointed rock

1. INTRODUCTION

This paper uni�es and extends the modelling of functions with arbitrary discontinuities and
discontinuous derivatives in �nite elements �rst proposed in References [1–4]. The disconti-
nuities are completely independent of the �nite element mesh: they can cross elements in any
manner. This is particularly useful for evolution problems with moving discontinuities, such
as solidi�cation, other phase changes, cracks, shear bands and joints in rock. In problems
involving the evolution and motion of discontinuities, it avoids the need for remeshing. It
also provides a powerful tool for modelling unusual problems in engineering, such as bolts,
joints, etc. In these problems, it avoids the need for sliding interfaces that conform to the
mating meshes.
The techniques for approximating discontinuities are based on the concepts described in

References [1; 2]. We emphasize modelling in �nite element methods, but these methods also
apply to meshfree approximations such as the element-free Galerkin method, EFG [5].
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Figure 1. Illustration of nomenclature for two surfaces of discontinuity.

Other papers which address the issue of discontinuous elements are Oliver [6; 7], Armero
and Garikipati [8] and Duarte et al. [9]. The methods proposed here di�er from the �rst two
in that there are no incompatibilities in the element and the discontinuities can end within an
element. The method of Duarte et al. [9] provides an alternative method for discontinuous
functions.
The surfaces of discontinuity are de�ned by signed distance functions. This description is

not necessary for the application of these discontinuous approximations, but they are very
appealing because the methodology of level sets can then be applied to update these surfaces
for moving discontinuities, Sethian [10]. Other workers who have used level sets with �nite
elements are Rao et al. [11] and Stolarski et al. [12].
The major appeal of these methods for incorporating discontinuities in �nite elements is

that they do not require the mesh to conform to discontinuities in the approximating function
or its derivatives. They also avoid remeshing for moving discontinuities. Meshing, particularly
with triangles and tetrahedrons, has achieved a high level of robustness and speed, and many
are tempted to use it for everything. It is our belief that in many cases, methods that avoid
remeshing are preferable, for the costs of remeshing lie not only in the cost of creating a new
mesh, but the tremendous overhead associated with adapting visualization techniques and other
post-processing features, such as time histories of selected points, to sequences of meshes in
evolution problems.

2. APPROXIMATION FOR DISCONTINUOUS FUNCTIONS

2.1. Discontinuities in functions

We consider a domain 
 with boundary � as shown in Figure 1. We �rst describe the method
for the approximation of a scalar variable u(x) but the method is easily extended to vector
�elds.
The surface discontinuities in the dependent variable u(x) are denoted by ��; �=1 to m,

where m is the number of discontinuities. We �rst consider the construction of an approx-
imation that is itself discontinuous on ��, which is often called a strong discontinuity. The
mesh is completely independent of the geometry or location of the discontinuity. We denote
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the shape functions at node I by NI (x) and the corresponding nodal values of the dependent
variable by uI .
The approximations will be of the following form:

u(x)=
∑

I

NI (x)(uI + aI�I (x))=
∑

I

 I (x; aI ; uI) (1)

where uI are nodal values and aI are additional degrees of freedom associated with the
enrichment �I (x) for the discontinuity. We will sometimes use the last form because the
enrichment varies from node to node and many nodes require no enrichment. It can be seen
that this is an application of the partition of unity concept [13].
Although the surfaces can be represented by any technique, for convenience we describe the

surfaces of discontinuity �� by signed distance functions f�(x). The signed distance function
is de�ned by

f�(x)= min
�x∈��

‖x − �x‖ sign(n+ · ( �x − x)) (2)

where �x is a point on the surface of discontinuity �� and n
+ is a unit normal to the surface of

discontinuity from the subdomain where the distance function is positive. As is well known,
the point �x is the closest point projection of x on ��, which is the orthogonal projection for
a continuously di�erentiable surface; see Figure 1 for a depiction of the ingredients of the
above equation at a typical point. We usually approximate the distance function by a �nite
element or meshless approximation

f�(x)=
∑

I

f�INI (x) (3)

where NI (x) are the shape functions. When NI (x) are the standard C0 �nite element shape
functions, the surface (or line in 2D) of discontinuity is C0, i.e. piecewise continuously
di�erentiable. If smoother representations of the surface are desired, moving least square
approximations such as those described for meshless methods in Reference [5] can be used,
even when the solution approximation is based on �nite elements. The representation of the
discontinuity by Equation (3) enables it to be described completely by nodal data.
The approximation at a node I depends on whether the support of NI (x) (i.e. the domain

on which NI (x) is non-zero) is bisected (i.e. cut completely in two) by the discontinuity or
the discontinuity ends within the support of NI (x). The two cases are illustrated in Figure 2.
The support of NI (x) generally includes the domains of all elements which share node I .
When any element in the support of NI (x) is bisected by the discontinuity, we call it a
bisected support. If the discontinuity only partially cuts the support, we call it a slit support.
On a bisected support, the enrichment for representing a discontinuity in the function is

given by

�I (x)=H (f�(x)) (4)

where H (x) is a step function given by

H (x)=

{

0 for x¡0
+1 for x¿0

(5)
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Figure 2. Bisected and slit supports.

Comparing Equation (4) with Equation (1) we can see that the approximation function at
an enriched node is

 I (x; uI ; aI)=NI (x)(uI + aIH (f�(x))) (6)

The above enrichment introduces the step function along the curve f�(x)=0. The coe�-
cients aI are additional unknowns in the discrete equations and govern the magnitude of the
discontinuity in the domain of the support of the shape function NI (x).
The above can be viewed as an enrichment with a windowed step function, where NI (x)

is the window function. The window function localizes the enrichment so that the discrete
equations will be sparse.
For a slit support, the approximation for a node is given by

 I (x; uI ; aI)=NI (x)(uI +
∑

�

aI�b�(x)) (7)

where b�(x) are branch functions around the discontinuity. The branch functions are con-
structed in terms of the geometry of the surface of the discontinuity.
Consider for example the discontinuity shown in Figure 3. The virtual extension of the

surface of discontinuity is constructed by

∇f� · (x − xA)=0 (8)

and the signed distance function is extended on the basis of this virtual extension.
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Figure 3. Construction of extension and other nomenclature for the end of a crack, point A.

Figure 4. Branch functions for discontinuities in: (a) the function; and (b) its derivative

The branch function is constructed in terms of the distance function. The angle � for any
point x is de�ned by

�(x)= tan−1
(

f(x)

r

)

; −�¡�¡� (9)

This construction enables the discontinuity to be curved or piecewise linear, since by de�ning
the angle in terms of f(x) the line of discontinuity always corresponds to f(x)=0.
The branch function is then constructed in terms of the radial co-ordinate of point A and

�; see Figure 3. Generally more than one branch function is needed for each enriched node.
For example, the enrichment functions can be

bi(x)=

[

r sin
�

2
; r2 sin

�

2

]

(10)

The linear branch function is illustrated in Figure 4(a). As can be seen, the function is
discontinuous across the line �� and is continuous and well behaved in the domain surrounding
the discontinuity. For linear fracture mechanics, the functions

bi(x)=

[√
r sin

�

2
;
√
r sin

�

2
sin �;

√
r cos

�

2
;
√
r cos

�

2
sin �

]

(11)
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Figure 5. Support of node I with: (a) intersecting discontinuities; and (b) branching discontinuities

have been used in Reference [1]. Only the �rst of the above functions is a branch function;
the others were added to improve the accuracy in elastic fracture problems. For the same
reason, the enrichment was chosen to vary with

√
r. The above functions span the near-tip

asymptotic solution for a crack, so very good accuracy can be obtained for these problems.

2.2. Intersecting discontinuities

For nodes whose supports are cut by two or more discontinuities, the enrichment must include
additional functions as shown in Daux et al [3]. Consider for example the case of two dis-
continuities which intersect in a support as shown in Figure 5(a). The approximation function
for the discontinuity is then given by

 I (x; uI ; aI)=NI (x)(uI + aI1H (f1(x)) + aI2H (f2(x)) + aI3H (f1(x)f2(x)) (12)

Thus we need three additional unknowns at each node for which the support contains the
intersection of the two discontinuities. These functions are linearly independent and linearly
independent of the �nite element shape functions. The above form is somewhat di�erent from
Daux et al. [3], but more compact and more easily implemented.
Another important case is a branching discontinuity, such as a branching crack shown in

Figure 5(b). This is a degeneration of the above case of intersecting discontinuities. The
approximation function for the nodes whose support contains the branch is

 I (x; uI ; aI)=NI (x)(uI + aI1H (f1(x)) + aI2H (f2(x))) (13)

The enrichment here consists of two linearly independent functions. It is also possible to
add enrichments to account for the singularities which occur at intersecting discontinuities in
elastic materials.

2.3. Discontinuities in derivatives

Another important class of discontinuities are those in the �rst derivatives of the approxima-
tion. These discontinuities occur at interfaces between materials and di�erent phases of ma-
terials, such as at an austenite–martensite interface. Discontinuities in derivatives of solutions
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occur wherever the coe�cients of the governing partial di�erential equation are discontinu-
ous. These discontinuities can easily be handled by standard �nite element approximations
by aligning the element edges with the discontinuity. However, if the discontinuity moves
with time, remeshing is required. The approximation given below can model discontinuities
in the derivatives on surfaces or (lines in two dimensions) which are independent of the mesh.
An approximation with a discontinuity in the derivative is constructed by letting the nodal
approximation for a node with a bisected support be

 I (x; uI ; aI)=NI (x)(uI + aI |f�(x) | ) (14)

where | · | is the absolute value symbol. The enrichment is thus the absolute value of the
signed distance function. This concept was introduced in Reference [14].
For a support which is slit by the discontinuity, the approximation is

 I (x; uI ; aI)=NI (x)(uI +
∑

�

aI�b
D
I�(xI)) (15)

where bDI�(xI) are branch functions such as

bDI�(xI)=

[

r cos
�

2
; r2 cos

�

2
;
√
r cos

�

2

]

(16)

The �rst branch function in (16) is illustrated in Figure 4(b). As can be seen, it is contin-
uously di�erentiable within the domain but is cusplike across �.
For intersecting discontinuities in derivatives, the same procedure as for discontinuities

in the function is used. For example, for the nodes whose support contain two intersecting
discontinuities, the approximation is

 I (x; uI ; aI)=NI (x)(uI + aI1 |f1(x) | + aI2 |f2(x) | + aI3 |f1(x) | |f2(x) | ) (17)

Discontinuous branching derivatives can be constructed by adapting (13):

 I (x; uI ; aI)=NI (x)(uI + aI1 |f1(x) | + aI2 |f2(x) | ) (18)

2.4. Vector functions and tangential discontinuities

The above can easily be generalized to vector functions. For example, for a vector function
u(x), such as a displacement, a discontinuity on f(x) is introduced by

u(x)=
∑

I

NI (uI + aIH (f(x))) (19)

where aI is a column matrix of the same dimension as uI .
The construction of discontinuities of a single component in a vector function is simpli�ed

by the use of the signed distance function. This approach can be used to model shear bands
and cracks which have closed due to compressive forces where the tangential displacement is
discontinuous. The unit normal to the line of discontinuity is given by

en=
∇f

‖∇f‖ (20)

Although a signed distance function should have a unit gradient, we normalize it here since
this should be done in a computation. The tangent plane is then de�ned by any two unit
vectors orthogonal to en.
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We illustrate the construction of the approximation in two dimensions. The discontinuity
in the tangential component is obtained by letting the displacement �eld in the elements cut
by the discontinuity be given by

u(x)=
∑

I

NI (x)(uI + aIet(x)H (f(x))) (21)

where et = ez × en is a vector in the tangent direction. Only a single parameter is needed at
each node.

2.5. Comparison to Global–Local

The above methods can be viewed as generalizations of the well-known global–local methods.
In the partition of unity method, the global approximation is multiplied by a window function
to enhance the approximation properties of the global function and to improve the sparsity
of the discrete equations. If we consider a standard global–local approximation with a global
function g(x), then the approximation of u(x) is

u(x)= ag(x) +
∑

NI (x)uI (22)

Compare with the partition of unity approximation

u(x)=
∑

I

NI (x)(uI + aIg(x)) (23)

It can be seen that in this method, the global function g(x) can adjust itself within the
domain. In addition, the function g(x) can be introduced only in the subdomain where it is
needed. The structure of the approximation yields a smooth function even when aI are chosen
to vanish at certain nodes.
Comparing (23) to (22), we see the following key di�erences

1. In the classical global–local approximation the global function is indeed global so that
the equations are not sparse. On the other hand, in (23) the global function g(x) is
multiplied by a window which localizes it, so that the discrete equations are sparse.

2. The parameters aI in (23) enable the approximation better �t the particular solution at
hand, since they can vary from node to node; on the other hand, they also introduce
additional unknowns into the system.

3. In the partition of unity, the enrichment can be added only where it is needed.

3. WEAK FORM FOR LAPLACE EQUATION

In order to introduce the weak form for functions with interior discontinuities in a simple
setting, we �rst consider the Laplace equation with discontinuous coe�cients over a domain

 and boundary �. The strong form is

∇ · (�(x)∇u(x)) = 0 on 
 (24)

<�(x)u(x);N = ≡ �+∇u+ · n+ + �−∇u− · n− = 0 on �D (25)
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u(x);N =∇u(x) · n = 0 on �+F and �−

F (26)

�(x)u(x);N = �(x)∇u(x) · n = h on �h (27)

u = g on �g (28)

where n is the unit normal to the surface, the superscripts ‘+’ and ‘−’ designate two sides
of the interface and �(x) is a C−1 function. The solution is discontinuous on �F and its
derivatives are discontinuous on �D. Note that in a �nite element application with C0 shape
functions, �D includes all element interfaces.
The space of trial and test functions are

U= {u(x) | u(x) ∈ H1; u(x)= g on �u; u(x) discontinuous on �F} (29)

U0 = {�u(x) | �u(x) ∈ H1; �u(x)=0 on �u; �u(x) discontinuous on �F} (30)

The weak form is: �nd u ∈ U, such that

∫




∇�u · �∇u d
−
∫

�h

�uh d�=0 ∀�u ∈ U0 (31)

We next show that the above implies Equation (24) and all interface and natural (Neumann)
boundary conditions. The �rst term on the left-hand side of the above can be integrated by
parts to give

∫




∇�u · �∇u d
=

∫




(∇(�u�∇u)− �u∇ · (�∇u)) d
 (32)

By Gauss’s theorem, the �rst term on the right-hand side of the above gives

∫




∇(�u�∇u) d
=

∫

�h

(�u�∇u · n) d� +
∫

�F∪�D

(�u+�+∇u+ · n+ + �u−�−∇u− · n−) d� (33)

We now note that by the de�nition of the test space, �u+= �u− on �D so the integrand
of the second term over �D becomes �u<�u;N =. Substituting Equation (33) into Equation (32)
and in turn into Equation (31) gives

−
∫




�u∇ · (�∇u) d
+

∫

�h

�u(�u;N −h) d� +

∫

�D

�u<�u; N = d�

∫

�F

(�u+�+∇u+ · n+ + �u−�−∇u− · n−) d�=0 (34)

Equations (24), (25) and (27) follow immediately from the �rst three terms of the above by
the density theorem. Since �u is discontinuous on �F ; �u+and �u− are arbitrary, and it follows
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Figure 6. Initial and current con�guration showing the splitting of �0F .

that

∇u+ · n+= u; +N =0 on �F (35)

∇u− · n−= u;−N =0 on �F (36)

So Equations (24)–(28) in the strong form are implied by the weak form (31). Therefore the
approximations with interior discontinuities described in the previous section are applicable
to the solution of this class of problems.

4. WEAK FORM FOR DISCONTINUOUS MOTION

In the following we give the weak form for the equilibrium equation of solid mechanics when
the motion has discontinuities and discontinuous derivatives. We will show that the strong
form, in addition to the equilibrium equation and traction boundary conditions, includes the
appropriate jump conditions at the interfaces. We consider a body 
 with reference con-
�guration 
0. The body is subjected to body forces �0b per unit volume and tractions t0
on the boundary of the reference con�guration. We denote the nominal stress by P and the
deformation gradient by F; Fij= @xi=@Xj. The motion is described by a map

x=���(X; t) (37)

This map must be one-to-one and onto, i.e. bijunctive, and continuously di�erentiable every-
where except on a �nite number of sets of measure zero, where the motion or its derivatives
may be discontinuous. The discontinuities in derivatives correspond to entities such as ma-
terial interfaces. The discontinuities in the motion correspond to entities such as cracks and
shear bands. The motion on the surfaces of discontinuity is interesting, since a surfaces splits
into two surfaces. This is illustrated in Figure 6 which shows the initial and current con-
�gurations of a body which has cracked. As can be seen, the surface from which the crack
emanates splits into two surfaces, so any point on the reference surface becomes two points.
In the reference con�guration, the crack always remains two coincident surfaces whereas in
the current con�guration the crack becomes two surfaces separated by a gap. Thus the map
for points on the surface is not one-to-one. In fact, the points on the surface split into two
points.
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Jumps in the derivatives of the motion occur on surfaces �D0 and the motion is discontinuous
on surfaces �F

0 ; for simplicity of notation we restrict this treatment to a single surface. The
surface �F

0 then splits into two surfaces �
F
A and �

F
B . The motion of points on �

F
0 is subject to

rather complex conditions which stem from the fact that across the surface �F
0 the behaviour

is identical to that of two bodies in contact. Therefore, once the discontinuity has developed,
interpenetration must be prevented, i.e. we must attach conditions on the motion so that the
impenetrability conditions are met, see Belytschko et al. [15]. To facilitate the expression of
this condition, we subdivide the body into two by extending the surface �0F until the body is
bisected. The impenetrability conditions are

if X∈�F
0A then x(X; t) =∈
B; if X∈�F

0B then x(X; t) =∈
A (38)

The above state that any point on one side of a crack cannot interpenetrate the other side.
Once the crack develops, the surface �F

0 changes character. If the surface splits, i.e. if the
crack opens, then � becomes two traction surfaces.
An interesting feature of this motion is that the surfaces �F

0 are not known in the undeformed
body. The surfaces develop as the deformation proceeds, and their description in terms of
the reference con�guration has to be made by an inverse map of the motion. Thus if the
discontinuity at time �, �F(�), is described by f(x; �)=0, then the surface of discontinuity

in the undeformed con�guration �F
0 is given by f(���

−1
(x; �); �)=0. The preceding function

is di�cult to construct, but is in fact never needed; the surface of discontinuity �F
0 in the

reference con�guration is a conceptual device that is never invoked in actual computations.
The conditions in (38) are di�cult to enforce directly, so we will deal with the cracks in

which the shear is small, so we assume that points which contact were originally contiguous.
The gap is given by

gN ≡ <u;N == uA · nA + uB · nB6 0 (39)

This expression is approximate and only applies if interpenetration only occurs for points that
are initially contiguous. We assume the crack is frictionless when in contact. The strong form
consists of the following:

@Pji

@Xj

+ �0bi = 0 in 
0 (40)

n0jPji = �ti on �t0 (41)

n0jPji = 0 on �F
0 if not in contact (42)

t̂ 0A� = t̂ 0B� =0; t0AN + t0BN = 0 on �F
0 if in contact (43)

<n0jPji= = 0 on �D0 (44)

<uN =6 0 on �F
0 (45)

ui = �ui on �u
0 (46)

where t0N = n0jPjin
0
j and t̂ 0� are the tangential tractions. We have assumed that the crack surfaces

which are generated are traction free.
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The trial functions reside in the following space:

U = {u(X; t) | u(X; t)∈C0; u(X; t)= �u(t) on �u
0 ; u discontinuous on �

F
0 }; �¿ 0; �∈C−1

(47)

The space of test functions is de�ned by

U0 = {�u(X) | �u(X)∈C0; �u(X)=0 on �u
0 ; �u discontinuous on �

F
0 }; ��¿ 0; ��∈C−1

(48)

The contact conditions will be imposed by Lagrange multipliers. The weak form is an
inequality: �nd u(X; t)∈U and �(X; t)∈C−1 so that

∫


0

(�FT :P− �0�u · b) d
0 −
∫

�t
0

�u · �t0 d�0 + �

∫

�F
0

�<uN = d�0¿ 0 (49)

Next, we deduce the strong form from the weak form. Writing the �rst term in indicial
form and integrating by parts gives

∫


0

@(�ui)

@Xj

Pji d
0 =

∫

�t
0

�uin
0
jPji d�0 +

∫

�F
0
∪�D

0

(

�uAi n
0A
j PAji + �uBi n

0B
j PBji

)

d�0 −
∫


0

�ui

@Pji

@Xj

d
0

(50)

We now expand the surface terms in normal and tangential components, which gives for
each term the following

∫

�F
0

�uAi n
0A
j Pji d�0=

∫

�F
0

(�uAN t
0A
N + �ûA� t̂

0A
� ) d�0 (51)

Substituting Equation (51) into Equation (50), then into Equation (49) and collecting terms
gives

∫


0

�ui

(

−@Pji

@Xj

− �0bi

)

d
0 +

∫

�t
0

�ui(n
0
jPji − �t 0j ) d�0

+

∫

�F
0
∪�D

0

(

�uAN t
0A
N + �uBN t

0B
N + �ûA� t̂

0A
� + �ûB� t̂

0B
�

)

d
0

+

∫

�F
0

(

��<uN =+ �
(

�uAN − �uBN
))

d�0¿ 0 (52)

Since the above holds for all �u∈U0, it follows by the density theorem from the �rst two
terms of the above that the equilibrium equation (40) holds on 
0 and the traction boundary
conditions (41) hold on �t0.

12



On �F
0 , �uN is arbitrary, so

t0AN =−�; t0BN = � (53)

and combining the above gives

t0AN + t0BN =0 on �F
0 (54)

Since ��6 0 it follows from Equation (52) that

<uN =6 0 on �F
0 (55)

On �D0 , �u
A= �uB so it follows that

t0Ai = t0Bi or <n0jPji==0 (56)

5. DISCRETIZATION

We will describe the discretization for the case where discontinuities in the tangential displace-
ments are small enough so that we can assume any contact occurs on originally contiguous
material points. This assumption is valid for most cracks. It is also applicable to the shear
band models described before if the relative displacements are small. If large shears occur
across a line of discontinuity, then any recontact may occur on material points which were not
originally contiguous, and general algorithms for contact must be used. However, for many
technologically important problems in fracture, the simpler formulation given here is applica-
ble. The discretization of all but the last term is standard for the interpolations given here, so
we focus on the last term. We parameterize the surface of discontinuity by ��, where � has
a range of one and two for one and two-dimensional problems, respectively. We approximate
the Lagrange multipliers by

�(��; t)= �I (t)NI (�
�) (57)

The interpenetration function is given by

<uN ==(u
A
i − uBi )n

A
i = nAi NIaiI (H (f(x

A))−H (f(xB)))= nAi NIaiI (58)

Thus the interpenetration depends strictly on the enrichment parameters. Substituting (57)
and (58) into the last term in the weak form, which we will call �Wc, gives the following:

�Wc=

∫

�F
0

�(�<uN =) d�0= ��JGJiIaiI + �JGJiI�aiI (59)

where

GJiI =

∫

�c
0

nAi N
�
J NI d� (60)

The discrete weak form can then be written as

�W = �uiI (f
int
iI − fextiI ) + �aiI (q

int
iI − qextiI ) + ��JGJiIaiI + �JGJiI�aiI (61)
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The discrete equations are

fintiI − fextiI = 0 (62)

qintiI − qextiI +GJiI�J = 0 (63)

GJiIaiI 6 0 (64)

�J ¿ 0 (65)

where in the last equation it has been assumed that the condition �J ¿ 0 su�ces to enforce
�(��)¿ 0; this is true only for low-order elements. The above equations are, respectively, the
equilibrium equation associated with the regular nodal displacements, the equilibrium equations
for the enrichment degrees of freedom and the impenetrability constraint on the discontinuity
surface. The third term in Equation (63) are the contact forces. Note that the contact forces

are associated only with the enrichment. The equilibrium equations are coupled since f int

depends on uI and aI .
For small-displacement elastostatic problems, the discrete equations obtained from (62)–

(64) are

⎡

⎢

⎣

Kuu Kua 0

KTua Kaa GT

0 G 0

⎤

⎥

⎦

⎧

⎪

⎨

⎪

⎩

u

a

���

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

f ext

qext

0

⎫

⎪

⎬

⎪

⎭

(66)

where f ext and qext are the nodal external forces and

Kuu=

∫




BTuCBu d
; Kua=

∫




BTuCBa d
; Kaa=

∫




BTaCBa d
 (67)

In the above, C is the standard elastic coe�cient matrix; in two dimensions Bu and Ba

consist of the nodal submatrices

BuI =

⎡

⎢

⎣

NI ;x 0

0 NI ;y

NI ;y NI ;x

⎤

⎥

⎦
; BaI =

⎡

⎢

⎣

�I ;x 0

0 �I ;y

�I ;y �I ;x

⎤

⎥

⎦
(68)

At �rst glance, a major disadvantage of this methodology is that it requires a �nite element
system with a variable number of degrees of freedom per node. The di�culty is not as
burdensome as it seems at �rst. The variable number of degrees of freedom can be handled
by adding extra nodes to the element on an interface to handle the enrichment degrees of
freedom aiI . Thus a 3-node triangle becomes a 6-node triangle for an element bisected by a
discontinuity, with the pair of nodes superimposed. The elements with enrichment degrees of
freedom are then assigned to the additional nodes.
In the implementation of the discontinuous functions, it is bene�cial to replace the enrich-

ment function in Equation (4) by �I (x) = H (f�(x)) − H (f�(xI)). The enrichment function
then vanishes in all elements except those that contain the discontinuity.
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Figure 7. Generation of subpolygons for the quadrature of the weak form in: (a) elements cut by a
crack. The polygons; (b) formed from the intersection of the crack and the element geometries are; (c)

triangulated to create the element subdomains.

Quadrature of the weak form in elements cut by the discontinuity also requires revision
from a standard program. There are three approaches to quadrature in elements cut by dis-
continuities:

1. A quadrature rule which does not rely highly on continuity of the integrand may be
used. For example, the trapezoidal rule may be used with 5x5 quadrature points over the
domain. Although this leads to moderate errors, for solutions of engineering accuracy,
these methods su�ce.

2. The elements which are cut by discontinuities are subdivided into subelements which do
not cross the discontinuity and the element quadrature is performed over these subele-
ments. A description of such methods may be found in Mo�es et al. [2], as shown in
Figure 7. This approach gives higher accuracy but it involves greater programming e�ort.

3. A method based on adaptive subdomains as described by Strouboulis et al. [16].

In addition, it is necessary to carefully treat elements where the cut leaves a small subele-
ment. If an enrichment is created for that case, the additional functions may be linearly
dependent. Methods for handling this are given in Reference [2].

6. NUMERICAL EXAMPLES

We have chosen a few examples of our calculations to illustrate the potential of the method and
to check its performance. One objective of these examples is to illustrate how these methods
can simplify the modelling of certain engineering problems, such as bearings, joints and
bolts, which are very awkward with conventional slideline technology. To model a bolt and
nut with conventional methods, the two threads would have to be meshed separately and then
interfaced across a slideline. In general, large forces would be generated in turning the bolt
due to incompatibilities between the two models. With these new methods, the threads can be
modelled by interior discontinuities; this is illustrated for a journal bearing. The methodology
for modelling arbitrary discontinuities is called X-FEM (extended �nite element method).
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Figure 8. The problem of two cracks of eman-
ating from rivets holes.

Figure 9. Finite element mesh for the crack pro-
pagation problems.

6.1. Crack propagation problem

This example concerns crack growth in a plate with two holes. The problem is similar to
the one in Reference [2], except that the initial cracks are shorter. The problem is shown in
Figure 8. The ability to model shorter cracks originates from the new de�nition of the angle
� in Equation (9). In the initial con�guration, the cracks are 0.015 in long and are oriented
at �= − 45 and 45◦ for the left and right holes, respectively. The plate is a square with the
length of each side being 5 in. The rivets of radius 0.08 in are 0.6 in apart. The plate is
subject to a cyclic tension in the y-direction.
The initial mesh consists of scattered nodes yielding 18,400 triangular elements shown in

Figure 9. The mesh is re�ned to the centre of the plate to obtain more accuracy in the domain
of crack growth. The mesh is independent of the crack geometry and the same mesh is used
throughout the simulation.
The cracks are driven by the Paris fatigue law with the maximum circumferential stress

hypothesis for the direction of propagation. The crack paths are shown in Figure 10. Note
that the crack path are completely independent of the �nite element mesh.

6.2. Journal bearing

The second example is a model of a journal bearing. The model is shown in Figure 11. On
the circle marked �F , a discontinuity in the tangential displacement is allowed in the model
by adding the enrichment (21). We examine how closely the model can capture the lowest
eigenvalue and the eigenvector corresponding to rigid-body rotation of the shaft 
A inside the
bearing 
B. The lowest eigenvalue should be zero since the shaft 
A should be free to rotate.
When the enrichment (21) is used with Young’s modulus E=1, the lowest eigenvalue is

5:6 × 10−4. Studies of the strain energy distribution associated with the modes show some
straining in the vicinity of the interface. Although this result is adequate for many engineering
purposes, better results are desirable.
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Figure 10. Initial crack and two snapshots of the crack growth.

The accuracy can be improved by adding an enrichment based on the nodal values of the
tangent. The enriched approximation is

u(x)=
∑

I

NI (x)(uI + aIH (f(x))v(xI)) (69)

where

v= − (y − y0)ex + (x − x0)ey (70)

where x0, y0 are the co-ordinates of the centre of the shaft of radius R and

f(x)= (x − x0)
2 + (y − y0)

2 − R2 (71)
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Figure 11. Model of journal bearing. Figure 12. Displacement mode corresponding to
the lowest eigenvalue (�=0:0).

The lowest eigenvalue is 4:0 × 10−15, which corresponds to zero for the precision used in
the calculation. The eigenvector is shown in Figure 12 and can be seen to correspond to
rigid-body rotation of the shaft.

6.3. Circular inclusion under compression

We consider a circular inclusion in a matrix. The inclusion is separated from the matrix by
a frictionless interface without adhesion. The inclusion and the matrix are the same material.
The problem has been solved with a combination of Airy stress functions and �nite Fourier
transforms by Keer et al. (1973). A schematic of the problem is shown in Figure 13. On the
interface between the matrix and inclusion, there is no adhesion or friction, so the normal
interface traction is either compressive or vanishes; the latter corresponds to separation of the
surfaces.
The tractions on the matrix are given by tx=1, ty= − 1. The material properties are

Young’s modulus E=1 and Poisson’s ratio �=0:0 for both the matrix and the inclusion.
The �nite element mesh is shown in Figure 14. The heavy line which separates the inclusion
from the matrix is a line of discontinuity either in the total displacement or in the tangential
displacement (when the bodies are in contact). The line of discontinuity is independent of the
mesh and is a circle (the shape functions are not used to approximate the distance function).
The computed normal stress across the interface is shown in Figure 15 and compared to

Keer et al. [17]. The agreement is quite good except near the point of separation. Some of
the error is attributed to the fact that the stresses were computed at quadrature points which
are not exactly on the interface.

18



Figure 13. A schematic of the circular inclusion
and the load tx=1 and ty= − 1.

Figure 14. The mesh used for the circular
inclusion.

Figure 15. Comparison of normal interface stress
for inclusion problem.

Figure 16. Schematic of the jointed rocks prob-
lem from Belytschko et al. [18].

6.4. Jointed rock mass

Another example of the application of the methodology is a tunnel in a jointed rock. A
schematic of the problem, a scaled model of a tunnel, is shown in Figure 16. This problem
was previously studied in Reference [18].
The �nite element mesh is shown in Figure 17. Note that the �nite element mesh is quite

regular and is independent of the orientation of the joints. The mesh extends across the tunnel
and the techniques described in Reference [3], in which the quadrature is omitted in any
opening, is used.
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Figure 17. The mesh for the jointed rock problem and the location of joints; the tunnel opening is
modelled by excluding it from the quadrature as in Reference [3].

Figure 18. Horizontal component of the displacement �eld.

A static linear analysis of the problem was performed. In this case, the joints were mod-
elled as tangential discontinuity in the displacement. A tangential sti�ness was added at the
interfaces as in Reference [18]. In a non-linear analysis it would also be possible to allow
separation at the joints. A displacement contour plot of the x-component is shown in Figure
18. Note that the displacement is discontinuous across the joints.

7. DISCUSSION AND CONCLUSIONS

We have generalized a methodology for representing discontinuities in �nite elements which
are independent of the mesh. The surface of discontinuity is described by a signed distance
function so that the representation of the discontinuous approximation involves only nodal
data. Furthermore, this description of the discontinuity leads naturally to a coupling with
level set theory for updating the position of the discontinuity.
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The major drawback of the method lies in the quadrature of the weak form. The quadra-
ture of elements in which the discontinuity occurs requires modi�cation to account for the
discontinuity. As indicated previously, we have used subdivision of the elements, which is a
little bit awkward. Simpler techniques would be desirable.
As examples of applications of these techniques we have shown results for crack growth,

a journal bearing, a non-bonded inclusion and a jointed rock mass. There are many others
applications: phase changes, shock tracking and uid–solid interfaces are some examples.
Because of its simplicity, the method is very appealing and has considerable potential for
problems with stationary and evolving discontinuities without remeshing.
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