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Arbitrary branched and intersecting cracks with
the extended �nite element method

Christophe Daux‡, Nicolas Mo�es∗;†;§, John Dolbow¶,
Natarajan Sukumar‖ and Ted Belytschko∗∗

Department of Mechanical and Civil Engineering; Northwestern University; 2145 Sheridan Road;
Evanston; IL 60208; U.S.A.

Extensions of a new technique for the �nite element modelling of cracks with multiple branches, multiple
holes and cracks emanating from holes are presented. This extended �nite element method (X-FEM) allows
the representation of crack discontinuities and voids independently of the mesh. A standard displacement-
based approximation is enriched by incorporating discontinuous �elds through a partition of unity method.
A methodology that constructs the enriched approximation based on the interaction of the discontinuous
geometric features with the mesh is developed. Computation of the stress intensity factors (SIF) in di�erent
examples involving branched and intersecting cracks as well as cracks emanating from holes are presented
to demonstrate the accuracy and the robustness of the proposed technique. 
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1. INTRODUCTION

Solving crack problems in fracture mechanics is imperative to quantify and predict the behaviour

of cracked structures under service conditions. To this end, the accurate evaluation of fracture
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parameters such as the stress intensity factors (SIF) is required for simulation-based life-cycle

design analysis.

Over the past few decades, many numerical methods have been proposed to model crack prob-

lems. Finite element methods with non-singular and singular elements [1; 2] enable the accurate

computation of stress intensity factors. However, these methods require the �nite element edges to

coincide with the crack. This often complicates mesh generation, since both the regular geometric

features and the crack must be considered. Some of the other prominent numerical methods for

cracks analysis are the boundary elements method [3], the boundary collocation method [4], the

body force method [5] and the integral equation method [6]. The dislocation method is also often

used for cracks with multiple branches ([7–9]). Recently, meshless methods, and in particular the

element-free Galerkin method, have been applied to two-dimensional crack problems [10].

The extended �nite element method (X-FEM) allows for the modelling of arbitrary geometric

features independently of the �nite element mesh. The crack modelling technique was presented in

References [11; 12]; see also Reference [13]. This method allows the modelling of crack growth

without remeshing. In this paper, we apply it to voids and to more complex geometries such

as cracks with multiple branches. This facilitates the accurate modelling of interactions between

cracks and holes, or systems with cracks emanating from holes.

By using the notion of partition of unity [14], we enrich the standard approximation with addi-

tional functions. For branched cracks, we use the near-tip asymptotic �elds [11], the discontinuous

function for a single crack [12], and a discontinuous function which models the branching. For

voids, we use another discontinuous function which can be multiplied with the previous ones if

the crack is near a hole or emanates from it.

The use of the partition of unity as a means to enrich a �nite element space may also be found

in the work of Strouboulis et al. [15] for modelling voids and the work of Strouboulis et al. [16]

to model reentrant corners and cracks. Also, Duarte et al. [17] applied the partition of unity for

the simulation of dynamic crack propagation in three-dimensions. Finally, in the work of Oden

et al. [18] a low order set of �nite element shape function is enriched with hierarchical polynomials

to create a Cartesian p �nite element which performs well under distortion.

In the next section, we recall the governing equations for linear elastostatics in their strong and

weak forms. In Section 3, we describe the ‘branched’ or ‘junction’ function and the algorithm

used to enrich the classical displacement �eld to model a multiple branched crack. In Section

4, the modelling of holes which are not part of the mesh is described. Numerical results are

presented in Section 5 to illustrate the accuracy and the robustness of the X-FEM. Finally, in

Section 6, some concluding remarks on the potential of the extended �nite element method are

indicated.

2. FORMULATION

In this section, we briey review the governing equations for elastostatics. Speci�cally, we consider

the case when internal boundaries are present.

2.1. Governing equations

Consider the domain 
 bounded by �. The boundary � is composed of �u; �t ; �c and �h such

that �=�u ∪�t ∪�c ∪�h as shown in Figure 1. Prescribed displacements are imposed on �u, while
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Figure 1. Notations for a body with traction-free cracks and holes subjected
to loads and imposed displacements.

prescribed tractions are imposed on �t. The boundary �c consists of the boundaries of all cracks

(both faces for each crack) and �h gathers all boundaries of holes. The hole and crack faces are

assumed to be traction-free. The equilibrium equations and the boundary conditions are

∇ · b + b= 0 in 
 (1a)

u= u on �u (1b)

b · n= t on �t (1c)

b · n= 0 on �c (1d)

b · n= 0 on �h (1e)

where n is the unit outward normal, b the Cauchy stress, and b is the body force per unit volume.

We consider small strains and displacements. The kinematics equations therefore consist of the

strain–displacement relation

U= U(u)=∇su (2)

where ∇s is the symmetric part of the gradient operator. The constitutive relation is given by

Hooke’s law

b=CU (3)

where C is Hooke’s tensor.

2.2. Weak form

The space of trial functions is de�ned by

U= {u∈V: u= u on �u; u discontinuous on �c ∪�h} (4)
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where the space V is related to the regularity of the solution. The test function space is de�ned

similarly as

U0= {v∈V : v=0 on �u; v discontinuous on �c ∪�h} (5)

The weak form of the equilibrium equations is given by

∫




b(u) : U(v) d
=

∫




b · v d
 +
∫

�t

t · v d� ∀v∈U0 (6)

Using the constitutive relation, Equation (3), and the strain-displacement relation, Equation (2),

the weak form can be stated as: �nd u∈U such that

∫




U(u) :C : U(v) d
=

∫




b · v d
 +
∫

�t

t · v d� ∀v∈U0 (7)

It is shown in Reference [11] that the above is equivalent to the strong form (1), including

the traction-free conditions on any lines of discontinuity: the two crack faces and the holes, i.e.

�c ∪�h.

3. MODELLING A BRANCHED CRACK WITH THE X-FEM

It has been shown in Reference [12] that a crack can be modelled independently of the mesh by

enriching the approximation by step functions and asymptotic near-tip �elds. The �nite element

approximation for a single crack in a two-dimensional body can be written as

u
h(x) =

∑

i∈I

ui�i(x) +
∑

i∈L

ai�i(x)H (x)

+
∑

i∈K1

�i(x)

(

4
∑

l=1

b
l
i;1F

l
1(x)

)

+
∑

i∈K2

�i(x)

(

4
∑

l=1

b
l
i;2F

l
2(x)

)

(8)

where I is the set of all nodes in the mesh; ui is the classical (vectorial) degree of freedom at

node i; �i is the shape function associated with node i. Each shape function �i has compact

support !i given by the union of the elements connected to node i; L⊂ I is the subset of nodes

that are enriched for the crack discontinuity and ai are the corresponding additional degrees of

freedom; the nodes in L are such that their support (we mean the support of the nodal shape

function) intersects the crack but do not contain any of its crack tips; and K1⊂ I and K2⊂ I

are the subset of nodes that are enriched for the �rst and second crack tip, respectively. The

corresponding additional degrees of freedom are bli;1 and b
l
i;2, l=1; : : : ; 4, for the �rst and second

crack tip, respectively; the nodes in K1 (K2) are such that their support contain the �rst (second)

crack tip.
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Figure 2. Normal and tangential co-ordinates for a smooth crack, (a), and a kinked crack, (b). x∗ is the
closest point to x on the crack. The value of the function H is −1 at x for (a) and (b).

The near-tip functions F l
1(x); l=1; : : : ; 4, are given by

{F l
1(x)} ≡

{√
r sin

(

�

2

)

;
√
r cos

(

�

2

)

;
√
r sin

(

�

2

)

sin(�);
√
r cos

(

�

2

)

sin(�)

}

(9)

where (r; �) are the local polar co-ordinates at the �rst crack tip with �=0 coinciding with the

tangent to the crack at the tip. Similarly, the near-tip functions F l
2(x) are also given by (9) but

the local polar co-ordinates being now de�ned at the second crack tip.

The function H (x) is a discontinuous function across the crack surface and is constant on each

side of the crack: +1 on one side of the crack and −1 on the other. More precisely, the function
H (x) is de�ned as follows. The crack is considered to be a curve parametrized by the curvilinear

co-ordinate s, as in Figure 2. The origin of the curve is taken to coincide with one of the crack

tips. Given a point x in the domain, we denote by x∗ the closest point on the crack to x. At

x
∗, we construct the tangent and normal vector to the curve, es and en, with the orientation of en
taken such that es × en= ez where the unit vector ez points out of the page. The function H (x) is

then given by the sign of the scalar product (x− x∗) · en. In the case of a kinked crack as shown
in Figure 2(b), where no unique normal exists but a cone of normals is de�ned at x∗, H (x)= 1

if the vector (x− x∗) belongs to the cone of normals at x∗ and −1 otherwise.

3.1. Branched cracks

In this section, we introduce the discontinuous functions for modelling branched cracks. We �rst

consider a simple case of a branched crack modelled by four elements as shown in Figure 3. We

wish to illustrate how an equivalent discrete space can be constructed with the mesh shown in

Figure 4 by enriching with the discontinuous function H (x) and another function which takes into

account the junction between the three branches. The �nite element approximation associated with

the mesh in Figure 3 is

u
h(x)=

∑

i∈I

ui�i(x); I = {1; : : : ; 17} (10)
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Figure 3. FEM mesh. Figure 4. X-FEM mesh.

where ui is the displacement at node i and �i is the bilinear shape function associated with node i.

Let us introduce the nodal vectorial variables Q8, R8, Q15, R15, Q18, R18, Q12, R12 and S12 such that

Q8 =
u6 + u7

2
; R8 =

u6 − u7
2

Q15 =
u13 + u14

2
; R15 =

u14 − u13
2

Q18 =
u16 + u17

2
; R18 =

u17 − u16
2

Q12 =
u11 + (u9 + u10)=2

2
; S12 =

u9 − u10
2

R12 =
u11 − (u9 + u10)=2

2
;

(11)

Inverting the previous system, we obtain the following equations:

u6 = Q8 + R8; u7= Q8 − R8
u9 = Q12 − R12 + S12; u10= Q12 − R12 − S12
u11 = Q12 + R12; u13= Q15 − R15
u14 = Q15 + R15; u16= Q18 − R18
u17 = Q18 + R18

(12)

Now by expressing ui in terms of Qj ; Rj ; Sj in Equation 10, we obtain

u
h =

5
∑

i=1

ui�i + Q8(�6 + �7) + R8HII(x)(�6 + �7)

+ Q12(�9 + �10 + �11) + R12HI(x)(�9 + �10 + �11)

+ S12J (x)(�9 + �10)

+ Q15(�13 + �14) + R15HI(x)(�13 + �14)

+ Q18(�16 + �17) + R18HI(x)(�16 + �17) (13)

where the functions HI(x) and HII(x) and J (x) are de�ned in Figure 5.
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Figure 5. De�nition of the discontinuous enrichment functions HI(x); HII(x) and J (x).

We next relate the functions HI(x) and HII(x) to the function H (x) de�ned in the previous

section. Consider the branched crack as consisting of two cracks denoted by cracks I and II in

Figure 5. Deciding that crack I is parametrized so that we traverse it from nodes 15 to 18 and

that crack II is parametrized so that we traverse it from nodes 8 to 12, the functions HI(x) and

HII(x) are then the function H (x) associated with cracks I and II, respectively.

The function J (x) is referred to as a discontinuous ‘junction’ function. It may be expressed in

terms of the functions HI(x) and HII(x) as

J (x)=

{

HII(x) for HI(x)¡ 0

0 for HI(x)¿ 0

If we now consider the mesh in Figure 4, �6 + �7; �9 + �10 + �11; �13 + �14; �16 + �17 can

be replaced by �8; �12; �15; �18, respectively, and Q8; Q12; Q15; Q18 by u8; u12; u15; u18. The

�nite element approximation now reads

u
h =

∑

i∈I ′
ui�i

+ R12�12HI(x) + R15�15HI(x) + R18�18HI(x)

+ R8�8HII(x)

+ S12�12J (x) (14)
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Figure 6. Example of an enrichment for a branched crack. Figure 7. Crossing cracks, —=main
crack 1, - - -=main crack 2.

where I ′ = {1; 2; 3; 4; 5; 8; 12; 15; 18}. The �rst term on the right-hand side represents the classical

�nite element approximation associated with the mesh and the next four represent the discontinuous

enrichment for cracks I and II taken separately, �nally, the last term takes into account the junction.

This shows that the discrete spaces obtained by FEM and X-FEM are equivalent for a branched

crack aligned with the mesh.

We now extend the previous derivation to the case where the branched crack geometry is

represented independently of the mesh. Consider the branched crack shown in Figure 6. Let us

view this crack as a main crack (solid line) and a branched secondary crack (dashed line). The

enrichment proceeds as follows. The main crack is enriched as if the secondary crack were absent.

This enrichment involves the tip enrichments for the crack tips B and C, denoted by circles and

the discontinuous interior enrichment denoted by squares. The secondary crack is enriched almost

as if the main crack was absent: the tip D is enriched (plus) and all nodes for which the support

intersects the secondary crack but do not contain points A or D are part of the discontinuous

interior enrichment (diamonds). Finally, we need to enrich for the junction: the junction function

is added to all nodes for which the support of the �nite element shape functions contain the

junction point A (crosses).

3.2. Cracks with multiple branches

Having introduced the junction function J (x), we now describe how we can extend it to model

multiple branched cracks. In the case of crossing cracks, the �rst idea that comes to mind is to

consider the two cracks as independent cracks as shown in Figure 7. But it is easy to show that

this approach is incorrect. For instance, consider a cross aligned with a mesh. If we do not use

the function J (x), we obtain only 3nD degrees of freedom to represent the displacement at the

centre node where nD=2 is the number of displacement components (x- and y-). Indeed, we

have the nD standard �nite element degrees of freedom and nD degrees of freedom per crack for

the jump function leading to a total of 3nD degrees of freedom. The �nite element description

involves however 4nD degrees of freedom at the intersection of the two cracks. Consider now a
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Figure 8. A crack with multiple
branches, —=main crack, - - -=
secondary 1, – – –= secondary 2.

Figure 9. Zoom on four �nite elements near a branching point to
show the subpolygons for the quadrature of the weak form.

main crack and two cracks which join the main crack as shown in Figure 8. In this case, we obtain

for the centre node 4nD degrees of freedom: the nD classical degree of freedom, the nD degrees

of freedom associated to the main crack and nD degrees of freedom for each junction leading to

the correct 4nD number of degrees of freedom.

In essence, using the X-FEM, we recast the independent unknowns in the FEM discretization

in a di�erent form. For multiple branched crack, we must have the same number of degrees of

freedom per node as twice (nD=2) the number of pieces its support are cut into. Thus, the

procedure for modelling a multiple branched crack consists of discretizing the branched crack into

a main crack and several cracks joining the main crack. This approach leads to the right number

of degrees of freedom per node: nD per crack which joins the main crack, nD associated with the

main crack, and the classical nD degrees of freedom.

Consider now a main crack to which several secondary cracks are connected. We assume that

the main and the secondary cracks do not have any branches, although it is easy to generalize to

this case. Let Nc be the number of cracks (the main crack plus the number of secondary cracks),

Nt be the number of crack tips and Nx be the number of junctions (Nx =Nc−1). The displacement
approximation is

u
h(x) =

∑

i∈I

ui�i(x) +
Nc
∑

j=1

∑

i∈Lj

ai; j�i(x)Hj(x) +
Nt
∑

j=1

∑

i∈Kj

�i(x)

(

4
∑

l=1

b
l
i; jF

l
j (x)

)

+
Nx
∑

j=1

∑

i∈Jj

ci; j�i(x)Jj(x) (15)
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where the notations not de�ned so far are:

(1) Lj ⊂ I is the subset of nodes to enrich for the jth crack discontinuity and ai; j are the corre-

sponding additional degrees of freedom; the nodes in Lj are such that their support intersects

the jth crack but do not contain any of its two extremities;

(2)Kj ⊂ I is the subset of nodes to enrich for the jth crack tip and bli; j ; l=1; : : : ; 4; are the

corresponding additional degrees of freedom; the nodes in Kj are such that their support

contain the jth crack tip;

(3) Jj ⊂ I is the subset of nodes to enrich for the jth junction and ci; j are the corresponding

additional degrees of freedom; the nodes in Jj are such that their support contain the jth

junction.

3.3. Numerical integration of the weak form

For the elements cut by the crack, it is necessary to modify the element quadrature to accurately

evaluate the contribution to the weak form for both sides of the discontinuity. As the crack is

allowed to be arbitrarily oriented in an element, the use of standard Gauss quadrature may not

adequately integrate the discontinuous �eld. If the integration of the discontinuous enrichment is

indistinguishable from that of a constant function, the system of equations may be rank de�cient.

In this section, we present the modi�cations made to the numerical integration scheme for elements

cut by a crack which are extensions of Mo�es et al. [12].

The discrete weak form is normally constructed with a loop over all elements, as the domain

is approximated by


= ∪
e (16)

where 
e is the element subdomain. For elements cut by a crack, we divide the element into

triangular subdomains 
s with boundaries aligned with the crack geometry


e= ∪
s (17)

It is emphasized that the subdomains 
s are only necessary for quadrature; no additional degrees

of freedom are associated with them. An example of subdomains creation near a branching point

is shown in Figure 9.

Nodes are removed from the sets L or J if their support is almost entirely on one side of the

crack. This is implemented by

node belongs to set L if
min(A−1; A+1)

A!

¿ � (18)

node belongs to set J if
min(A0; A−1; A+1)

A!

¿ � (19)

where A0; A+1 and A−1 are shown in Figure 10, A! is the area of the support and, � a spec-

i�ed tolerance; 10−4 is typically used. This prevents rank de�ciency in the discrete system of

equations.
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Figure 10. De�nition of the areas associated with the support of a nodal-shape function.

Figure 11. Enrichment for two holes.

4. MODELLING HOLES WITH THE X-FEM

We show here how to model holes which are not de�ned by the mesh. The idea is to de�ne an

enrichment function V (x) which is zero in the holes and one in the body

V (x)=

{

1 if x∈

0 if x 6∈
 (20)

where 
 is the domain occupied by the body. If the support of a nodal shape function intersects

a hole, the nodal shape function is multiplied by the V (x) function so that the support size is

reduced to its material fraction. Also, the nodal degrees of freedom for which the support are

totally in the void are eliminated (or set to zero depending on the implementation). Figure 11

illustrates the enrichment strategy for a body containing two holes.

To model a crack emanating from a hole, we only have to replace the classical shape functions

�i (x) by  i (x)=V (x)�i(x) in Equation (16) and to set to zero all the degrees of freedom attached

to a node whose support is entirely in the hole. In practice, we do not replace the classical shape

11



Figure 12. Symmetrical branched crack in a plate under uniaxial traction.

functions �i(x) by  i(x)=V (x)�i(x), we simply omit the integral in the holes. Furthermore, in

Equations (19) and (20), we replace the area A! by A! – Ahole where Ahole is the area of the

nodal support in the hole. Note that since the function is discontinuous on the boundary of the

holes, zero tractions are automatically implied by the weak form.

5. NUMERICAL EXAMPLES

In this section, we apply the X-FEM to various crack problems. A branched crack in a �nite plate

is studied. We also study the inuence of the relative size of the plate on a cross and a star-shaped

crack, and we consider the case of two cracks emanating from a hole in a �nite plate. The stress

intensity factors are computed in all cases, and the accuracy and the robustness of the method are

demonstrated.

5.1. Branched crack in an in�nite plate

We examine the example of a symmetric branched crack in a plate of width 2w and height 2H

subjected to uniaxial tension perpendicular to the main crack. In all computations, w=20, H =16

and the length of the main crack, a, is unity. These dimensions are chosen to ‘model’ an in�nite

plate.

We use the notations shown in Figure 12. The normalized stress intensity factors for an in�nite

plate at tips A and B

FAI =KAI =�
√
�c; FBI =KBI =�

√
�c; FBII =KBII =�

√
�c

are given in Reference [8] and used as a benchmark.

We initially consider a geometry where b=a=1 and �= �=4. The average size of the �nite

elements in the vicinity of the crack is h. The stress intensity factors are computed for several

ratios h=a and compared to those given by Chen and Hasebe [8]. They are computed using domain

12



Table I. Normalized KA
I , K

B
I , K

B
II values for various ratios h=a.

h=a 0.40 0.30 0.22 0.18 0.16 0.14 0.12 0.10 0.05 ?

FAI 0.963 1.009 1.027 1.056 1.038 1.042 1.045 1.045 1.044 1.044

FBI 0.460 0.468 0.498 0.493 0.493 0.494 0.493 0.495 0.496 0.495

FBII 0.458 0.464 0.501 0.506 0.503 0.505 0.504 0.507 0.508 0.506

?Reference solution by Chen and Hasebe [8].

forms of the interaction integrals [19; 20]. The X-FEM results, shown in Table I, are in good

agreement with the reference solution as the mesh is re�ned.

The SIFs obtained by the X-FEM for di�erent values of b=a and � are shown in Table II.

All results are computed using the mesh shown in Figure 13 in which the crack is not explicitly

model. Our results are comparable to those found by Kitagawa and Yuuki [21] and Chen and

Hasebe [8]. The variation of FAI is plotted in Figure 14. For the ratio b=a=0:2 and �=15◦, the

mesh was not �ne enough to compute the stress intensity factors: the J -integral domain contained

several crack tips.

We note a negative value of KI in Table lI when b=a=2:0 and �=75◦ suggesting the need of

taking contact into account in this case. In Reference [22], it is mentioned that at the branching

point a stress �eld singularity exists which is weaker than the crack tips singularity. This singularity

has not been modelled here but can easily be included.

5.2. Branched crack in a �nite plate

We now analyse the inuence of the size of the plate on the stress intensity factors by varying the

ratio a=w. The crack geometry, Figure 12, is given by �=45◦ and b=a=1. The stress intensity

factors obtained are given in Table III and plotted in Figure 15 to show their deviations from

the case of an in�nite plate. The results presented by Theocaris et al. [23] do not agree with the

present formulation as the ratio a=w tends to zero.

5.3. Cross crack in a �nite plate

In the problem of a cross crack shown in Figure 16, a square plate with bi-axial loading is

analysed. The SIFs have been computed for the ratio a=w varying from 0.1 to 0.9. The mesh used

was obtained by the mesh generator gmsh [24]. It is an unstructured mesh which is re�ned in the

vicinity of the cracks (but not conforming to it). In Table IV, we give the normalized SIF FI,

where FI=KI=�
√
�a. The SIFs obtained by the X-FEM are close to those computed by Cheung

et al. [25] provided the ratio a=w is less than 0.6. Furthermore, the results we have obtained when

a=w is rather small can be compared with those obtained by an analytical method for a cross crack

in an in�nite plate [6], FI=0:8636. The FI value obtained for a=w=0:1 is 0:8653 which is very

close to the above reference value.

5.4. Star-shaped crack in a �nite plate

We model a star-shaped crack in a �nite plate under bi-axial loading as shown in Figure 17 and

we analyse the inuence of the size of the plate on the stress intensity factors. The normalized
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Table II. Normalized SIFs for various ratios b=a and angles �.

� 15◦ 30◦ 45◦ 60◦ 75◦

b=a X-FEM ? X-FEM ? X-FEM ? X-FEM ? X-FEM ?

FAI 1.023 — 1.044 — 1.078 — 1.135 — 1.133 —

2.0 FBI 0.749 — 0.663 — 0.494 — 0.282 — −0:036 —

FBII 0.138 — 0.364 — 0.516 — 0.562 — 0.203 —

FAI 1.020 — 1.035 — 1.059 — 1.103 — 1.180 —

1.5 FBI 0.744 — 0.663 — 0.495 — 0.283 — 0.075 —

FBII 0.130 — 0.357 — 0.515 — 0.568 — 0.500 —

FAI 1.016 1.018 1.027 1.030 1.045 1.044 1.066 1.069 1.118 1.117

1.0 FBI 0.750 0.737 0.659 0.658 0.493 0.495 0.281 0.281 0.061 0.061

FBII 0.123 0.114 0.344 0.343 0.504 0.506 0.576 0.577 0.535 0.541

FAI 1.015 1.016 1.028 1.026 1.036 1.036 1.053 1.053 1.086 1.087

0.8 FBI 0.736 0.735 0.660 0.658 0.494 0.495 0.281 0.281 0.057 0.056

FBII 0.107 0.107 0.336 0.333 0.497 0.498 0.573 0.567 0.546 0.551

FAI 1.014 1.014 1.022 1.023 1.030 1.029 1.038 1.039 1.057 1.060

0.6 FBI 0.735 0.732 0.659 0.657 0.498 0.497 0.284 0.284 0.058 0.054

FBII 0.097 0.095 0.322 0.319 0.486 0.485 0.567 0.568 0.542 0.554

FAI 1.012 1.011 1.020 1.018 1.022 1.023 1.028 1.028 1.035 1.037

0.4 FBI 0.752 0.729 0.659 0.659 0.502 0.504 0.295 0.295 0.067 0.066

FBII 0.096 0.078 0.299 0.295 0.459 0.460 0.546 0.546 0.542 0.542

FAI — — 1.014 1.012 1.019 1.015 1.018 1.018 1.022 1.021

0.2 FBI — — 0.674 0.667 0.532 0.528 0.339 0.335 0.115 0.122

FBII — — 0.254 0.247 0.412 0.405 0.493 0.492 0.498 0.497

?Reference solution by Chen and Hasebe [8].

SIFs are de�ned as

FAI =KAI =�
√
�a; FBI =KBI =�

√
�a; FBII =KBII =�

√
�a

We have computed the normalized SIFs for ratios of a=w from 0.1 to 0.9 using two di�erent

meshes obtained by the mesh generator gmsh. One is an unstructured mesh which is re�ned in

the vicinity of the cracks (but not conforming to it), and the second is a uniform mesh (40× 40
quadrilateral elements). The two meshes have about the same number of nodes. The results are

given in Table V and demonstrate the accuracy and robustness of the X-FEM: the stress intensity
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Figure 13. (a) Mesh used to compute the SIFs in an ‘in�nite’ plate (1218 nodes, h=a = 0:12),
(b) zoom in the region of the branched crack.

Figure 14. Normalized KA
I values for a branched crack in a �nite plate for various ratios b=a and angles �.

factors computed with the uniform mesh are comparable to those obtained with the unstructured

mesh and both are in good agreement with the values determined by Cheung et al. [25]. Further-

more, when the ratio a=w tends to zero, the computed results converge to the analytical value for

an in�nite plate calculated by Ouchterlong [26] (FI=0:7454).
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Table III. Normalized KA
I , K

B
I , K

B
II values for a branched crack in a �nite plate for various ratios a=w.

a=w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FAI 1.052 1.091 1.157 1.258 1.368 1.514 1.706 1.993 2.612

FBI 0.504 0.511 0.534 0.574 0.634 0.727 0.855 1.039 1.290

FBII 0.514 0.542 0.586 0.648 0.723 0.811 0.914 1.028 1.158

Figure 15. Ratios between the SIFs for a branched crack in a �nite plate and in�nite plate.

Table IV. Normalized KI values for a cross in a �nite plate for various ratio a=w.

a=w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X-FEM 0.8653 0.8844 0.9147 0.9572 1.0253 1.1348 1.3170 1.6388 2.4395
? 0.8641 0.8800 0.9092 0.9537 1.0223 1.1300 1.2866 1.4857 —

?Reference solution by Cheung et al. [25].

5.5. Two cracks emanating from a hole in a �nite plate

Finally, we apply the X-FEM to two cracks emanating from a hole in a �nite plate (Figure 18).

To be able to compare our results with Newman [4], Bowie [27] and Woo et al. [28], the following

dimensions for the half-height H and the radius r are taken: H = 2w; r = 0:25w. The normalized

SIFs are defined as follows: FI = KI=�
√
�a, FII = KII=�

√
�a.  
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Figure 16. Cross in a �nite square plate under
bi-axial tension.

Figure 17. A star-shaped crack in a �nite square
under biaxial traction.

Table V. Normalized KI and KII values for a star-shaped crack in a �nite plate for various ratios a=w and
for two di�erent meshes with about the same number of nodes: an unstructured mesh re�ned in the vicinity

of the crack (mesh a) and a uniform mesh (mesh b).

FAI FBI FBII
a=w Mesh a Mesh b ? Mesh a Mesh b ? Mesh a Mesh b ?

0.1 0.7511 † 0.7408 0.7690 † 0.7408 0.0001 † 0.0000

0.2 0.7670 0.7746 0.7570 0.7683 † 0.7578 0.0005 † 0.0004
0.3 0.7931 0.7942 0.7846 0.7983 0.7973 0.7884 0.0021 0.0021 0.0022
0.4 0.8287 0.8332 0.8255 0.8466 0.8466 0.8365 0.0080 0.0064 0.0070
0.5 0.8864 0.8928 0.8815 0.9255 0.9208 0.9087 0.0184 0.0168 0.0168
0.6 0.9673 0.9760 0.9758 1.0445 1.0401 1.0182 0.0364 0.0350 0.0338
0.7 1.0971 1.1120 1.1142 1.2367 1.2369 1.1936 0.0593 0.0614 0.0529
0.8 1.3423 1.3581 — 1.5624 1.5593 — 0.0864 0.0826 —
0.9 1.9037 1.9578 — 2.1927 2.1659 — 0.0868 0.0880 —

†The SIF was not computed since the J-integral domain contained several crack tips.
?Reference solution by Cheung et al. [25].

All computations are performed with a uniform 28× 56 quadrilateral element mesh. As shown
in Table VI, the X-FEM results are in good agreement with the reference solutions (KI).

Table VII shows the computed SIFs FI and FII for several ratios of a=w and di�erent angles �.

The plots in Figure 19 compare the X-FEM results with those obtained by Woo et al. [28]. We

deduce from these results that the mesh is not su�ciently re�ned for ratios of a=w less than 0:5.

6. CONCLUSIONS

An extended �nite element method has been developed for modelling arbitrary geometries such 

as multiple branched cracks, voids and cracks emanating from holes without the need for the 
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Figure 18. Two cracks emanating from a hole in a �nite plate.

Table VI. Normalized KI values for di�erent a=w.

a=w 0:3 0:4 0:5 0:6 0:7 0:8 0:9

X-FEM 1.082 1.207 1.286 1.389 1.558 1.857 2.611
? 1.08 1.22 1.28 1.40 1.57 1.89 2.58
† 1.078 1.216 1.285 1.397 1.580 1.904 2.625
‡ 1.078 1.216 1.285 1.396 1.574 1.892 2.498

?Reference solution by Bowie [27].
†Reference solution by Newman [4].
‡Reference solution by Woo [28].

Table VII. Normalized KI and KII values for two cracks emanating from a hole for various
ratio a=w obtained with the X-FEM.

� 0◦ 15◦ 30◦ 45◦ 60◦

a=w FI FII FI FII FI FII FI FII FI FII

0.4 1.207 0.000 1.120 0.196 0.864 0.351 0.517 0.408 0.155 0.347
0.5 1.286 0.000 1.178 0.235 0.943 0.421 0.586 0.495 0.212 0.424
0.6 1.389 0.000 1.288 0.264 1.031 0.463 0.654 0.547 0.260 0.466
0.7 1.558 0.000 1.459 0.289 1.145 0.504 0.726 0.587 0.301 0.500
0.8 1.857 0.000 1.702 0.336 1.297 0.556 0.812 0.629 0.348 0.532
0.9 2.611 0.000 2.178 0.427 1.531 0.631 0.916 0.680 0.388 0.566
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Figure 19. Normalized KI (a) and KII (b) for two cracks emanating from a hole compared to the reference
values K ref

I (a) and K ref
II obtained by Woo et al. [28].

geometric entities to be meshed. The classical FEM approximation is enriched by the asymptotic

near-tip �eld used by Belytschto and Black [11], the discontinuous function presented by Mo�es

et al. [12] and a new discontinuous function to account for the multiple branched crack. The

enrichment functions are introduced by employing the regular �nite element shape functions as a

partition of unity. The partition of unity has the desirable feature that the discrete equations retain

the sparsity properties of the original mesh, albeit with an increase in the bandwidth. The voids

are modelled by applying a quadrature scheme which partitions elements along the boundary of

the voids and only consider the integrals within the body.

Unlike the boundary element methods, this method based on �nite elements is readily generalized

to problems involving non-linear constitutive laws.

The SIF-results using the X-FEM for various problems involving branched and intersecting

cracks as well as cracks emanating from a hole were found to be in good agreement with reference

solutions and analytical results.

In the extended �nite element method, the crack is treated as a separate geometric entity and

the only interaction with the mesh occurs through the selection of the enriched nodes and the

numerical integration of the weak form. We have reported here quadrature schemes that use a

subdivision of the elements cut by the cracks, with numerical integration performed separately on

either side of the crack discontinuity.

The need of a variable number of degrees of freedom is a factor that contributes to greater

computational cost of the new method. The relative ease of crack growth simulation without

remeshing and the treatment of various aws within a uni�ed framework are, however, overriding

advantages of the X-FEM over existing FE-based technology for modelling cracks.
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